JP3799416B2 - Magnetostrictive displacement detector - Google Patents

Magnetostrictive displacement detector Download PDF

Info

Publication number
JP3799416B2
JP3799416B2 JP18177798A JP18177798A JP3799416B2 JP 3799416 B2 JP3799416 B2 JP 3799416B2 JP 18177798 A JP18177798 A JP 18177798A JP 18177798 A JP18177798 A JP 18177798A JP 3799416 B2 JP3799416 B2 JP 3799416B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
magnetostrictive wire
permanent magnet
elastic wave
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18177798A
Other languages
Japanese (ja)
Other versions
JP2000009490A (en
Inventor
利郎 市川
祥 今吉
宏三 京和泉
秀之 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18177798A priority Critical patent/JP3799416B2/en
Publication of JP2000009490A publication Critical patent/JP2000009490A/en
Application granted granted Critical
Publication of JP3799416B2 publication Critical patent/JP3799416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は磁歪現象を用いて物体の機械的変位や液面の変位などを検出する磁歪式変位検出装置に関するものである。
【0002】
【従来の技術】
従来、磁歪式変位検出装置として、図1に示すように、磁歪線30にパルス発生回路31から電流パルスを流すことにより、磁歪線30に沿って移動可能な永久磁石32の近接する磁歪線の部位でねじり弾性波(超音波)を発生させ、磁歪線30の始端側に設けた受信器33までのねじり弾性波の伝播時間を計測することにより、永久磁石32に与えられる機械的変位を検出するものが知られている(例えば特開昭61−112923号公報参照)。磁歪線30の両端部は、支持部材34,35によって張力を持って支持されている。
【0003】
図2は永久磁石32の変位を検出する方法を示す波形図である。Aは電流パルス、Bは受信器33で受信された波形、Cは波形Bを成形した波形である。電流パルスAの供給から波形C1 の到達までの時間tを計測すれば、次式により、永久磁石32に与えられる変位xを計測できる。
x=v・t
なお、vはねじり弾性波の伝播速度である。
【0004】
ねじり弾性波には、軸方向の成分である縦波と円周方向の成分である横波とが含まれているが、縦波と横波とではその伝播速度が異なる。縦波の伝播速度vL 、横波の伝播速度vT はそれぞれ次式で与えられる。
L =√(E/ρ)
T =√(G/ρ)
なお、Eは磁歪線の縦弾性係数、Gは剛性率、ρは密度である。
【0005】
【発明が解決しようとする課題】
Ni−SpanCのような恒弾性材料では、縦弾性係数Eおよび剛性率Gは温度に関係なく一定であるが、NS−1のような材料では、縦弾性係数E,剛性率Gが温度によってかなり大きく変化する。例えば、磁歪式変位検出装置を原子炉の制御棒駆動装置の制御棒駆動軸の位置検出に使用する場合、周囲温度が約350℃にも達するため、温度変化による伝播速度の変動を無視できなくなる。
【0006】
変位検出装置とは別に温度センサを設け、この温度センサの検出信号に基づいて伝播速度を補正することは可能であるが、これでは温度センサなどの格別な温度検出手段を必要とするので、コスト高になるばかりか、温度センサが磁歪線の温度を正確に検出できるとは限らない。
【0007】
そこで、本発明の目的は、温度変化によるねじり弾性波の伝播速度の変動を補償し、高い精度で変位を検出できる安価な磁歪式変位検出装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、磁歪線の軸線方向に電流パルスを流すことにより、磁歪線に沿って移動可能な検出用永久磁石の近接する磁歪線の部位でねじり弾性波を発生させ、磁歪線の特定部位に設けた受信器までのねじり弾性波の伝播時間を計測することにより、検出用永久磁石に与えられる機械的変位を検出する装置において、上記電流パルスの印加と異なるタイミングで磁歪線に基準信号を印加する基準信号発生手段と、上記基準信号発生手段と磁歪線との間の信号変化から磁歪線の抵抗値を検出する抵抗検出手段と、検出された抵抗値から周囲温度に対応して検出用永久磁石に与えられる機械的変位を補償する補償手段と、を備えた磁歪式変位検出装置を提供する。
【0009】
本発明では、温度を検出するために磁歪線の抵抗値を検出している。例えば磁歪線として重量比でNi50%,Fe50%の合金(NS- 1(商品名))を用いた場合、その抵抗値は図3のように周囲温度によってほぼ直線的に変化する。一方、伝播速度も図4のように周囲温度によってほぼ直線的に変化する。したがって、磁歪線の抵抗値を検出すれば、周囲温度つまり伝播速度をほぼ正確に知ることができる。このようにして周囲温度に対応してねじり弾性波の伝播速度を補償すれば、温度が大きく変化しても、常に正確な変位測定を行なうことが可能となる。
【0010】
なお、温度補償の方法は、検出された抵抗値から周囲温度に対応してねじり弾性波の伝播速度を補償する場合に限らない。例えば、検出用永久磁石の他に磁歪線の特定部位に固定永久磁石を設け、この永久磁石からの受信波形を利用して伝播速度を相殺する検出方法を用いた場合(例えば特開昭61−226615号公報参照)には、固定永久磁石と受信器との距離を温度補償すればよい。また、電流パルスを流すと、磁歪線の終端で縦波が発生するので、この縦波を利用して伝播速度の影響を相殺することも可能であるが、この場合も磁歪線の長さを温度補償すればよい。
【0011】
請求項2のように、基準電圧発生手段と磁歪線との間に固定抵抗器を接続し、固定抵抗器と磁歪線との間の分圧電圧を検出することで、磁歪線の抵抗値を検出するのが望ましい。磁歪線の終端部はパルス発生回路のアースに戻されているので、磁歪線の抵抗値を容易に検出できる。なお、固定抵抗器は、温度変化に対して安定、つまり温度が変化しても抵抗値が殆ど変化しないものを用いるのが望ましい。
なお、基準信号発生手段として定電流源を用い、この定電流源と磁歪線との間の電圧変化を検出することで、磁歪線の抵抗値を検出してもよい。この場合には、固定抵抗器が不要である。
【0012】
このように、本発明では温度センサなどの格別な検出装置が不要であり、コストを低減できる。しかも、温度変化によって影響を受ける磁歪線そのものの温度を検出しているので、温度センサなどを用いる場合に比べてより正確に温度を検出できる。
【0013】
請求項3のように、受信器として磁歪線に挿通配置されたねじり弾性波受信用コイルを用い、このコイルの近傍に軸方向の偏向磁場を与えるバイアス用永久磁石を配置し、コイルで磁歪線を伝播するねじり弾性波の成分のうちの縦波を検出するのが望ましい。
すなわち、磁歪線に電流パルスを印加すると、検出用永久磁石の近接する磁歪線の部位でねじり弾性波が発生し、このねじり弾性波は磁歪線を伝播して受信器で検出される。ねじり弾性波には円周方向の横波成分と軸方向の縦波成分とがあるが、ねじり弾性波の横波を検出した場合には、受信器と検出用永久磁石との距離が離れると、振幅が大きく減衰してしまう。これに対し、ねじり弾性波の縦波を検出すると、横波に比べて伝播距離による減衰が少なく、検出用永久磁石が磁歪線の軸方向に広範囲に動いても明確な検出波形が得られる。
【0014】
図5は磁歪線にNS−1を用いて、ねじり弾性波の横波を検出した場合と縦波を検出した場合の、受信器と永久磁石間の距離によるねじり弾性波の減衰を比較したものである。縦波では横波に比べて減衰が少なく、受信器と永久磁石間の距離が4mとなっても、縦波の減衰量は20%程度に抑えられることがわかる。
【0015】
ところで、磁歪式変位検出装置は、周囲温度が磁歪線の磁気変態点を超えると、磁気現象が消失してしまうために機能しなくなる。また、周囲温度が磁気変態点を超えないまでも、同点に近づくだけで、発生するねじり弾性波の振幅が減衰することから、使用できる周囲温度範囲の制限を受ける。磁歪線の材質としては恒弾性材料であるNi−Cr−Fe−Ti−Al系合金(例えばNi−SpanC(商品名))が一般的に用いられるが、Ni−SpanCの磁気変態点は150℃前後であり、周囲温度の上昇によるねじり弾性波の減衰のために、実用上は周囲温度が100℃程度までの環境でしか使用できない。磁歪式変位検出装置を原子炉の制御棒駆動装置の制御棒駆動軸の位置検出に使用する場合、周囲温度が約350℃に達するため、磁歪線としてNi−SpanCを用いることはできない。
【0016】
そこで、磁歪式変位検出装置を原子炉の制御棒駆動装置にも使用することができるようにするために、磁歪線として様々な材料を試してみた結果、例えば上記のNS- 1を用いると、周囲温度が室温から350℃まで上昇してもねじり弾性波の振幅の温度変化による減衰が小さいことを発見した。
【0017】
図6にNi−SpanCとNS−1の周囲温度の変化によるねじり弾性波の減衰を示す。NS−1では周囲温度を室温から350℃まで上昇させても、ねじり弾性波の温度変化による減衰量は40%程度である。
【0018】
そこで、請求項4では、磁歪線としてNS−1を用いた変位検出装置に本発明を適用したものである。これによって、ねじり弾性波の温度変化による減衰量が小さく、かつ温度変化による伝播速度の変動も小さい、高性能な変位検出装置が得られる。
【0019】
なお、磁歪線の材質としてNS−1を用いると、周囲温度が上昇してもねじり弾性波の温度変化による減衰量が小さいという利点はあるが、その反面、NS−1はねじり弾性波が磁歪線を伝播して受信器に到達するまでの間の減衰量、すなわちねじり弾性波の伝播距離の長さによる減衰量がNi−SpanCに比べて大きいという性質がある。そこで、磁歪線の材質としてNS−1を用い、ねじり弾性波の縦波を検出するようにすれば、一層効果的である。
【0020】
【発明の実施の形態】
図7は本発明にかかる磁歪式変位検出装置の一例を示し、図8はその各部の信号波形図である。
磁歪線1は重量比でNi50%,Fe50%の合金(NS- 1(商品名))を用いている。NS- 1は周囲温度が室温から350℃まで上昇してもねじり弾性波の振幅の温度変化による減衰が少ない。磁歪線1の始端は基台2上に固定されたクランプ部材3によってクランプされ、終端はスプリング4を介して支持部材5によって支持されている。そのため、磁歪線1には常に一定の張力が与えられる。なお、磁歪線1の始端部にはねじり弾性波を吸収するシリコーンゴムなどのダンピング材6が塗布されており、クランプ部材3からの反射波などを吸収している。受信器7は磁歪線1の始端側に配置されており、内蔵したコイル7aの中心部を磁歪線1が無接触で貫通している。コイル7aはヴィラリー効果を利用して磁歪線1を伝播するねじり弾性波の到来を検出するものである。コイル7aの負極は接地され、正極は増幅器8に接続される。
【0021】
磁歪線1の近傍には、磁歪線1の軸線方向(x方向)に移動可能な検出用永久磁石9が配置されている。なお、この実施例の永久磁石9は円環状で、軸方向に着磁したものであるが、これに限らず、ヴィーデマン効果によって磁歪線1にねじり弾性波を発生させることができるものであれば、形状や着磁方向は問わない。また、円環状永久磁石9を磁歪線1に挿通してもよい。
【0022】
受信器7の背後に位置する磁歪線1の始端部、特にダンピング材6の近傍には、コイル7aの近傍に軸方向の偏向磁場を与えるバイアス用永久磁石10が配置されている。この実施例では、円板状永久磁石10の両端面にN,S極を着磁したものであるが、軸方向の偏向磁場を与えるものであれば、永久磁石の形状や着磁方向、取付位置は限るものではない。例えば、軸方向に着磁した棒状のバイアス用永久磁石10をコイル7aの半径方向外側に配置してもよい。
【0023】
クランプ部材3から突出した磁歪線1の始端には電流パルス発生回路11から電流パルスが周期的(例えば100Hz〜1kHz)に供給され、磁歪線1の終端からスプリング4を介してパルス発生回路11のアースに戻される。電流パルスが供給されると、ヴィーデマン効果により永久磁石9の近接する磁歪線1の部位でねじり弾性波が発生し、受信器7で検出される。検出されたねじり弾性波は増幅器8で増幅され、検出回路12に送られる。検出回路12は入力された信号を波形成形するとともに、所定の信号処理を行って永久磁石9に与えられる機械的変位xを検出する。なお、検出回路12による機械的変位xの検出方法は、例えば特開昭61−112923号公報,特開平5−187854号公報などにより公知であるため、ここでは説明を省略する。
【0024】
電流パルス発生回路11と磁歪線1の始端との間には第1スイッチ13が接続され、電流パルス発生回路11の電流パルスAは遅延回路14にも入力される。遅延回路14は、電流パルスAの発生から一定時間遅れてタイミング信号C1 ,C2 を発生する。遅延回路14のタイミング信号C1 によって第1スイッチ13がOFFし、タイミング信号C2 によって第2スイッチ15がONする。タイミング信号C1 とC2 は同時であってもよいし、異なるタイミングであってもよいが、電流パルスAの印加時に第2スイッチ15がONにならないように制御すればよい。第2スイッチ15の一端は、基準電圧発生回路16と固定抵抗器17を介して接続され、他端は磁歪線1の始端に接続されている。そのため、基準電圧発生回路16からの基準電圧Vsは固定抵抗器17と磁歪線1とによって分圧される。分圧電圧Vaは、サンプルホールド回路18によってサンプルホールドされる。サンプルホールド回路18には遅延回路14からタイミング信号C1 ,C2 よりやや遅れてサンプリング信号Dが入力されており、このサンプリング信号Dに同期してサンプルホールドを行なう。サンプルホールドされた分圧電圧Vaは、検出回路12へ入力され、温度補償が行なわれる。
【0025】
なお、スイッチ13,15としては2個設けることなく、電流パルス発生回路11側と基準電圧発生回路16側とに選択的に切り換わる1個のスイッチであってもよいし、スイッチ13を省略することも可能である。また、スイッチ13,15としては、リレーやトランジスタなどの公知の切換手段を用いることができる。
【0026】
ここで、図8の波形図を参照しながら図7の変位検出装置の作動を説明する。まず、パルス発生回路11から電流パルスAを磁歪線1に供給すると、永久磁石9の近接する磁歪線1の部位でねじり弾性波が発生する。このねじり弾性波は受信器7で検出され、増幅器8で波形Bのように増幅される。この波形Bには、必要とする検出波形B1 ,B2 の他に、電流パルスAの印加に伴う電磁的ノイズB0 も含まれているが、このノイズはマスキング回路などで容易に除去することができる。次の電流パルスAの発生の直前に、遅延回路14からタイミング信号C1 ,C2 が発生され、タイミング信号C2 からやや遅れてサンプリング信号Dが発生される。サンプリング信号Dをタイミング信号C2 から遅らせたのは、第2スイッチ15がONし、基準電圧Vsが印加された後、磁歪線1による電圧降下が起こるまである程度の時間を必要とするからである。タイミング信号C1 によって第1スイッチ13がOFFされるとともに、タイミング信号C2 によって第2スイッチ15がONされる。これによって、固定抵抗器17と磁歪線1との中間部の電位Eは、基準電圧VsからVaへと降下する。そして、サンプルホールド回路18はサンプリング信号に同期して分圧電圧Vaをサンプルホールドし、Fのような信号を得る。サンプルホールド信号Fのうち、Va1 は前回の分圧電圧、Va2 は今回の分圧電圧である。
上記サンプルホールド信号Fは検出回路12に入力され、これによってねじり弾性波の伝播速度が温度補償され、温度変化による変動の少ない正確な検出値xを得ることができる。
【0027】
上記サンプルホールドされた分圧電圧Vaから磁歪線1の抵抗値Rmを知るには、次のようにすればよい。すなわち、磁歪線1の抵抗値をRm、固定抵抗器17の抵抗値をRc、基準電圧をVs、分圧電圧をVaとすると、抵抗値Rmは次式で求めることができる。
Rm=Va・Rc/(Vs−Va)
【0028】
図3のように磁歪線1の抵抗値Rmと周囲温度との関係は既知であるから、分圧された電圧信号Vaによって周囲温度を知ることができる。さらに、ねじり弾性波の伝播速度と温度との関係も図4によって既知であるから、結局、分圧電圧Vaからその時の温度における伝播速度を知ることができる。
【0029】
上記のように、電流パルスの印加毎に分圧電圧Vaをサンプルホールドし、伝播速度を温度補償するようにすれば、急激に温度が変化した場合でも、常に高い精度で変位を検出できる。
また、変位検出装置を検出回路12,パルス発生回路11,遅延回路14,基準電圧発生回路16,固定抵抗器17,サンプルホールド回路18などのアナログ回路で構成すれば、極めて安価に構成でき、しかも調整しやすい。
【0030】
上記変位検出装置の場合、検出用永久磁石9の近接する部位で発生したねじり弾性波は受信用コイル7aで検出されるが、このときコイル7aの近傍には軸方向の偏向磁場を与えるバイアス用永久磁石10が配置されているので、ねじり弾性波のうち横波成分が抑圧され、縦波成分のみが強調される。図5に示したように、縦波は横波に比べて伝播距離による減衰が少ないので、永久磁石9が例えば0m〜4mもの広範囲を移動する場合であっても、明瞭な検出波形をコイル7aで受信することができる。
【0031】
また、磁歪線1としてNS- 1を用いることで、図6に示すように、周囲温度が室温から350℃まで上昇してもねじり弾性波の振幅の温度変化による減衰が小さい。しかし、磁歪線1としてNS- 1を用いると、振幅の温度変化が小さくなる反面、伝播速度の温度変化が40ppm/℃にもなるが、本発明を用いることで、伝播速度の変動の影響をほぼ無視できる程度まで低減できる。
したがって、ねじり弾性波の縦波を検出し、磁歪線としてNS- 1を用い、かつねじり弾性波の伝播速度を温度補償することにより、原子炉の制御棒駆動装置のように温度変化が大きく、変位量も大きな装置に最適な変位検出装置を得ることができる。
【0032】
なお、上記実施例は本発明の一例に過ぎず、本発明の要旨を逸脱しない範囲で変更可能である。
上記実施例では、磁歪線の抵抗値と温度との関係、およびねじり弾性波の伝播速度と温度との関係が、図3,図4に示すように共に線形な関係にある材料を磁歪線として用いたが、これに限るものではなく、非線形な関係にある材料を用いてもよい。
また、上記実施例では、電流パルスを磁歪線に流し、この磁歪線を伝播するねじり弾性波を検出するようにしたが、特開昭59- 162412号公報に記載のように、磁歪線をチューブ状とし、その中に電流パルスを供給するための導線を挿通するようにしてもよい。
受信用コイルとして1個のコイルを用いたが、2個のコイルを軸方向に配置し、これらコイルの出力を差動的に取り出すようにしてもよい。この場合には、2個のコイルに共通に入るノイズを相殺することができる。
ねじり弾性波を検出する方法としては、上記のように受信器にコイルを使用し、ヴィラリー効果によってねじり弾性波を検出するものに限らず、触子を磁歪線に対してほぼ直交して接触させ、ねじり弾性波を触子の軸方向力に変換し、触子の端部に取り付けた圧電素子やコイルなどでねじり弾性波の到来を触子の軸方向変位の形で検出するものでもよい。
したがって、ねじり弾性波の縦波だけでなく、横波を検出してもよいことは勿論である。
【0033】
【発明の効果】
以上の説明で明らかなように、本発明によれば、電流パルスの印加と異なるタイミングで磁歪線に基準信号を印加する基準信号発生回路と、基準信号発生手段と磁歪線との間の信号変化から磁歪線の抵抗値を検出する抵抗検出手段とを設けたので、磁歪線の抵抗値を検出すれば、周囲温度をほぼ正確に知ることができる。このように求めた周囲温度に対応して補償手段によりねじり弾性波の伝播速度などを補償することで、機械的変位を温度補償したので、大きく温度が変化しても、常に正確な変位測定を行なうことが可能となる。
【0034】
また、本発明では温度センサなどの格別なセンサが不要であり、コストを低減できる。しかも、温度変化によって影響を受ける磁歪線そのものの温度を検出しているので、温度センサなどを用いる場合に比べてより正確に温度を検出できる。
【図面の簡単な説明】
【図1】一般的な磁歪式変位検出装置の構成図である。
【図2】図1の変位検出装置の波形図である。
【図3】磁歪線の抵抗値と温度との関係を示す図である。
【図4】ねじり弾性波の伝播速度と温度との関係を示す図である。
【図5】ねじり弾性(縦波および横波)の振幅と受信器と検出用永久磁石の軸方向距離との関係を示す比較図である。
【図6】ねじり弾性の振幅と温度との関係を示す比較図である。
【図7】本発明にかかる磁歪式変位検出装置の一例の構成図である。
【図8】図7の磁歪式変位検出装置の各部の波形図である。
【符号の説明】
1 磁歪線
7 受信器
9 検出用永久磁石
11 パルス発生回路
12 検出回路
14 遅延回路
16 基準電圧発生回路
17 固定抵抗器
18 サンプルホールド回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetostrictive displacement detection apparatus that detects a mechanical displacement of an object, a displacement of a liquid surface, and the like using a magnetostriction phenomenon.
[0002]
[Prior art]
Conventionally, as a magnetostrictive displacement detection device, as shown in FIG. 1, by passing a current pulse from a pulse generation circuit 31 to a magnetostrictive wire 30, a magnetostrictive wire adjacent to a permanent magnet 32 that can move along the magnetostrictive wire 30 is used. A mechanical displacement applied to the permanent magnet 32 is detected by generating a torsional elastic wave (ultrasonic wave) at the site and measuring the propagation time of the torsional elastic wave to the receiver 33 provided on the starting end side of the magnetostrictive wire 30. Are known (see, for example, JP-A-61-112923). Both ends of the magnetostrictive wire 30 are supported with tension by support members 34 and 35.
[0003]
FIG. 2 is a waveform diagram showing a method for detecting the displacement of the permanent magnet 32. A is a current pulse, B is a waveform received by the receiver 33, and C is a waveform obtained by shaping the waveform B. If the time t from the supply of the current pulse A to the arrival of the waveform C 1 is measured, the displacement x given to the permanent magnet 32 can be measured by the following equation.
x = v · t
Note that v is the propagation velocity of the torsional elastic wave.
[0004]
The torsional elastic wave includes a longitudinal wave that is a component in the axial direction and a transverse wave that is a component in the circumferential direction, but the propagation speed differs between the longitudinal wave and the transverse wave. Longitudinal wave propagation velocity v L, respectively propagation velocity v T of transverse waves is given by the following equation.
v L = √ (E / ρ)
v T = √ (G / ρ)
E is the longitudinal elastic modulus of the magnetostrictive wire, G is the rigidity, and ρ is the density.
[0005]
[Problems to be solved by the invention]
In a constant elastic material such as Ni-SpanC, the longitudinal elastic modulus E and the rigidity G are constant regardless of the temperature. However, in a material such as NS-1, the longitudinal elastic modulus E and the rigidity G are considerably different depending on the temperature. It changes a lot. For example, when the magnetostrictive displacement detection device is used for detecting the position of the control rod drive shaft of a nuclear reactor control rod drive device, the ambient temperature reaches about 350 ° C., so the fluctuation in propagation speed due to temperature change cannot be ignored. .
[0006]
Although it is possible to provide a temperature sensor separately from the displacement detection device and correct the propagation speed based on the detection signal of this temperature sensor, this requires a special temperature detection means such as a temperature sensor. Not only does it become high, but the temperature sensor cannot always accurately detect the temperature of the magnetostrictive wire.
[0007]
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive magnetostrictive displacement detector that can compensate for fluctuations in the propagation velocity of a torsional elastic wave due to temperature changes and can detect displacement with high accuracy.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention described in claim 1 is a method in which a magnetostrictive wire adjacent to a permanent magnet for detection that can move along the magnetostrictive wire by flowing a current pulse in the axial direction of the magnetostrictive wire. In the apparatus for detecting a mechanical displacement applied to a permanent magnet for detection by generating a torsional elastic wave and measuring a propagation time of the torsional elastic wave to a receiver provided at a specific part of the magnetostrictive wire, the current pulse A reference signal generating means for applying a reference signal to the magnetostrictive line at a timing different from the application of the magnetic field; a resistance detecting means for detecting a resistance value of the magnetostrictive line from a signal change between the reference signal generating means and the magnetostrictive line; And a compensation means for compensating for the mechanical displacement applied to the permanent magnet for detection corresponding to the ambient temperature from the resistance value.
[0009]
In the present invention, the resistance value of the magnetostrictive wire is detected in order to detect the temperature. For example, when an alloy of 50% Ni and 50% Fe (NS-1 (trade name)) is used as the magnetostrictive wire, its resistance value changes almost linearly with the ambient temperature as shown in FIG. On the other hand, the propagation speed also changes almost linearly with the ambient temperature as shown in FIG. Therefore, if the resistance value of the magnetostrictive wire is detected, the ambient temperature, that is, the propagation velocity can be known almost accurately. If the torsional elastic wave propagation velocity is compensated in accordance with the ambient temperature in this way, accurate displacement measurement can always be performed even if the temperature changes greatly.
[0010]
The temperature compensation method is not limited to the case where the propagation velocity of the torsional elastic wave is compensated from the detected resistance value corresponding to the ambient temperature. For example, in the case of using a detection method in which a fixed permanent magnet is provided at a specific part of the magnetostrictive line in addition to the detection permanent magnet and the propagation velocity is canceled using the received waveform from the permanent magnet (for example, Japanese Patent Laid-Open No. 61-61). 226615), the distance between the fixed permanent magnet and the receiver may be temperature compensated. In addition, when a current pulse is passed, a longitudinal wave is generated at the end of the magnetostrictive line, so it is possible to cancel the influence of the propagation velocity using this longitudinal wave. In this case, too, the length of the magnetostrictive line is reduced. What is necessary is just temperature compensation.
[0011]
As in claim 2, a fixed resistor is connected between the reference voltage generating means and the magnetostrictive wire, and the divided voltage between the fixed resistor and the magnetostrictive wire is detected, so that the resistance value of the magnetostrictive wire is reduced. It is desirable to detect. Since the end portion of the magnetostrictive wire is returned to the ground of the pulse generation circuit, the resistance value of the magnetostrictive wire can be easily detected. It is desirable to use a fixed resistor that is stable with respect to temperature change, that is, with a resistance value that hardly changes even when the temperature changes.
Note that the resistance value of the magnetostrictive wire may be detected by using a constant current source as the reference signal generating means and detecting a voltage change between the constant current source and the magnetostrictive wire. In this case, no fixed resistor is required.
[0012]
Thus, in the present invention, a special detection device such as a temperature sensor is unnecessary, and the cost can be reduced. In addition, since the temperature of the magnetostrictive line itself affected by the temperature change is detected, the temperature can be detected more accurately than when a temperature sensor or the like is used.
[0013]
A torsional acoustic wave receiving coil inserted and disposed in a magnetostrictive wire as a receiver as in claim 3, a biasing permanent magnet for providing an axial deflection magnetic field is disposed in the vicinity of the coil, and the magnetostrictive wire is formed by the coil. It is desirable to detect a longitudinal wave out of the components of the torsional elastic wave propagating through.
That is, when a current pulse is applied to the magnetostrictive wire, a torsional elastic wave is generated at a portion of the magnetostrictive wire adjacent to the detection permanent magnet, and this torsional elastic wave propagates through the magnetostrictive wire and is detected by the receiver. The torsional elastic wave has a circumferential transverse component and an axial longitudinal component. When a torsional acoustic transverse wave is detected, the amplitude increases as the distance between the receiver and the permanent magnet for detection increases. Will be greatly attenuated. On the other hand, when the longitudinal wave of the torsional elastic wave is detected, the attenuation due to the propagation distance is less than that of the transverse wave, and a clear detection waveform can be obtained even if the permanent magnet for detection moves in a wide range in the axial direction of the magnetostrictive line.
[0014]
FIG. 5 shows a comparison of the attenuation of torsional elastic waves depending on the distance between the receiver and the permanent magnet when NS-1 is used as the magnetostrictive line and the transverse wave of the torsional elastic wave is detected and when the longitudinal wave is detected. is there. It can be seen that the longitudinal wave is less attenuated than the transverse wave, and even if the distance between the receiver and the permanent magnet is 4 m, the attenuation of the longitudinal wave can be suppressed to about 20%.
[0015]
By the way, the magnetostrictive displacement detecting device does not function when the ambient temperature exceeds the magnetic transformation point of the magnetostrictive wire and the magnetic phenomenon disappears. Further, even if the ambient temperature does not exceed the magnetic transformation point, the amplitude of the torsional elastic wave that is generated is attenuated only by approaching the same point, so that the usable ambient temperature range is limited. As a material of the magnetostrictive wire, a Ni—Cr—Fe—Ti—Al alloy (for example, Ni—SpanC (trade name)), which is a constant elastic material, is generally used, but the magnetic transformation point of Ni—SpanC is 150 ° C. Because of the attenuation of torsional elastic waves due to an increase in ambient temperature, it can be used only in an environment where the ambient temperature is about 100 ° C. in practice. When the magnetostrictive displacement detection device is used for detecting the position of the control rod drive shaft of the control rod drive device of the nuclear reactor, the ambient temperature reaches about 350 ° C., so Ni-SpanC cannot be used as the magnetostriction line.
[0016]
Therefore, as a result of trying various materials as the magnetostriction line so that the magnetostrictive displacement detection device can be used also for the control rod driving device of the nuclear reactor, for example, when the above NS-1 is used, It was discovered that even when the ambient temperature rises from room temperature to 350 ° C., the attenuation due to the temperature change of the torsional elastic wave amplitude is small.
[0017]
FIG. 6 shows attenuation of torsional elastic waves due to changes in ambient temperature of Ni-SpanC and NS-1. In NS-1, even if the ambient temperature is raised from room temperature to 350 ° C., the attenuation due to the temperature change of the torsional elastic wave is about 40%.
[0018]
Therefore, in claim 4, the present invention is applied to a displacement detection apparatus using NS-1 as a magnetostrictive wire. As a result, a high-performance displacement detection device is obtained in which the amount of attenuation of the torsional elastic wave is small, and the fluctuation of the propagation velocity due to the temperature change is small.
[0019]
When NS-1 is used as the material of the magnetostrictive wire, there is an advantage that the amount of attenuation due to the temperature change of the torsional elastic wave is small even when the ambient temperature rises. There is a property that the amount of attenuation between propagation of the line and arrival at the receiver, that is, the amount of attenuation due to the length of the propagation distance of the torsional elastic wave is larger than that of Ni-SpanC. Therefore, it is more effective if NS-1 is used as the material of the magnetostrictive wire and the longitudinal wave of the torsional elastic wave is detected.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 7 shows an example of a magnetostrictive displacement detector according to the present invention, and FIG. 8 is a signal waveform diagram of each part thereof.
The magnetostrictive wire 1 uses an alloy of 50% Ni and 50% Fe (NS-1 (trade name)) by weight. NS-1 has little attenuation due to temperature change of the amplitude of the torsional elastic wave even when the ambient temperature rises from room temperature to 350 ° C. The magnetostriction wire 1 is clamped by a clamp member 3 fixed on the base 2 and a terminal end of the magnetostrictive wire 1 is supported by a support member 5 via a spring 4. Therefore, a constant tension is always applied to the magnetostrictive wire 1. Note that a damping material 6 such as silicone rubber that absorbs torsional elastic waves is applied to the start end of the magnetostrictive wire 1 to absorb reflected waves from the clamp member 3 and the like. The receiver 7 is disposed on the start end side of the magnetostrictive wire 1, and the magnetostrictive wire 1 passes through the central portion of the built-in coil 7 a without contact. The coil 7a detects the arrival of a torsional elastic wave propagating through the magnetostrictive wire 1 using the Villary effect. The negative electrode of the coil 7 a is grounded, and the positive electrode is connected to the amplifier 8.
[0021]
In the vicinity of the magnetostrictive wire 1, a detection permanent magnet 9 that is movable in the axial direction (x direction) of the magnetostrictive wire 1 is disposed. The permanent magnet 9 of this embodiment is annular and magnetized in the axial direction. However, the present invention is not limited to this, and any permanent magnet can be used as long as it can generate a torsional elastic wave in the magnetostrictive wire 1 by the Wiedemann effect. The shape and the magnetization direction are not limited. Further, the annular permanent magnet 9 may be inserted through the magnetostrictive wire 1.
[0022]
A biasing permanent magnet 10 that applies an axial deflection magnetic field is disposed in the vicinity of the coil 7a near the starting end of the magnetostrictive wire 1 located behind the receiver 7, particularly in the vicinity of the damping material 6. In this embodiment, the N and S poles are magnetized on both end faces of the disk-shaped permanent magnet 10. However, as long as an axial deflection magnetic field is applied, the shape, magnetization direction, and mounting of the permanent magnet The position is not limited. For example, a rod-shaped biasing permanent magnet 10 magnetized in the axial direction may be arranged on the outer side in the radial direction of the coil 7a.
[0023]
A current pulse is periodically (for example, 100 Hz to 1 kHz) supplied from the current pulse generation circuit 11 to the start end of the magnetostriction line 1 protruding from the clamp member 3, and the pulse generation circuit 11 passes through the spring 4 from the end of the magnetostriction line 1. Returned to earth. When a current pulse is supplied, a torsional elastic wave is generated at a portion of the magnetostrictive line 1 close to the permanent magnet 9 due to the Wiedemann effect and detected by the receiver 7. The detected torsional elastic wave is amplified by the amplifier 8 and sent to the detection circuit 12. The detection circuit 12 shapes the input signal and performs predetermined signal processing to detect the mechanical displacement x applied to the permanent magnet 9. The method for detecting the mechanical displacement x by the detection circuit 12 is known, for example, from Japanese Patent Laid-Open Nos. 61-112923 and 5-187854, and will not be described here.
[0024]
A first switch 13 is connected between the current pulse generation circuit 11 and the start end of the magnetostrictive wire 1, and the current pulse A of the current pulse generation circuit 11 is also input to the delay circuit 14. The delay circuit 14 generates timing signals C 1 and C 2 with a certain time delay from the generation of the current pulse A. The first switch 13 is turned OFF by a timing signal C 1 of the delay circuit 14, second switch 15 is turned ON by the timing signal C 2. The timing signals C 1 and C 2 may be the same or different timings, but may be controlled so that the second switch 15 is not turned on when the current pulse A is applied. One end of the second switch 15 is connected to the reference voltage generation circuit 16 via the fixed resistor 17, and the other end is connected to the start end of the magnetostrictive wire 1. Therefore, the reference voltage Vs from the reference voltage generation circuit 16 is divided by the fixed resistor 17 and the magnetostrictive wire 1. The divided voltage Va is sampled and held by the sample and hold circuit 18. The sampling and holding circuit 18 receives the sampling signal D from the delay circuit 14 with a slight delay from the timing signals C 1 and C 2 , and performs sampling and holding in synchronization with the sampling signal D. The sampled and divided voltage Va is input to the detection circuit 12, and temperature compensation is performed.
[0025]
Note that two switches 13 and 15 may be provided, and one switch that selectively switches between the current pulse generation circuit 11 side and the reference voltage generation circuit 16 side may be provided, and the switch 13 is omitted. It is also possible. As the switches 13 and 15, known switching means such as relays and transistors can be used.
[0026]
Here, the operation of the displacement detection device of FIG. 7 will be described with reference to the waveform diagram of FIG. First, when a current pulse A is supplied from the pulse generation circuit 11 to the magnetostrictive wire 1, a torsional elastic wave is generated at a portion of the magnetostrictive wire 1 adjacent to the permanent magnet 9. This torsional elastic wave is detected by the receiver 7 and amplified by the amplifier 8 as waveform B. This waveform B includes electromagnetic noise B 0 accompanying application of the current pulse A in addition to the required detection waveforms B 1 and B 2 , but this noise can be easily removed by a masking circuit or the like. be able to. Immediately before the next current pulse A is generated, timing signals C 1 and C 2 are generated from the delay circuit 14, and a sampling signal D is generated with a slight delay from the timing signal C 2 . The reason why the sampling signal D is delayed from the timing signal C 2 is that it takes a certain time until the voltage drop due to the magnetostrictive wire 1 occurs after the second switch 15 is turned on and the reference voltage Vs is applied. . The first switch 13 is turned off by the timing signal C 1 and the second switch 15 is turned on by the timing signal C 2 . As a result, the potential E at the intermediate portion between the fixed resistor 17 and the magnetostrictive wire 1 drops from the reference voltage Vs to Va. The sample and hold circuit 18 samples and holds the divided voltage Va in synchronization with the sampling signal to obtain a signal such as F. In the sample hold signal F, Va 1 is the previous divided voltage, and Va 2 is the current divided voltage.
The sample hold signal F is input to the detection circuit 12, whereby the torsional elastic wave propagation velocity is temperature compensated, and an accurate detection value x with little variation due to temperature change can be obtained.
[0027]
In order to know the resistance value Rm of the magnetostrictive wire 1 from the sampled and divided voltage Va, the following may be performed. That is, when the resistance value of the magnetostrictive wire 1 is Rm, the resistance value of the fixed resistor 17 is Rc, the reference voltage is Vs, and the divided voltage is Va, the resistance value Rm can be obtained by the following equation.
Rm = Va · Rc / (Vs−Va)
[0028]
As shown in FIG. 3, since the relationship between the resistance value Rm of the magnetostrictive wire 1 and the ambient temperature is known, the ambient temperature can be known from the divided voltage signal Va. Further, since the relationship between the propagation speed of the torsional elastic wave and the temperature is also known from FIG. 4, the propagation speed at the temperature at that time can be known from the divided voltage Va.
[0029]
As described above, if the divided voltage Va is sampled and held every time a current pulse is applied and the propagation velocity is temperature compensated, the displacement can always be detected with high accuracy even when the temperature changes suddenly.
Further, if the displacement detection device is constituted by analog circuits such as the detection circuit 12, the pulse generation circuit 11, the delay circuit 14, the reference voltage generation circuit 16, the fixed resistor 17, the sample hold circuit 18, etc., the displacement detection device can be configured extremely inexpensively. Easy to adjust.
[0030]
In the case of the above displacement detection device, the torsional elastic wave generated in the vicinity of the detection permanent magnet 9 is detected by the receiving coil 7a. At this time, a biasing magnetic field that applies an axial deflection magnetic field in the vicinity of the coil 7a. Since the permanent magnet 10 is disposed, the transverse wave component of the torsional elastic wave is suppressed and only the longitudinal wave component is emphasized. As shown in FIG. 5, since the longitudinal wave is less attenuated by the propagation distance than the transverse wave, even if the permanent magnet 9 moves over a wide range of, for example, 0 m to 4 m, a clear detection waveform is generated by the coil 7a. Can be received.
[0031]
Further, by using NS-1 as the magnetostrictive wire 1, as shown in FIG. 6, even if the ambient temperature rises from room temperature to 350 ° C., the attenuation due to the temperature change of the amplitude of the torsional elastic wave is small. However, when NS-1 is used as the magnetostrictive wire 1, the temperature change of the amplitude becomes small, but the temperature change of the propagation speed becomes 40 ppm / ° C. However, by using the present invention, the influence of the fluctuation of the propagation speed is reduced. It can be reduced to almost negligible level.
Therefore, by detecting the longitudinal wave of the torsional elastic wave, using NS-1 as the magnetostriction line, and compensating the temperature of the propagation speed of the torsional elastic wave, the temperature change is large as in the control rod driving device of the nuclear reactor, An optimum displacement detection device can be obtained for a device having a large amount of displacement.
[0032]
In addition, the said Example is only an example of this invention and can be changed in the range which does not deviate from the summary of this invention.
In the above embodiment, the relationship between the magnetostrictive wire resistance value and the temperature, and the relationship between the torsional elastic wave propagation velocity and the temperature, as shown in FIGS. Although it used, it is not restricted to this, You may use the material which has a nonlinear relationship.
Further, in the above embodiment, a current pulse is passed through the magnetostrictive line and a torsional elastic wave propagating through the magnetostrictive line is detected. However, as described in Japanese Patent Application Laid-Open No. 59-164212, the magnetostrictive line is It is also possible to insert a conducting wire for supplying a current pulse therein.
Although one coil is used as the receiving coil, two coils may be arranged in the axial direction, and the outputs of these coils may be taken out differentially. In this case, noise common to the two coils can be canceled out.
The method of detecting torsional elastic waves is not limited to using a coil in the receiver as described above and detecting torsional elastic waves by the Villary effect, but the contact is made almost perpendicular to the magnetostrictive line. Alternatively, the torsional elastic wave may be converted into the axial force of the touch element, and the arrival of the torsional elastic wave may be detected in the form of the axial displacement of the touch element with a piezoelectric element or a coil attached to the end of the touch element.
Therefore, not only the longitudinal wave of the torsional elastic wave but also the transverse wave may be detected.
[0033]
【The invention's effect】
As is apparent from the above description, according to the present invention, the reference signal generating circuit for applying the reference signal to the magnetostrictive wire at a timing different from the application of the current pulse, and the signal change between the reference signal generating means and the magnetostrictive wire. Since the resistance detecting means for detecting the magnetostriction wire resistance value is provided, the ambient temperature can be known almost accurately by detecting the magnetostriction wire resistance value. Compensation means compensates for the torsional elastic wave propagation velocity in response to the ambient temperature determined in this way, so that the mechanical displacement is compensated for temperature, so accurate displacement measurement is always possible even if the temperature changes greatly. Can be performed.
[0034]
Further, in the present invention, a special sensor such as a temperature sensor is unnecessary, and the cost can be reduced. In addition, since the temperature of the magnetostrictive line itself affected by the temperature change is detected, the temperature can be detected more accurately than when a temperature sensor or the like is used.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a general magnetostrictive displacement detection apparatus.
FIG. 2 is a waveform diagram of the displacement detection apparatus of FIG.
FIG. 3 is a diagram illustrating a relationship between a resistance value of a magnetostrictive wire and a temperature.
FIG. 4 is a diagram illustrating a relationship between a propagation speed of a torsional elastic wave and temperature.
FIG. 5 is a comparison diagram showing the relationship between the amplitude of torsional elasticity (longitudinal wave and transverse wave) and the axial distance between the receiver and the permanent magnet for detection.
FIG. 6 is a comparison diagram showing the relationship between the amplitude of torsional elasticity and temperature.
FIG. 7 is a configuration diagram of an example of a magnetostrictive displacement detector according to the present invention.
8 is a waveform diagram of each part of the magnetostrictive displacement detecting device of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnetostriction wire 7 Receiver 9 Permanent magnet 11 for detection 11 Pulse generation circuit 12 Detection circuit 14 Delay circuit 16 Reference voltage generation circuit 17 Fixed resistor 18 Sample hold circuit

Claims (4)

磁歪線の軸線方向に電流パルスを流すことにより、磁歪線に沿って移動可能な検出用永久磁石の近接する磁歪線の部位でねじり弾性波を発生させ、磁歪線の特定部位に設けた受信器までのねじり弾性波の伝播時間を計測することにより、検出用永久磁石に与えられる機械的変位を検出する装置において、
上記電流パルスの印加と異なるタイミングで磁歪線に基準信号を印加する基準信号発生手段と、
上記基準信号発生手段と磁歪線との間の信号変化から磁歪線の抵抗値を検出する抵抗検出手段と、
検出された抵抗値から周囲温度に対応して検出用永久磁石に与えられる機械的変位を補償する補償手段と、を備えたことを特徴とする磁歪式変位検出装置。
A receiver provided at a specific part of the magnetostriction line by generating a torsional elastic wave at the part of the magnetostriction line adjacent to the permanent magnet for detection movable along the magnetostriction line by passing a current pulse in the axial direction of the magnetostriction line In the device for detecting the mechanical displacement given to the permanent magnet for detection by measuring the propagation time of the torsional elastic wave up to,
A reference signal generating means for applying a reference signal to the magnetostrictive wire at a timing different from the application of the current pulse;
A resistance detecting means for detecting a resistance value of the magnetostrictive wire from a signal change between the reference signal generating means and the magnetostrictive wire;
A magnetostrictive displacement detecting device, comprising: compensation means for compensating for a mechanical displacement given to the permanent magnet for detection corresponding to the ambient temperature from the detected resistance value.
上記基準信号発生手段は、基準電圧信号を発生する基準電圧発生手段であり、
上記基準電圧発生手段と磁歪線との間に固定抵抗器が接続され、
上記抵抗検出手段は、固定抵抗器と磁歪線との間の分圧電圧から、磁歪線の抵抗値を検出することを特徴とする請求項1に記載の磁歪式変位検出装置。
The reference signal generating means is a reference voltage generating means for generating a reference voltage signal,
A fixed resistor is connected between the reference voltage generating means and the magnetostrictive wire,
2. The magnetostrictive displacement detecting apparatus according to claim 1, wherein the resistance detecting means detects a resistance value of the magnetostrictive wire from a divided voltage between the fixed resistor and the magnetostrictive wire.
上記受信器は、磁歪線に挿通配置されたねじり弾性波受信用コイルであり、このコイルの近傍に軸方向の偏向磁場を与えるバイアス用永久磁石を配置し、上記コイルで磁歪線を伝播するねじり弾性波の成分のうちの縦波を検出することを特徴とする請求項1または2に記載の磁歪式変位検出装置。The receiver is a torsional elastic wave receiving coil inserted through a magnetostrictive wire, a permanent magnet for bias that provides an axial deflection magnetic field is disposed in the vicinity of the coil, and a torsion that propagates the magnetostrictive wire through the coil. 3. A magnetostrictive displacement detecting apparatus according to claim 1, wherein a longitudinal wave is detected among elastic wave components. 上記磁歪線は、実質的な重量比がNi50%,Fe50%の合金よりなることを特徴とする請求項1ないし3のいずれかに記載の磁歪式変位検出装置。4. The magnetostrictive displacement detecting device according to claim 1, wherein the magnetostrictive wire is made of an alloy having a substantial weight ratio of Ni 50% and Fe 50%.
JP18177798A 1998-06-29 1998-06-29 Magnetostrictive displacement detector Expired - Fee Related JP3799416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18177798A JP3799416B2 (en) 1998-06-29 1998-06-29 Magnetostrictive displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18177798A JP3799416B2 (en) 1998-06-29 1998-06-29 Magnetostrictive displacement detector

Publications (2)

Publication Number Publication Date
JP2000009490A JP2000009490A (en) 2000-01-14
JP3799416B2 true JP3799416B2 (en) 2006-07-19

Family

ID=16106709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18177798A Expired - Fee Related JP3799416B2 (en) 1998-06-29 1998-06-29 Magnetostrictive displacement detector

Country Status (1)

Country Link
JP (1) JP3799416B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789306B2 (en) * 2000-05-02 2011-10-12 株式会社ノーケン Magnetostrictive wire, displacement detection device provided with magnetostrictive wire, and method of manufacturing magnetostrictive wire
CN110427067B (en) * 2019-07-29 2024-04-16 贵州恒芯微电子科技有限公司 Method for improving current sampling precision by using analog circuit
CN113188635A (en) * 2021-04-30 2021-07-30 郑州永邦测控技术有限公司 Oil thickness accurate measurement device and measurement method for oil storage tank

Also Published As

Publication number Publication date
JP2000009490A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US5196791A (en) Magnetostrictive linear position detector and a dual pole position magnet therefor
US4678993A (en) Distance measuring device operating with torsional ultrasonic waves detected without mode conversion
US5017867A (en) Magnetostrictive linear position detector with reflection termination
US5412316A (en) Magnetostrictive linear position detector with axial coil torsional strain transducer
US8291750B1 (en) Resonant measurement system and method
US7215118B2 (en) Transducer for generating and measuring torsional waves, and apparatus and method for structural diagnosis using the same
JP3799416B2 (en) Magnetostrictive displacement detector
JP3177700B2 (en) Measuring device using magnetostrictive wire
JP3799415B2 (en) Magnetostrictive displacement detector
JP2002090432A (en) Magnetic field detecting device
EP2243174B1 (en) Magnetostrictive displacement transducer with phase shifted bias burst
JPH07306030A (en) Displacement detector
JP4154878B2 (en) Position detecting device and positioning device
Meydan et al. Displacement transducers using magnetostrictive delay line principle in amorphous materials
JPH05187854A (en) Magnetostriction type displacement detector
Hristoforou New position sensor based on the magnetostrictive delay line principle
RU214164U1 (en) Measuring element for magnetostrictive linear encoder
JPH05187855A (en) Magnetostriction type displacement detector
JPH05172555A (en) Magnetostrictive type displacement detector
Ferrari et al. Introducing a new measurement method for magnetostrictive linear displacement transducers
JP2002071770A (en) Magnetic field detector
JP2810481B2 (en) Acceleration sensor
JPH10332433A (en) Magnetostrictive displacement detector
JPH02183117A (en) Displacement detector
JP2899787B2 (en) Displacement detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees