JPH0961099A - Warhead of airframe - Google Patents

Warhead of airframe

Info

Publication number
JPH0961099A
JPH0961099A JP21735695A JP21735695A JPH0961099A JP H0961099 A JPH0961099 A JP H0961099A JP 21735695 A JP21735695 A JP 21735695A JP 21735695 A JP21735695 A JP 21735695A JP H0961099 A JPH0961099 A JP H0961099A
Authority
JP
Japan
Prior art keywords
warhead
outer shell
target
shell
fuselage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21735695A
Other languages
Japanese (ja)
Inventor
Masashi Morita
昌史 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21735695A priority Critical patent/JPH0961099A/en
Publication of JPH0961099A publication Critical patent/JPH0961099A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely orient the direction of scattering of shell splinters toward a target direction without necessitating a signal processing circuit, by a method wherein the center of mass of a rotating mechanism which is provided between the front and rear ends of a warhead shell and members located on the body axis of an airframe and holds the shell rotatably around the body axis is positioned between the body axis and the shell splinters. SOLUTION: A large number of shell splinters 4 are provided in one side part in a warhead shell 3 held in a fuselage of an airframe and an ignition mechanism 6 is provided in the other side part in the shell 3, while a bursting charge 5 is filled inside the shell 3. A rotating mechanism 7 which supports a warhead 2A rotatably is provided between the front and rear ends of the shell 3 and members located on the body axis 9 of the airframe and opposed to these end parts. Herein the position 8 of the center of mass of the warhead 2A is set between the body axis 9 and the shell splinters 4. When a warhead lock mechanism 17 is canceled, revolution of the warhead 2A is enabled. When the airframe turns round and lateral acceleration is given, the warhead 2A revolves so that the direction of scattering of the shell splinters be oriented toward the direction opposite to the direction of the acceleration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は比例航法を採用して
いる飛しょう体の弾頭に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a warhead of a flying vehicle that employs proportional navigation.

【0002】[0002]

【従来の技術】図10は従来の飛しょう体の弾頭におけ
る目標指向機構の説明図であり、(a)は飛しょう体と
目標との相互位置関係説明図、(b)は飛しょう体の弾
頭部の横断面図とこれに対するシーカからの信号の流れ
を示す説明図である。
2. Description of the Related Art FIG. 10 is an explanatory view of a conventional targeting mechanism in a warhead of a flying object. (A) is an explanatory view of a mutual positional relationship between the flying object and a target, and (b) is a drawing of the flying object. It is explanatory drawing which shows the cross-sectional view of a bullet head, and the flow of the signal from a seeker with respect to this.

【0003】図において、31は飛しょう体、32は弾
頭、33はシーカ、34は目標、35は爆発した弾頭の
弾片、36は着火機構、37は弾頭の炸薬、38は着火
機構を選択する着火制御装置である。
In the figure, 31 is a flying object, 32 is a warhead, 33 is a seeker, 34 is a target, 35 is an explosive warhead piece, 36 is an ignition mechanism, 37 is a warhead explosive, and 38 is an ignition mechanism. It is an ignition control device that does.

【0004】図10に示した従来の弾頭においては、同
図(b)に示すように、周囲4箇所に着火機構36が設
けられており、飛しょう体のシーカ33が目標を追尾し
て検知した目標方向の情報に基いて、弾片35の飛散方
向が目標方向となるよう、着火制御装置38によって着
火機構36(No.1〜No.4)を選択し、そこへ着火信号を
送って着火するようにしていた。
In the conventional warhead shown in FIG. 10, as shown in FIG. 10B, ignition mechanisms 36 are provided at four locations around the warhead, and the seeker 33 of the flying body detects the target by tracking the target. Based on the information of the target direction, the ignition control device 38 selects the ignition mechanism 36 (No. 1 to No. 4) so that the scattering direction of the bullets 35 becomes the target direction, and sends an ignition signal to the ignition mechanism 36. I was trying to ignite.

【0005】[0005]

【発明が解決しようとする課題】従来の方式では以下の
問題が生じていた。 (1)目標の方向をシーカの目標追尾情報から判定する
ため、複雑な信号処理が必要となるほか、着火機構の選
択・制御に対しても付加回路を必要とする。 (2)シーカロックオフ時、またはブラインド時には、
シーカからの信号が途絶えるため目標方向を保持する対
策が必要となる。なお、シーカロックオフとは、シーカ
の目標信号受信状態が劣悪になった場合に発生するもの
で、目標追尾信号が途切れる状態を言い、ブラインドと
はミサイルが目標に接近する最終局面において、一般に
シーカが受信する目標信号が過大となり誘導系に悪影響
を及ぼすため、シーカ機能を停止して誘導の状態を会敵
まで固定するもので、シーカの目標追尾を故意に実施し
ない状態を言う。 (3)複数個の着火機構から1個を選択して弾片飛散方
向を決めるため、飛散方向に対して無効な弾片や炸薬が
生じ飛散効率が低下する。
The conventional system has the following problems. (1) Since the direction of the target is determined from the target tracking information of the seeker, complicated signal processing is required, and an additional circuit is also required for selection / control of the ignition mechanism. (2) When the seeker lock is off or when the blinds are
Since the signal from the seeker is lost, it is necessary to take measures to maintain the target direction. Seeker lock-off occurs when the target signal reception state of the seeker becomes poor, and refers to the state in which the target tracking signal is interrupted, and blind is generally the seeker at the final stage when the missile approaches the target. Since the target signal received by the receiver is excessive and adversely affects the guidance system, the seeker function is stopped and the guidance state is fixed up to the opponent, which is the state where the target tracking of the seeker is not intentionally performed. (3) Since one of the plurality of ignition mechanisms is selected to determine the projectile scattering direction, an invalid projectile or explosive charge is generated in the scattering direction, and the scattering efficiency is reduced.

【0006】本発明は比例航法を用いた飛しょう体にお
いて、上記従来技術の欠点を解消し、信号処理回路を必
要とせず、確実に弾片飛散方向が目標方向を向くように
した飛しょう体の弾頭を提供しようとするものである。
The present invention solves the above-mentioned drawbacks of the prior art in a vehicle using proportional navigation, does not require a signal processing circuit, and ensures that the projectile direction is directed toward the target direction. It is intended to provide warheads.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、次の特徴を有する飛しょう体の弾頭
に関するものである。 (1)飛しょう体胴体内に収納される外殻、同外殻内の
一側部に設けられた多数の弾片、同外殻内の他側部に設
けられた着火機構、同外殻内に充填された炸薬、及び同
外殻の前端及び後端とこれらの部分に向き合う前記飛し
ょう体の機体軸上の部材との間に設けられ前記外殻を機
体軸回りに回転可能に保持する回転機構を備え、その質
量中心が機体軸と弾片との間に位置するよう構成した。 (2)飛しょう体胴体内において同胴体の内壁との間に
間隔をあけて収納される外殻、同外殻内の前端部に設け
られた多数の弾片、同外殻内の後端部に設けられた着火
機構、同外殻内に充填された炸薬、及び同外殻の後端と
同後端に向き合う前記飛しょう体の機体軸上の部材との
間に設けられ前記外殻を機体軸に対して任意方向に傾倒
可能に保持するジョイント機構を備えた。
SUMMARY OF THE INVENTION The present invention solves the above problems and relates to a warhead of a flying vehicle having the following features. (1) Outer shell to be housed in the fuselage body, a large number of bullets provided on one side of the outer shell, ignition mechanism provided on the other side of the outer shell, and outer shell An explosive filled inside the outer shell and a front end and a rear end of the outer shell, and the outer shell provided between the front end and the rear end of the outer shell and a member on the fuselage axis facing the above portion, and rotatably holding the outer shell around the fuselage axis It was equipped with a rotating mechanism that operates so that its center of mass is located between the body axis and the bullet. (2) Outer shell that is housed in the fuselage body at a distance from the inner wall of the fuselage, a large number of bullets provided at the front end of the outer shell, and the rear end of the outer shell The ignition mechanism provided in the outer shell, the explosive charged in the outer shell, and the outer shell provided between the rear end of the outer shell and a member on the fuselage axis of the aircraft facing the rear end. It was equipped with a joint mechanism that holds the so that it can be tilted in any direction with respect to the machine axis.

【0008】[0008]

【発明の実施の形態】図1は本発明の実施の第1形態に
係る飛しょう体の縦断面図である。図において、1は飛
しょう体、2Aは弾頭である。この弾頭2Aは回転式指
向性弾頭である。
1 is a vertical sectional view of a flying body according to a first embodiment of the present invention. In the figure, 1 is a flying body and 2A is a warhead. This warhead 2A is a rotary directional warhead.

【0009】図2は上記実施形態における弾頭2A付近
の飛しょう体の胴体の断面図であり、(a)は横断面
図、(b)は縦断面図である。図において、3は弾頭外
殻、4は弾片、5は炸薬、6は着火機構、7は上記弾頭
3を回転可能に支持する回転機構、8は上記弾頭3の質
量中心位置、9は機体軸であり、かつ前記回転の中心線
である。また、17はソレノイドアクチュエータ式の弾
頭ロック機構、18は安全起爆装置である。弾頭2Aは
符合3,4,5,6,7の部分から構成される。
2A and 2B are cross-sectional views of the fuselage of the flying body in the vicinity of the warhead 2A in the above embodiment, FIG. 2A being a horizontal cross-sectional view and FIG. In the figure, 3 is a warhead outer shell, 4 is a bullet piece, 5 is an explosive charge, 6 is an ignition mechanism, 7 is a rotating mechanism that rotatably supports the warhead 3, 8 is a position of the center of mass of the warhead 3, and 9 is a body. It is the axis and the centerline of the rotation. Further, 17 is a solenoid actuator type warhead locking mechanism, and 18 is a safety detonator. The warhead 2A is composed of parts 3, 4, 5, 6, and 7.

【0010】本実施形態においては、弾頭ロック機構1
7が解除されると、弾頭2Aは回転運動が可能となる。
飛しょう体が旋回し、横方向加速度が加わると、機体軸
9とこれに対する弾頭の質量中心位置の相互関係によっ
て、弾頭は弾片飛散方向が加速度方向と反対の方向を向
くよう回転する。
In this embodiment, the warhead lock mechanism 1
When 7 is released, the warhead 2A can rotate.
When the flying body turns and a lateral acceleration is applied, due to the mutual relationship between the body axis 9 and the position of the center of mass of the warhead with respect to this, the warhead rotates so that the flying direction of the bullet is in the direction opposite to the acceleration direction.

【0011】比例航法を用いた飛しょう体においては目
標との会敵近傍において、目標とは反対の方向に旋回す
る特性をもっている。飛しょう体の横断面平面上の投影
で考えると、目標方向とは反対方向に加速度が加わるこ
とになる。目標との会敵時に安全起爆装置18から出力
される着火信号に基いて着火機構6により炸薬点火を行
うと、弾片4は目標方向へ放出される。
A flying body using proportional navigation has a characteristic of turning in the direction opposite to the target in the vicinity of the enemy with the target. Considering the projection on the plane of the cross section of the flying object, the acceleration is applied in the direction opposite to the target direction. When explosive ignition is performed by the ignition mechanism 6 based on an ignition signal output from the safety detonator 18 when the target encounters the enemy, the bullet 4 is ejected in the target direction.

【0012】図3は本発明の実施の第2形態に係る飛し
ょう体の縦断面図である。図において、1は飛しょう
体、2Bは弾頭である。この弾頭2Bは可倒式指向性弾
頭である。
FIG. 3 is a vertical sectional view of a flying body according to a second embodiment of the present invention. In the figure, 1 is a flying body and 2B is a warhead. This warhead 2B is a retractable directional warhead.

【0013】図4は上記実施形態における弾頭2B付近
の飛しょう体の胴体の縦断面図であり、(a)は固定位
置、(b)は一方に傾いた位置の弾頭を示している。図
において、3は弾頭外殻、4は弾片、5は炸薬、6は着
火機構、9は機体軸、10は同機体軸に対して弾頭を任
意の方向に傾けることのできるジョイント機構、17は
弾頭ロック機構、18は安全起爆装置である。弾頭2B
は符合3,4,5,6,10の部分から構成される。
4A and 4B are vertical sectional views of the fuselage body of the flying body in the vicinity of the warhead 2B in the above embodiment. FIG. 4A shows the fixed position, and FIG. 4B shows the warhead tilted to one side. In the figure, 3 is a warhead shell, 4 is a bullet piece, 5 is an explosive charge, 6 is an ignition mechanism, 9 is a fuselage axis, 10 is a joint mechanism capable of tilting the warhead with respect to the same axis, 17 Is a warhead lock mechanism, and 18 is a safety detonator. Warhead 2B
Is composed of parts 3, 4, 5, 6, and 10.

【0014】本実施形態においては、弾頭ロック機構1
7が解除されると、弾頭2Bは後端のジョイント機構1
0を中心として首振り可能となる。飛しょう体が旋回
し、横方向加速度が加わると、弾頭2Bは機体軸9に対
して、弾片飛散方向が加速度方向と反対の方向を向くよ
う傾倒する。
In the present embodiment, the warhead lock mechanism 1
When 7 is released, the warhead 2B becomes a joint mechanism 1 at the rear end.
It becomes possible to swing around 0. When the flying body turns and a lateral acceleration is applied, the warhead 2B tilts with respect to the fuselage axis 9 so that the projectile scattering direction faces the direction opposite to the acceleration direction.

【0015】比例航法を用いた飛しょう体においては、
前述したように、目標との会敵近傍において、目標とは
反対方向に旋回する特性をもっている。飛しょう体の横
断面平面上の投影で考えると、目標方向とは反対方向に
加速度が加わることになる。目標との会敵時に、安全起
爆装置18から出力される着火信号に基いて着火機構6
により炸薬点火を行うと、弾片4は目標方向へ放出され
る。
In a spacecraft using proportional navigation,
As described above, in the vicinity of the enemy with the target, it has a characteristic of turning in the direction opposite to the target. Considering the projection on the plane of the cross section of the flying object, the acceleration is applied in the direction opposite to the target direction. The ignition mechanism 6 is based on an ignition signal output from the safety detonator 18 when a target encounters the enemy.
When the explosive ignition is performed by, the bullet 4 is ejected in the target direction.

【0016】図5は上記可倒式指向性弾頭2Bの指向角
制限範囲の計算例を示す図である。弾頭の指向角θは、
弾頭外殻3の長さLと半径dにより制限を受けるが、目
標破壊に必要な弾片個数と炸薬量、及び対処目標別の指
向角要求から、図中Aの範囲で弾頭外殻の形状を設定す
ることによって目標撃破に必要な指向角を有するように
本実施形態の弾頭を実現することができる。
FIG. 5 is a diagram showing an example of calculation of the directivity angle limited range of the retractable directional warhead 2B. The directivity angle θ of the warhead is
Although limited by the length L and radius d of the warhead shell 3, the shape of the warhead shell is within the range A in the figure from the number of bullet pieces required for target destruction, the amount of explosive charge, and the directivity angle requirement for each target to be dealt with. By setting, the warhead of this embodiment can be realized so as to have a directivity angle necessary for destroying the target.

【0017】上記各実施形態にて述べた飛しょう体は誘
導方式として比例航法を用いているものである。図6は
比例航法の説明図である。図において、飛しょう体1を
基準とした目標19の方向、すなわち目視線角(σ)が
変化することにより会敵経路からのズレが生じる。そこ
で、新たな会敵経路に飛しょう体を乗せるため、この目
視線角の変化率dσ/dtに比例した経路角速度dγ/
dtを発生させるように飛しょう体を旋回させる。この
航法が比例航法である。即ち、Nを航法定数とすると、 dγ/dt=N・dσ/dt によって飛しょう経路を制御するものである。
The flying body described in each of the above-mentioned embodiments uses proportional navigation as a guidance system. FIG. 6 is an explanatory diagram of proportional navigation. In the figure, a deviation from the enemy path occurs due to a change in the direction of the target 19 with respect to the flying object 1, that is, the line-of-sight angle (σ). Therefore, in order to place the flying body on a new enemy path, the path angular velocity dγ / which is proportional to the change rate dσ / dt of the visual line angle.
Rotate the flying body to generate dt. This navigation is proportional navigation. That is, when N is a navigation constant, the flight route is controlled by dγ / dt = N · dσ / dt.

【0018】比例航法においては、飛しょう体は目標に
誘導されるのではなく、予測会敵点に誘導される。この
予測会敵点は、飛しょう体及び目標の速度変化や目標の
起動等で常に変化するものであり、飛しょう体はシーカ
のボアサイトエラ(シーカの目視方向と目標方向のず
れ)により必要な旋回加速度を計算し経路の変更を行
う。飛しょう体が旋回加速度を発生するには迎角を必要
とするため、速度方向に対して旋回方向に機体を傾け
る。これにより飛しょう体の機体軸を基準にした目標の
方向と旋回加速度方向は逆向きとなる。適用の条件とし
ては、本発明は空気力で旋回する飛しょう体に適用さ
れ、機体の姿勢に関係なく経路変更が可能な飛しょう体
(機体重心にスラスタを有するタイプ)には適用できな
い。
In proportional navigation, the vehicle is not guided to the target, but to the predicted enemies. This predictive meeting point is constantly changing due to changes in the speed of the flying object and the target, activation of the target, etc. The flying object is required due to the seeker's boa sight error (deviation between the seeing direction of the seeker and the target direction). Calculates the correct turning acceleration and changes the route. Since the flying object needs an angle of attack to generate the turning acceleration, the aircraft is tilted in the turning direction with respect to the speed direction. As a result, the direction of the target and the direction of turning acceleration based on the aircraft axis of the flying body are opposite. As a condition of application, the present invention is applied to a flying object that turns by aerodynamic force, and cannot be applied to a flying object (type having a thruster at the center of gravity of the body) capable of changing the route regardless of the attitude of the aircraft.

【0019】本発明は比例航法を用いた飛しょう体にの
み適用可能であり、目標との会敵近傍において、飛しょ
う体機体軸に対して、目標の方向とは逆の方向に飛しょ
う体の旋回加速度が発生するという特性を利用し、この
旋回加速度の発生によって弾頭に作用する力により弾頭
の向きを変化させ、弾片の方向を目標に指向させる手段
を採用したものである。これにより、外部信号による目
標方向の判定を不要とし、また弾頭自体を目標方向に指
向させ、飛散効率を高めることが可能となっている。
The present invention can be applied only to a flying object using proportional navigation, and in the vicinity of the enemy with the target, the flying object is in a direction opposite to the direction of the target with respect to the axis of the flying vehicle. By utilizing the characteristic that the turning acceleration is generated, the means for changing the direction of the warhead by the force acting on the warhead by the generation of the turning acceleration and directing the direction of the bullet piece toward the target is adopted. This makes it unnecessary to determine the target direction based on an external signal, and the warhead itself can be oriented in the target direction to improve the scattering efficiency.

【0020】図7は会敵近傍における飛しょう体から見
た目標の方向と飛しょう体に加わる旋回加速度方向との
関係説明図であり、(a)は飛しょう体と目標との位置
関係を示す図、(b)は飛しょう体後方視図である。図
において、1は飛しょう体、19は目標、16は飛しょ
う体機軸に直交する平面上における目標方向、15は旋
回加速度方向である。図7(a)において、目標方向1
6と旋回加速度方向15は逆方向となっている。図7
(b)において、ヨー軸から測った目標方向角をφT、
旋回加速度方向をφGとすると、上記逆方向の関係はφ
T=φG±180°である。
FIG. 7 is an explanatory view of the relationship between the direction of the target seen from the flying object in the vicinity of the enemy and the direction of turning acceleration applied to the flying object. FIG. 7A shows the positional relationship between the flying object and the target. FIG. 1B is a rear view of the flying body. In the figure, 1 is a flying object, 19 is a target, 16 is a target direction on a plane orthogonal to the aircraft axis, and 15 is a turning acceleration direction. In FIG. 7A, the target direction 1
6 and the turning acceleration direction 15 are opposite directions. Figure 7
In (b), the target direction angle measured from the yaw axis is φT,
If the turning acceleration direction is φG, the relationship in the opposite direction is φ
T = φG ± 180 °.

【0021】図8は飛しょう体誘導シミュレーションを
実施して得た目標方向と旋回加速度方向とのタイムヒス
トリーを示す図である。(a)は飛しょう体と目標との
位置関係図、(b)は上記各方向のタイムヒストリー図
である。図において、目標はマッハ1にて移動する。飛
しょう体は発射後マッハ3に達している。飛しょう体発
射5秒後に、飛しょう体の接近を察知した目標は9G旋
回を行って回避運動を始めたとする。これに応じて飛し
ょう体も旋回運動を行うという仮定のシミュレーション
である。本シミュレーションにおいても、機軸に直交す
る平面上における目標方向φTと旋回加速度方向φGと
の差が目標旋回開始の前後において常に180度に保た
れていることが確認され、この特性を利用して弾頭の方
向を変えることの合理性が確認された。
FIG. 8 is a diagram showing a time history of the target direction and the turning acceleration direction obtained by carrying out the flight guidance simulation. (A) is a positional relationship diagram between a flying object and a target, and (b) is a time history diagram in each of the above directions. In the figure, the target moves at Mach 1. The projectile has reached Mach 3 after launch. It is assumed that, 5 seconds after the launch of the projectile, the target that has detected the approach of the projectile makes a 9G turn and starts an avoidance motion. This is a simulation assuming that the flying body also makes a turning motion in response to this. In this simulation as well, it was confirmed that the difference between the target direction φT and the turning acceleration direction φG on the plane orthogonal to the machine axis was always kept at 180 degrees before and after the start of the target turning. The rationality of changing the direction was confirmed.

【0022】図9は、目標撃破に至る近接信管、及び弾
頭の作動シーケンス(代表例)を示す図である。飛しょ
う体が目標に対して誘導され、予測会敵時間の0.5se
c 前にミサイルコンピュータの指令によって近接信管を
作動させ目標検知ビームを出力するとともに、弾頭のロ
ック機構を解除して弾頭の回転(または傾倒)を可能と
する。飛しょう体の旋回で生じる弾頭に作用する力で弾
頭は向きを目標の方向に変化させる。この間に目標の動
きに変化が生じた場合においても、弾頭は良好に追従し
弾片飛散角の範囲内に目標を保持する。近接信管が目標
を検知すると弾頭起爆遅延時間を経過した後、近接信管
から弾頭に対して着火信号が出力され弾頭は起爆する。
この弾頭起爆遅延時間は、弾片を効率よく目標に命中さ
せるために弾頭の起爆時間を制御するものであり、目標
の種類及び会敵状況に応じて通常、0〜数msec の範囲
で設定される。弾頭の起爆により放出された弾片は目標
に命中し、そのエネルギにより目標を破壊することがで
きる。
FIG. 9 is a diagram showing an operation sequence (representative example) of the close fuse and the warhead that lead to the destruction of the target. The projectile is guided to the target, and the predicted enemy time is 0.5se
c Before the command of the missile computer is activated, the proximity fuse is activated to output the target detection beam, and the warhead lock mechanism is released to enable the warhead to rotate (or tilt). The force acting on the warhead generated by the turning of the flying body changes the direction of the warhead to the target direction. Even if the movement of the target changes during this period, the warhead follows well and holds the target within the range of the projectile scattering angle. When the proximity fuze detects the target, the ignition signal is output from the proximity fuze to the warhead after the warhead detonation delay time has elapsed, and the warhead detonates.
This warhead detonation delay time controls the firing time of the warhead in order to hit the target efficiently with the projectile, and is usually set in the range of 0 to several msec depending on the target type and the enemy situation. It The fragments released by the detonation of the warhead hit the target, and its energy can destroy the target.

【0023】[0023]

【発明の効果】本発明の飛しょう体の弾頭においては、
飛しょう体胴体内に収納される外殻、同外殻内の一側部
に設けられた多数の弾片、同外殻内の他側部に設けられ
た着火機構、同外殻内に充填された炸薬、及び同外殻の
前端及び後端とこれらの部分に向き合う前記飛しょう体
の機体軸上の部材との間に設けられ前記外殻を機体軸回
りに回転可能に保持する回転機構を備え、その質量中心
を機体軸と弾片との間に位置するよう構成し、あるいは
飛しょう体胴体内において同胴体の内壁との間に間隔を
あけて収納される外殻、同外殻内の前端部に設けられた
多数の弾片、同外殻内の後端部に設けられた着火機構、
同外殻内に充填された炸薬、及び同外殻の後端と同後端
に向き合う前記飛しょう体の機体軸上の部材との間に設
けられ前記外殻を機体軸に対して任意方向に傾倒可能に
保持するジョイント機構を備えて構成したので、旋回加
速度で弾頭の方向を変えることができ、目標方向に関す
る信号処理回路を必要とせず、簡単な構造で確実に弾片
飛散方向を目標方向に向けることができる。
In the warhead of the flying object of the present invention,
Outer shell contained in the fuselage fuselage, a large number of bullets provided on one side of the outer shell, ignition mechanism provided on the other side of the outer shell, and filling of the outer shell And a rotating mechanism that is provided between the front and rear ends of the outer shell and the members on the fuselage axis of the flying body that face these portions, and that holds the outer shell rotatably around the fuselage axis. The outer shell, which is configured so that its center of mass is located between the body axis and the bullet piece, or is housed in the flight fuselage body at a distance from the inner wall of the fuselage, A large number of bullets provided at the front end of the inner shell, an ignition mechanism provided at the rear end of the outer shell,
An explosive filled in the outer shell, and the outer shell provided between the rear end of the outer shell and a member on the fuselage axis facing the rear end of the outer shell in an arbitrary direction with respect to the fuselage axis. Since it is equipped with a joint mechanism that holds it so that it can be tilted, the direction of the warhead can be changed by the turning acceleration, the signal processing circuit for the target direction is not required, and the projectile direction can be reliably targeted with a simple structure. Can be turned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1形態に係る飛しょう体の縦
断面図。
FIG. 1 is a vertical sectional view of a flying body according to a first embodiment of the present invention.

【図2】上記実施形態における弾頭付近の飛しょう体胴
体の断面図であり、(a)は横断面図、(b)は縦断面
図。
2A and 2B are cross-sectional views of a fuselage fuselage in the vicinity of a warhead in the above embodiment, where FIG. 2A is a horizontal sectional view and FIG. 2B is a vertical sectional view.

【図3】本発明の実施の第2形態に係る飛しょう体の縦
断面図。
FIG. 3 is a vertical sectional view of a flying body according to a second embodiment of the present invention.

【図4】上記実施形態における弾頭付近の飛しょう体の
胴体の縦断面図であり、(a)は弾頭固定位置、(b)
は弾頭が一方に傾いた位置の図。
FIG. 4 is a vertical cross-sectional view of a fuselage body of a flying body near a warhead in the above-described embodiment, (a) being a warhead fixing position, and (b).
Shows the warhead tilted to one side.

【図5】上記実施形態の弾頭外殻の指向角制限範囲の計
算例を示す図。
FIG. 5 is a diagram showing a calculation example of a directivity angle limit range of the warhead shell of the above embodiment.

【図6】飛しょう体の比例航法の説明図。FIG. 6 is an explanatory diagram of proportional navigation of a flying object.

【図7】会敵近傍における飛しょう体から見た目標の方
向と飛しょう体に加わる旋回加速度との関係の説明図で
あり、(a)は飛しょう体と目標との位置関係を示す
図、(b)は飛しょう体後方視図である。
FIG. 7 is an explanatory diagram of a relationship between a target direction viewed from a flying object in the vicinity of the enemy and a turning acceleration applied to the flying object, and FIG. 7A is a diagram showing a positional relationship between the flying object and the target; (B) is a rear view of the flying object.

【図8】飛しょう体誘導シミュレーションを実施して得
た目標方向と旋回加速度方向とのタイムヒストリーを示
す図であり、(a)は飛しょう体と目標との位置関係
図、(b)は上記各方向のタイムヒストリー図である。
8A and 8B are diagrams showing a time history of a target direction and a turning acceleration direction obtained by carrying out a flight guidance simulation, in which FIG. 8A is a positional relationship diagram between the flight object and the target, and FIG. It is a time history diagram of each said direction.

【図9】目標撃破に至る近接信管及び弾頭の作動シーケ
ンス(代表例)を示す図である。
FIG. 9 is a diagram showing an operation sequence (representative example) of a close fuse and a warhead that lead to target destruction.

【図10】従来の飛しょう体の弾頭における目標指向機
構の説明図であり、(a)は飛しょう体と目標との相互
位置関係説明図、(b)は飛しょう体の弾頭部の横断面
図とこれに対するシーカからの信号の流れを示す説明
図。
FIG. 10 is an explanatory diagram of a target orientation mechanism in a conventional projectile warhead, (a) is an explanatory diagram of a mutual positional relationship between the projectile and a target, and (b) is a crossing of the projectile warhead. Explanatory drawing which shows the flow of the signal from a seeker with respect to a floor plan and this.

【符号の説明】[Explanation of symbols]

1 飛しょう体 2A 弾頭(回転式指向性弾頭) 2B 弾頭(可倒式指向性弾頭) 3 弾頭外殻 4 弾片 5 炸薬 6 着火機構 7 回転機構 8 質量中心位置 9 機体軸 10 ジョイント機構 15 旋回加速度方向(機体軸に直交する平面上にお
ける) 16 目標方向(機体軸に直交する平面上における) 17 弾頭ロック機構 18 安全起爆装置 19 目標 A 第2実施形態における実現可能な弾頭長と弾頭
半径の範囲 φG 旋回加速度方向角 φT 目標方向角
1 Flying Body 2A Warhead (Rotary Directional Warhead) 2B Warhead (Retractable Directional Warhead) 3 Warhead Outer Shell 4 Bullet Piece 5 Explosive Charge 6 Ignition Mechanism 7 Rotation Mechanism 8 Mass Center Position 9 Aircraft Axis 10 Joint Mechanism 15 Turning Acceleration direction (on plane orthogonal to machine axis) 16 Target direction (on plane orthogonal to machine axis) 17 Warhead locking mechanism 18 Safe detonator 19 Target A Achievable warhead length and warhead radius in the second embodiment Range φG Turning acceleration direction angle φT Target direction angle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 飛しょう体胴体内に収納される外殻、同
外殻内の一側部に設けられた多数の弾片、同外殻内の他
側部に設けられた着火機構、同外殻内に充填された炸
薬、及び同外殻の前端及び後端とこれらの部分に向き合
う前記飛しょう体の機体軸上の部材との間に設けられ前
記外殻を機体軸回りに回転可能に保持する回転機構を備
え、その質量中心が機体軸と弾片との間に位置するよう
構成したことを特徴とする飛しょう体の弾頭。
1. An outer shell housed in a fuselage body, a large number of bullets provided on one side of the outer shell, an ignition mechanism provided on the other side of the outer shell, It is provided between the explosive charged in the outer shell and the front and rear ends of the outer shell and the member on the body axis of the flying body facing these parts, and the outer shell can be rotated around the body axis. A warhead of a flying vehicle, characterized by having a rotation mechanism for holding it at its center of mass located between the body axis and the bullet.
【請求項2】 飛しょう体胴体内において同胴体の内壁
との間に間隔をあけて収納される外殻、同外殻内の前端
部に設けられた多数の弾片、同外殻内の後端部に設けら
れた着火機構、同外殻内に充填された炸薬、及び同外殻
の後端と同後端に向き合う前記飛しょう体の機体軸上の
部材との間に設けられ前記外殻を機体軸に対して任意方
向に傾倒可能に保持するジョイント機構を備えたことを
特徴とする飛しょう体の弾頭。
2. An outer shell, which is housed in the flying fuselage at a distance from an inner wall of the fuselage, a large number of bullets provided at a front end portion of the outer shell, and inside the outer shell. The ignition mechanism provided at the rear end, the explosive charged in the outer shell, and the rear end of the outer shell provided between the rear end of the outer shell and a member on the fuselage shaft of the aircraft facing the rear end, A warhead for a flying vehicle, which is equipped with a joint mechanism that holds the outer shell so that it can be tilted in any direction with respect to the fuselage axis.
JP21735695A 1995-08-25 1995-08-25 Warhead of airframe Withdrawn JPH0961099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21735695A JPH0961099A (en) 1995-08-25 1995-08-25 Warhead of airframe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21735695A JPH0961099A (en) 1995-08-25 1995-08-25 Warhead of airframe

Publications (1)

Publication Number Publication Date
JPH0961099A true JPH0961099A (en) 1997-03-07

Family

ID=16702897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21735695A Withdrawn JPH0961099A (en) 1995-08-25 1995-08-25 Warhead of airframe

Country Status (1)

Country Link
JP (1) JPH0961099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203661A (en) * 2009-03-03 2010-09-16 Ihi Aerospace Co Ltd Directional high explosive shell
JP2015124938A (en) * 2013-12-26 2015-07-06 株式会社Ihiエアロスペース Top attack device and top attack device control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203661A (en) * 2009-03-03 2010-09-16 Ihi Aerospace Co Ltd Directional high explosive shell
JP2015124938A (en) * 2013-12-26 2015-07-06 株式会社Ihiエアロスペース Top attack device and top attack device control method

Similar Documents

Publication Publication Date Title
US7354017B2 (en) Projectile trajectory control system
EP2100090B1 (en) Spin stabilizer projectile trajectory control
JP4550835B2 (en) Two-dimensional projectile trajectory correction system and method
US5379968A (en) Modular aerodynamic gyrodynamic intelligent controlled projectile and method of operating same
US8563910B2 (en) Systems and methods for targeting a projectile payload
US8664575B2 (en) Miniature missile
US6422507B1 (en) Smart bullet
US5788180A (en) Control system for gun and artillery projectiles
US4431150A (en) Gyroscopically steerable bullet
EP0252036B1 (en) Homing submunition
JPS62138209U (en)
US5322016A (en) Method for increasing the probability of success of air defense by means of a remotely fragmentable projectile
US6012393A (en) Asymmetric penetration warhead
CA1242516A (en) Terminally guided weapon delivery system
JPH0961099A (en) Warhead of airframe
GB2161907A (en) Ammunition unit
EP0760458B1 (en) Asymmetric penetration warhead
RU2820411C1 (en) Warhead with selective method of destruction
RU2825027C2 (en) Kinetic warhead with aerodynamic guidance
JP6927633B2 (en) Guided rockets and how to control them
US20240200917A1 (en) Projectile and fuse with brake
US20240191980A1 (en) Projectile and fuse with fin
AU700862B2 (en) Asymmetric penetration warhead
JPH05187799A (en) Guided missile
JPH04104000A (en) Method for guiding guided bullet and guided bullet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105