JPH0960811A - Nitrogen oxide reduction method for gas fired absorption refrigerating unit and apparatus therefor - Google Patents

Nitrogen oxide reduction method for gas fired absorption refrigerating unit and apparatus therefor

Info

Publication number
JPH0960811A
JPH0960811A JP7240546A JP24054695A JPH0960811A JP H0960811 A JPH0960811 A JP H0960811A JP 7240546 A JP7240546 A JP 7240546A JP 24054695 A JP24054695 A JP 24054695A JP H0960811 A JPH0960811 A JP H0960811A
Authority
JP
Japan
Prior art keywords
exhaust gas
control means
mmaq
fired absorption
refrigeration system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7240546A
Other languages
Japanese (ja)
Other versions
JP3718780B2 (en
Inventor
Teruo Tanabe
照夫 田辺
Kunihiko Nakajima
邦彦 中島
Toshihiko Kanetani
利彦 金谷
Kazumichi Araki
和路 荒木
Shigeru Nakamura
茂 中村
Yoshito Masuda
義人 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Kawaju Reinetsu Kogyo KK
Original Assignee
Tokyo Gas Co Ltd
Kawaju Reinetsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Kawaju Reinetsu Kogyo KK filed Critical Tokyo Gas Co Ltd
Priority to JP24054695A priority Critical patent/JP3718780B2/en
Publication of JPH0960811A publication Critical patent/JPH0960811A/en
Application granted granted Critical
Publication of JP3718780B2 publication Critical patent/JP3718780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitrogen oxide reduction method and an apparatus for a gas fired absorption refrigerating unit which can reduce the discharge of nitrogen oxides remarkably despite the simplification of the structure and operation. SOLUTION: A flow rate control orifice 12A is interposed on an air suction port duct 2 and an inlet pressure of a force blower 11 is set at -30mmAq during the MCR period. An exhaust gas recirculation duct 13 branched off an exhaust gas outlet of a gas-fired absorption refrigerating unit is connected to the downstream of the flow rate control orifice 12A of the air suction port duct. Then, the opening of a draft control damper 31 is adjusted properly to control the internal pressure of the exhaust gas duct 3 to -5mmAq to hold back an NOX value in an exhaust gas below a limit value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスだき式吸収冷凍
装置の窒素酸化物低減方法および窒素酸化物低減装置に
関する。さらに詳しくは、構成および操作が簡素化され
ているにもかかわらず、窒素酸化物の排出が著しく低減
されるガスだき式吸収冷凍装置の窒素酸化物低減方法お
よび窒素酸化物低減装置に関する。なお、本明細書にお
ける冷凍装置には冷凍機ばかりでなく冷温水機も含むも
のとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen oxide reducing method and a nitrogen oxide reducing apparatus for a gas-fired absorption refrigeration system. More specifically, the present invention relates to a nitrogen oxide reduction method and a nitrogen oxide reduction device for a gas-fired absorption refrigeration system in which the emission of nitrogen oxides is significantly reduced even though the configuration and operation are simplified. It should be noted that the refrigerating apparatus in this specification includes not only a refrigerator but also a cold / hot water machine.

【0002】[0002]

【従来の技術】従来より、ガスだき式吸収冷凍機や冷温
水機における排ガス中の窒素酸化物(以下、単にNOX
という)を低減するために、燃焼装置にはいわゆる低N
OXバーナーが用いられ、それにより排ガス中のNOX
がO2濃度0%換算にて60ppm程度にまで低減され
ている。
2. Description of the Related Art Conventionally, nitrogen oxides (hereinafter referred to simply as NOX) in exhaust gas of a gas-fired absorption refrigerating machine or a hot and cold water machine.
In order to reduce the
An OX burner is used, which results in NOX in the exhaust gas.
Is reduced to about 60 ppm when the O 2 concentration is converted to 0%.

【0003】しかしながら、都市部の地域冷暖房設備に
おいてはNOXの発生源が多く大気汚染が深刻であると
ころから、吸収冷凍機や吸収冷温水機からのNOX排出
量がO2濃度0%換算にて40ppm以下とするよう求
められている。
However, since there are many sources of NOX in urban district heating and cooling facilities and air pollution is serious, NOX emissions from absorption refrigerators and absorption chillers / heaters are converted into 0% O 2 concentration. It is required to be 40 ppm or less.

【0004】そのため、低NOXバーナーによるNOX
の低減だけでは不十分となり、排ガスインジェクション
(排ガス再循環)方式を併用することが提案されてい
る。図3は、従来より提案されている、排ガス再循環方
式を併用したガスだき式吸収冷温水機100の概略図で
ある。このガスだき式吸収冷温水機100では、押込送
風機(以下、単に送風機という)101の空気吸込口ダ
クト102に第1制御ダンパ103を設けるとともに、
この空気吸込口ダクト102の第1制御ダンパ103の
下流側に、第2制御ダンパ111が介装されている、排
ガスダクト120のドラフト制御ダンパ121の上流側
から分岐された排ガス再循環ダクト110の先端を接続
し、この第1制御ダンパ103および第2制御ダンパ1
11の開度を適宜調整することにより、NOXの排出量
が前記規制値以下となるようにされている。なお、図3
中、符号112は起動時の安全を確保するための燃焼室
内プレパージ用オン・オフダンパを、符号104は空気
制御ダンパを示す。そして、このオン・オフダンパ11
2は、起動時にオフ(全閉)されて燃焼ガス系統のパー
ジがなされ、その後の運転においてはオン(全開)され
ている。
Therefore, NOX by a low NOX burner
It is not enough to reduce the exhaust gas, and it has been proposed to use the exhaust gas injection (exhaust gas recirculation) method together. FIG. 3 is a schematic diagram of a gas-fired absorption chiller-heater 100 that has been proposed in the past and that also uses an exhaust gas recirculation system. In this gas-fired absorption chiller-heater 100, a first control damper 103 is provided in an air inlet duct 102 of a forced draft blower (hereinafter, simply referred to as blower) 101,
In the exhaust gas recirculation duct 110 branched from the upstream side of the draft control damper 121 of the exhaust gas duct 120, in which the second control damper 111 is provided on the downstream side of the first control damper 103 of the air intake duct 102. The first control damper 103 and the second control damper 1 are connected by connecting the tips.
By appropriately adjusting the opening degree of 11, the NOx emission amount is set to be equal to or less than the regulation value. Note that FIG.
In the figure, reference numeral 112 denotes an on / off damper for pre-purge in the combustion chamber for ensuring safety at startup, and reference numeral 104 denotes an air control damper. And this on / off damper 11
In No. 2, the combustion gas system is turned off (fully closed) at the time of startup to purge the combustion gas system, and turned on (fully opened) in the subsequent operation.

【0005】しかしながら、前記提案にかかわる排ガス
再循環方式においては、第1制御ダンパ103および第
2制御ダンパ111の開度を調整することによりNOX
の排出量を低減しているので、構成が複雑であるととも
に、その操作も煩雑であるという問題がある。そのた
め、製造コストも高く、かつランニング・コストも高い
という問題もある。
However, in the exhaust gas recirculation system according to the above proposal, NOX is adjusted by adjusting the opening degrees of the first control damper 103 and the second control damper 111.
Since the emission amount of is reduced, there is a problem that the configuration is complicated and the operation is complicated. Therefore, there is a problem that the manufacturing cost is high and the running cost is high.

【0006】なお、既設の小型ボイラで燃焼制御が、オ
ン/オフあるいはハイ/ロー/オフとされるものにおい
ては、NOXの排出量の規制が緩やかで、NOXの低減
が少なくてよいために、図4に示すように、プレパージ
用オン・オフダンパ201が介装されている排ガス再循
環ダクト202を設け、運転時にこのオン・オフダンパ
201をオン(全開)して排ガス再循環ダクト202か
ら、燃焼用空気に排ガスをなりゆきに任せて混入させ、
NOXを低減させることがなされている。
It should be noted that in an existing small boiler whose combustion control is turned on / off or high / low / off, the NOx emission amount is loosely regulated and the reduction of NOx may be small. As shown in FIG. 4, an exhaust gas recirculation duct 202 in which a pre-purge on / off damper 201 is interposed is provided, and the on / off damper 201 is turned on (fully opened) during operation to burn the exhaust gas recirculation duct 202. The exhaust gas is left to the air and mixed in,
It has been made to reduce NOX.

【0007】しかしながら、前述したような厳しいNO
X規制がなされているガスだき式吸収冷温水機に、前記
既設の小型ボイラのNOX低減に用いられている、いわ
ゆるなりゆき方式をそのまま適用するには無理がある。
However, the severe NO as described above
It is not possible to directly apply the so-called Narinaki method, which is used for reducing NOX of the existing small boiler, to the gas-fired absorption chiller-heater with X regulation.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来技
術の課題に鑑みなされたものであって、構成および操作
が簡素化されているにもかかわらず、窒素酸化物の排出
が著しく低減されるガスだき式吸収冷凍装置の窒素酸化
物低減方法および窒素酸化物低減装置を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art, and the emission of nitrogen oxides is remarkably reduced although the structure and the operation are simplified. An object of the present invention is to provide a nitrogen oxide reduction method and a nitrogen oxide reduction device for a gas-fired absorption refrigeration system.

【0009】[0009]

【課題を解決するための手段】本発明のガスだき式吸収
冷凍装置の窒素酸化物低減方法は、煙道ドラフト圧力制
御手段を有しない排ガス再循環ダクトを備えるガスだき
式吸収冷凍装置の窒素酸化物低減方法であって、負荷に
応じた排ガス再循環量を、排ガス再循環ダクトの両端部
の圧力差を所定値以上に保つことにより得ることを特徴
とする。
A method for reducing nitrogen oxides in a gas-fired absorption refrigeration system according to the present invention is a method for reducing nitrogen oxides in a gas-fired absorption refrigeration system provided with an exhaust gas recirculation duct having no flue draft pressure control means. A method for reducing the amount of waste, characterized in that an exhaust gas recirculation amount according to a load is obtained by maintaining a pressure difference between both ends of the exhaust gas recirculation duct at a predetermined value or more.

【0010】より具体的には、非可動式流量制御手段が
介装されている送風手段の空気吸込口部と、ガスだき式
吸収冷凍装置の排ガス出口部から分岐され、かつ前記空
気吸込口部の前記非可動式流量制御手段の下流側に接続
されている、煙道ドラフト圧力制御手段を有しない排ガ
ス再循環ダクトとを備えるガスだき式吸収冷凍装置にお
ける窒素酸化物低減方法であって、前記非可動式流量制
御手段の下流側の空気吸込口部内の圧力を定格最大負荷
において−30mmAq程度となるよう設定し、排ガス
再循環量の燃焼用空気中における割合を定格最大負荷に
おいて15%程度となるよう設定し、前記煙道ドラフト
圧力を−5mmAq〜+5mmAqの範囲とする手順を
含んでいることを特徴とする。
More specifically, the air suction port of the air blowing means in which the non-movable flow rate control means is interposed, and the exhaust gas outlet of the gas-fired absorption refrigeration system are branched from the air suction port. A method for reducing nitrogen oxides in a gas-fired absorption refrigeration system comprising an exhaust gas recirculation duct having no flue draft pressure control means, which is connected to the downstream side of the non-movable flow rate control means, The pressure in the air suction port on the downstream side of the non-movable flow control means is set to be about -30 mmAq at the rated maximum load, and the ratio of the exhaust gas recirculation amount in the combustion air is set at about 15% at the rated maximum load. And a flue draft pressure within a range of −5 mmAq to +5 mmAq.

【0011】本発明のガスだき式吸収冷凍装置の窒素酸
化物低減方法においては、排ガス出口部下流に配設され
ている煙道ドラフト制御手段との協働により、煙道ドラ
フト圧力を−5mmAq〜+5mmAqの範囲とされて
もよい。
In the method for reducing nitrogen oxides in the gas-fired absorption refrigeration system of the present invention, the flue draft pressure is set to -5 mmAq by cooperating with the flue draft control means disposed downstream of the exhaust gas outlet. The range may be +5 mmAq.

【0012】なお、本発明の前記ドラフト圧力は、−5
mmAq〜+2mmAqの範囲とするのが好ましい。
The draft pressure of the present invention is -5.
The range of mmAq to +2 mmAq is preferable.

【0013】一方、本発明のガスだき式吸収冷凍装置の
窒素酸化物低減装置は、ガスだき式吸収冷凍装置の窒素
酸化物低減装置であって、非可動式流量制御手段が介装
されている空気吸込口ダクトと、煙道ドラフト制御手段
の上流側から分岐され、かつ前記空気吸込口ダクトの前
記非可動式流量制御手段の下流側に接続されている、排
ガス再循環量制御手段を有しない排ガス再循環ダクトと
を備え、送風手段が、定格最大負荷にて前記非可動式流
量制御手段の下流側の空気吸込口ダクト内の圧力を−3
0mmAq程度とすることができる能力を有するものと
され、前記排ガス再循環ダクトが、定格最大負荷にて排
ガス再循環量の燃焼用空気中における割合を、定格最大
負荷において15%程度とする能力を有するものとさ
れ、前記煙道ドラフト圧力が−5mmAq〜+5mmA
qの範囲とされてなることを特徴とする。
On the other hand, the nitrogen oxide reducing apparatus of the gas-fired absorption refrigeration system of the present invention is a nitrogen oxide reduction apparatus of the gas-fired absorption refrigeration system, in which a non-movable flow control means is interposed. The air suction duct and the exhaust gas recirculation amount control means branched from the upstream side of the flue draft control means and connected to the downstream side of the non-movable flow rate control means of the air suction duct are not provided. An exhaust gas recirculation duct is provided, and the blower unit adjusts the pressure in the air suction port duct on the downstream side of the non-movable flow rate control unit at a rated maximum load by -3.
It is assumed that the exhaust gas recirculation duct has a capacity of about 0 mmAq, and the exhaust gas recirculation duct has a capacity of about 15% of the exhaust gas recirculation amount in the combustion air at the rated maximum load at the rated maximum load. The flue draft pressure is −5 mmAq to +5 mmA.
It is characterized in that the range is q.

【0014】本発明のガスだき式吸収冷凍装置の窒素酸
化物低減装置においては、排ガス出口部下流に配設され
ている煙道ドラフト制御手段との協働により、煙道ドラ
フト圧力が−5mmAq〜+5mmAqの範囲とされて
もよい。
In the nitrogen oxide reduction apparatus of the gas-fired absorption refrigeration system of the present invention, the flue draft pressure is -5 mmAq-in cooperation with the flue draft control means arranged downstream of the exhaust gas outlet. The range may be +5 mmAq.

【0015】また、本発明のガスだき式吸収冷凍装置の
窒素酸化物低減装置においては、前記非可動式流量制御
手段は、例えば流量制御オリフィスとされる。
Further, in the nitrogen oxide reduction device of the gas-fired absorption refrigeration system of the present invention, the non-movable flow rate control means is, for example, a flow rate control orifice.

【0016】[0016]

【作用】本発明においては、排ガス再循環ダクトに排ガ
ス再循環量制御手段が設けられておらず、しかも負荷に
応じた排ガス再循環量を排ガス再循環ダクトの両端部の
圧力差により得ているので、煩雑な操作を行うことなく
排ガス中のNOX値が所定の規制値以下に抑えられる。
In the present invention, the exhaust gas recirculation duct is not provided with the exhaust gas recirculation amount control means, and the exhaust gas recirculation amount according to the load is obtained by the pressure difference between both ends of the exhaust gas recirculation duct. Therefore, the NOX value in the exhaust gas can be suppressed to a predetermined regulation value or less without performing a complicated operation.

【0017】すなわち、非可動式流量制御手段の下流側
の空気吸込口ダクト内の圧力が定格最大負荷において−
30mmAq程度、および燃焼用空気中における排ガス
再循環量の割合が定格最大負荷において15%程度とな
るように、押込送風機の能力、非可動式流量制御手段の
能力、および排ガス再循環ダクトの能力を設定している
ので、ガスだき式吸収冷凍装置の負荷に応じて、押込送
風機の出口側に設けられている空気制御ダンパの開度を
調整するのみで、所望の排ガス再循環量が確保されて排
ガス中のNOXの値が所定の規制値以下に抑えられる。
That is, at the rated maximum load, the pressure in the air inlet duct on the downstream side of the non-movable flow control means is −
The capacity of the forced draft blower, the capacity of the non-movable flow control means, and the capacity of the exhaust gas recirculation duct are set so that the ratio of the exhaust gas recirculation amount in the combustion air is about 30 mmAq and about 15% at the rated maximum load. Since it is set, the desired exhaust gas recirculation amount can be secured only by adjusting the opening degree of the air control damper provided on the outlet side of the forced air blower according to the load of the gas-fired absorption refrigeration system. The value of NOX in the exhaust gas is suppressed below a predetermined regulation value.

【0018】[0018]

【発明の実施の形態】以下、添付図面を参照しながら本
発明の実施の形態について説明するが、本発明はかかる
実施の形態のみに限定されるものではない。なお、ここ
ではガスだき式吸収冷凍装置は、ガスだき式吸収冷温水
機とされている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited to such embodiments. Here, the gas-fired absorption refrigeration system is a gas-fired absorption chiller / heater.

【0019】本発明のガスだき式吸収冷温水機の窒素酸
化物低減方法に適用される窒素酸化物低減装置10を搭
載したガスだき式吸収冷温水機1の概略図を図1に示
し、同窒素酸化物低減装置10は、送風機11の空気吸
込口ダクト2に非可動式流量制御手段12、例えば流量
制御オリフィス12Aを介装させるとともに、煙道3の
ドラフト制御ダンパ31の上流側から分岐された排ガス
再循環ダクト13を空気吸込口ダクト2の前記非可動式
流量制御手段12の下流側に接続させた構成とされてい
る。また、図1から明らかなように、排ガス再循環ダク
トには排ガス再循環量制御手段は設けられていない。な
お、図1中、符号4は点火時の安全を確保するために掃
気する際に閉止するオン・オフダンパを、符号5は空気
制御ダンパを、符号6はガスバーナーを示す。
FIG. 1 is a schematic view of a gas-fired absorption chiller-heater 1 equipped with a nitrogen oxide reduction apparatus 10 applied to the method for reducing nitrogen oxides of a gas-fired absorption chiller-heater according to the present invention. The nitrogen oxides reduction device 10 is provided with an immovable flow rate control means 12, for example, a flow rate control orifice 12A, in the air inlet duct 2 of the blower 11, and is branched from the upstream side of the draft control damper 31 of the flue 3. Further, the exhaust gas recirculation duct 13 is connected to the air inlet duct 2 downstream of the non-movable flow rate control means 12. Further, as is clear from FIG. 1, the exhaust gas recirculation duct is not provided with exhaust gas recirculation amount control means. In FIG. 1, reference numeral 4 is an on / off damper that is closed when scavenging to ensure safety during ignition, reference numeral 5 is an air control damper, and reference numeral 6 is a gas burner.

【0020】ここで、ガスバーナー6に燃焼用空気を供
給する送風機11は、定格最大負荷(MCR)において
送風機11入口、すなわち前記非可動式流量制御手段1
2の下流側の圧力を−30mmAq程度にできる能力を
有するものとされ、また非可動式流量制御手段12およ
び排ガス再循環ダクト13はMCRにおいて排ガス循環
量の燃焼用空気中に占める割合が15%程度となるよう
にされている。
Here, the blower 11 for supplying the combustion air to the gas burner 6 has an inlet of the blower 11 at the rated maximum load (MCR), that is, the non-movable flow rate control means 1
2 has the ability to set the pressure on the downstream side to about -30 mmAq, and the non-movable flow rate control means 12 and the exhaust gas recirculation duct 13 account for 15% of the exhaust gas circulation amount in the combustion air in the MCR. It is designed to be of a degree.

【0021】次に、かかる構成とされている窒素酸化物
低減装置10の動作の一例について説明する。
Next, an example of the operation of the nitrogen oxide reducing apparatus 10 having such a configuration will be described.

【0022】掃気が終了して点火時の安全を確保するた
めのオン・オフダンパ4がオン(全開)されると、運転
盤Cからの指令により、ガスバーナー(低NOXバーナ
ー)6が点火され、そして徐々に燃料供給量が増大さ
れ、最終的に所定の燃焼量、例えばMCRとされる。こ
のとき、送風機11の入口圧力は前述したように−30
mmAq程度とされるとともに、煙道ドラフト圧力が−
5mmAq〜+5mmAqの範囲とされ、あるいは必要
に応じて煙道ドラフト制御ダンパ31制御を付加するこ
とにより排ガスダクト3内の圧力が−5mmAq〜+5
mmAqの範囲とされているので、排ガス再循環量が燃
焼用空気中に占める割合が15%程度となり、その結果
排ガス中のNOX値がO2濃度0%換算にて20ppm
程度に抑えられる。
When the scavenging is completed and the on / off damper 4 for ensuring safety during ignition is turned on (fully opened), the gas burner (low NOx burner) 6 is ignited by a command from the operation panel C, Then, the fuel supply amount is gradually increased, and finally a predetermined combustion amount, for example, MCR is obtained. At this time, the inlet pressure of the blower 11 is −30 as described above.
mmAq and flue draft pressure-
It is set within the range of 5 mmAq to +5 mmAq, or the flue draft control damper 31 control is added as necessary so that the pressure in the exhaust gas duct 3 becomes -5 mmAq to +5.
Since it is in the range of mmAq, the proportion of the exhaust gas recirculation amount in the combustion air is about 15%, and as a result, the NOX value in the exhaust gas is 20 ppm when the O 2 concentration is converted to 0%.
It can be suppressed to the extent.

【0023】この状態で、運転盤Cからの負荷指令によ
り燃焼量が変化させられると、空気制御ダンパ5の開度
が調整されて燃焼用空気量が変動するが、この場合は減
少するが、空気吸込口ダクト2には流量制御オリフィス
12Aが設けられて空気吸込口に一定の圧力損失を生じ
させることにより吸込空気量が減少するにもかかわら
ず、送風機11の入口圧力がNOX値を確保できるある
程度の負圧に維持されるとともに、煙道3内のドラフト
圧力が−5mmAq〜+5mmAqの範囲、あるいは必
要に応じてドラフト制御ダンパ31制御を付加すること
により−5mmAq〜+5mmAqの範囲とされている
ため、負荷が変動しても負荷に対応した排ガス再循環量
が確保されることとなり、排ガス中のNOX値はO2
度0%換算にて40ppmを超えることはない。なお、
燃焼の安定性の点からは、前記ドラフト圧力が−5mm
Aq〜+2mmAqの範囲とされるのが好ましい。
In this state, when the combustion amount is changed by the load command from the operation panel C, the opening degree of the air control damper 5 is adjusted and the combustion air amount fluctuates, but in this case, it decreases, The air suction duct 2 is provided with a flow rate control orifice 12A to cause a constant pressure loss in the air suction port to reduce the suction air amount, but the inlet pressure of the blower 11 can secure the NOX value. While maintaining a certain negative pressure, the draft pressure in the flue 3 is set in the range of -5 mmAq to +5 mmAq, or in the range of -5 mmAq to +5 mmAq by adding the draft control damper 31 control as necessary. Therefore, the load be varied becomes the exhaust gas recirculation amount corresponding to the load is ensured, NOX values in the exhaust gas at the O 2 concentration of 0% in terms of 40 It does not exceed pm. In addition,
From the viewpoint of combustion stability, the draft pressure is -5 mm.
The range of Aq to +2 mmAq is preferable.

【0024】このように、本実施の形態においては、ガ
スだき式吸収冷温水機1の各負荷において、空気制御ダ
ンパ5を所望の負荷に応じた開度とし、煙道3内のドラ
フト圧力を−5mmAq〜+5mmAqの範囲にあるよ
うにすれば、排ガス中のNOX値を制限値内に抑えるこ
とができるという優れた効果が得られる。換言すれば、
NOX低減に必要な排ガス再循環量を、送風機の吸込口
と煙道とに接続した排ガス再循環ダクト両端になりゆき
で形成されるある一定値内の圧力差のみで得ることがで
きるという優れた効果が得られる。
As described above, in this embodiment, in each load of the gas-fired absorption chiller-heater 1, the air control damper 5 is set to an opening degree corresponding to a desired load, and the draft pressure in the flue 3 is adjusted. When it is in the range of −5 mmAq to +5 mmAq, the excellent effect that the NOX value in the exhaust gas can be suppressed within the limit value is obtained. In other words,
It is excellent in that the exhaust gas recirculation amount required for NOX reduction can be obtained only by the pressure difference within a certain constant value that is formed at both ends of the exhaust gas recirculation duct connected to the suction port of the blower and the flue. The effect is obtained.

【0025】[0025]

【実施例】以下、より具体的な実施例に基づいて本発明
をより詳細に説明する。
Hereinafter, the present invention will be described in more detail with reference to more specific examples.

【0026】シグマチル300型ガスだき式吸収冷温水
機(川重冷熱工業株式会社製、商品名)に本発明の実施
例の窒素酸化物低減装置を搭載して排ガス中のNOX値
の変化を測定した。
A Sigmatil 300 type gas-fired absorption chiller-heater (manufactured by Kawashige Ryoku Kogyo Co., Ltd., trade name) was equipped with the nitrogen oxide reduction apparatus of the example of the present invention, and changes in NOX values in exhaust gas were measured. .

【0027】この測定に用いたシグマチル300型ガス
だき式吸収冷温水機および窒素酸化物低減装置の要目は
次のとおりである。
The sigmatil 300 type gas-fired absorption chiller-heater and nitrogen oxide reducing apparatus used for this measurement are as follows.

【0028】(1)シグマチル300型ガスだき式吸収
冷温水機 燃焼量(15Aガス):81.0Nm3/H 冷凍能力:300USTR ガスバーナー:分散火炎方式低NOXバーナー
(1) Sigmatil 300 type gas-fired absorption chiller-heater Combustion amount (15 A gas): 81.0 Nm 3 / H Refrigerating capacity: 300 USTR Gas burner: Dispersion flame type low NOX burner

【0029】(2)窒素酸化物低減装置 流量制御オリフィス:内径198mmφ 排ガス再循環量:MCR時15%(煙道ドラフト圧
力:−5mmAq時) 再循環ダクト:丸形3インチダクト
(2) Nitrogen oxide reduction device Flow rate control orifice: Inner diameter 198 mmφ Exhaust gas recirculation amount: 15% at MCR (flue draft pressure: -5 mmAq) Recirculation duct: Round 3 inch duct

【0030】測定例1 煙道ドラフト制御ダンパにより煙道内のドラフト圧力を
−5mmAqに、送風機吸込口圧力を−30mmAqに
制御し、負荷を100%〜25%の間で変化させて、そ
の際の排ガス中のNOX値を測定し、その結果を図2に
示す。
Measurement Example 1 The draft pressure in the flue was controlled to -5 mmAq and the blower suction port pressure was controlled to -30 mmAq by the flue draft control damper, and the load was changed between 100% and 25%. The NOX value in the exhaust gas was measured, and the result is shown in FIG.

【0031】測定例2 煙道ドラフト制御ダンパにより煙道内のドラフト圧力を
+5mmAqに、送風機吸込口圧力を−25mmAqに
制御し、負荷を100%〜25%の間で変化させて、そ
の際の排ガス中のNOX値を測定し、その結果を図2に
併せて示す。
Measurement Example 2 By controlling the draft pressure in the flue to +5 mmAq and the blower suction port pressure to -25 mmAq by the flue draft control damper, the load was changed between 100% and 25%, and the exhaust gas at that time was changed. The NOX value in the medium was measured, and the results are also shown in FIG.

【0032】図2から明らかなように、測定例1〜2の
いずれにおいても、排ガス中のNOX値が、O2濃度0
%換算にて40ppmを超えていないのがわかる。
As is apparent from FIG. 2, in any of the measurement examples 1 and 2, the NOX value in the exhaust gas is 0 O 2 concentration.
It can be seen that it does not exceed 40 ppm in terms of%.

【0033】[0033]

【発明の効果】以上詳述したように、本発明においては
空気吸込口ダクトに非可動式流量制御手段を設けるとと
もに、送風機の入口圧力をある一定値以上の負圧とし
て、圧力制御手段を有しない排ガス再循環ダクトの基端
部の圧力が所定範囲としているので、窒素酸化物低減装
置の構成および操作が簡素化されているにもかかわら
ず、常時負荷に対応した排ガス再循環量が確保され、排
ガス中のNOX値を所定の制限値内に抑えることができ
るという優れた効果が得られる。また、構成が簡素化さ
れていることから、製造コストおよびランニングコスト
の低減も図られるという効果も得られる。
As described above in detail, in the present invention, the air intake duct is provided with the non-movable flow rate control means and the pressure control means is provided so that the inlet pressure of the blower is a negative pressure above a certain value. Since the pressure at the base end of the exhaust gas recirculation duct is within the specified range, the exhaust gas recirculation amount that always corresponds to the load can be secured even though the configuration and operation of the nitrogen oxide reduction device are simplified. The excellent effect that the NOX value in the exhaust gas can be suppressed within the predetermined limit value is obtained. Further, since the structure is simplified, there is an effect that the manufacturing cost and the running cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いられる窒素酸化物低減装置
の一例の概略図である。
FIG. 1 is a schematic view of an example of a nitrogen oxide reduction device used in the method of the present invention.

【図2】本発明の実施例における測定結果のグラフであ
る。
FIG. 2 is a graph of measurement results in an example of the present invention.

【図3】従来より提案されている窒素酸化物低減装置の
一例の概略図である。
FIG. 3 is a schematic view of an example of a conventionally proposed nitrogen oxide reduction device.

【図4】既設の小型ボイラで採用されている窒素酸化物
低減装置の概略図である。
FIG. 4 is a schematic view of a nitrogen oxide reduction device used in an existing small boiler.

【符号の説明】[Explanation of symbols]

1 ガスだき式吸収冷温水機 2 空気吸込口ダクト 3 煙道 31 煙道ドラフト制御ダンパ 4 オン・オフダンパ 5 空気制御ダンパ 6 ガスバーナー 10 窒素酸化物低減装置 11 押込送風機 12 非可動式流量制御手段 12A 流量制御オリフィス 13 排ガス再循環ダクト 1 Gas-fired absorption chiller / heater 2 Air inlet duct 3 Flue 31 Flue draft control damper 4 On / off damper 5 Air control damper 6 Gas burner 10 Nitrogen oxide reduction device 11 Push blower 12 Non-movable flow control means 12A Flow control orifice 13 Exhaust gas recirculation duct

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金谷 利彦 滋賀県草津市青地町1000番地 川重冷熱工 業株式会社内 (72)発明者 荒木 和路 東京都品川区上大崎4ー5ー26 マンショ ン雅叙苑5ー407 (72)発明者 中村 茂 東京都港区南麻布3ー7ー5 (72)発明者 増田 義人 千葉県市川市市川南2ー4ー12ー301 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiko Kanaya 1000 Aochi-cho, Kusatsu-shi, Shiga Within Kawaju Heavy and Thermal Engineering Co., Ltd. N Gajoen 5-407 (72) Inventor Shigeru Nakamura 3-7-5 Minamiazabu, Minato-ku, Tokyo (72) Inventor Yoshito Masuda 2-4-12-301 Ichikawa, Ichikawa-shi, Chiba

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 煙道ドラフト圧力制御手段を有しない排
ガス再循環ダクトを備えるガスだき式吸収冷凍装置の窒
素酸化物低減方法であって、負荷に応じた排ガス再循環
量を、排ガス再循環ダクトの両端部の圧力差を所定値以
上に保つことにより得ることを特徴とするガスだき式吸
収冷凍装置の窒素酸化物低減方法。
1. A method for reducing nitrogen oxides in a gas-fired absorption refrigeration system equipped with an exhaust gas recirculation duct having no flue draft pressure control means, wherein the exhaust gas recirculation amount according to the load is determined by the exhaust gas recirculation duct. A method for reducing nitrogen oxides in a gas-fired absorption refrigeration system, which is obtained by maintaining the pressure difference between both ends of the above at a predetermined value or more.
【請求項2】 非可動式流量制御手段が介装されている
送風手段の空気吸込口部と、ガスだき式吸収冷凍装置の
排ガス出口部から分岐され、かつ前記空気吸込口部の前
記非可動式流量制御手段の下流側に接続されている、煙
道ドラフト圧力制御手段を有しない排ガス再循環ダクト
とを備えるガスだき式吸収冷凍装置における窒素酸化物
低減方法であって、 前記非可動式流量制御手段の下流側の空気吸込口部内の
圧力を定格最大負荷において−30mmAq程度となる
よう設定し、 排ガス再循環量の燃焼用空気中における割合を定格最大
負荷において15%程度となるよう設定し、 前記煙道ドラフト圧力を−5mmAq〜+5mmAqの
範囲とする手順を含んでいることを特徴とするガスだき
式吸収冷凍装置の窒素酸化物低減方法。
2. The non-movable portion of the air suction port portion of the air blowing means, in which the non-movable flow rate control means is interposed, and the exhaust gas outlet portion of the gas-fired absorption refrigerating device, A method for reducing nitrogen oxides in a gas-fired absorption refrigeration system comprising an exhaust gas recirculation duct having no flue draft pressure control means, which is connected to the downstream side of the non-movable flow rate control means. The pressure inside the air intake on the downstream side of the control means is set to be about -30 mmAq at the rated maximum load, and the ratio of the exhaust gas recirculation amount in the combustion air is set to be about 15% at the rated maximum load. A method for reducing nitrogen oxides in a gas-fired absorption refrigeration system comprising a step of setting the flue draft pressure within a range of -5 mmAq to +5 mmAq.
【請求項3】 排ガス出口部下流に配設されている煙道
ドラフト制御手段との協働により、煙道ドラフト圧力を
−5mmAq〜+5mmAqの範囲とすることを特徴と
する請求項2記載のガスだき式吸収冷凍装置の窒素酸化
物低減方法。
3. The gas according to claim 2, wherein the flue draft pressure is set in the range of −5 mmAq to +5 mmAq in cooperation with the flue draft control means arranged downstream of the exhaust gas outlet. Method for reducing nitrogen oxides in a Daki absorption and refrigeration system.
【請求項4】 前記煙道ドラフト圧力を−5mmAq〜
+2mmAqの範囲とすることを特徴とする請求項2ま
たは3記載のガスだき式吸収冷凍装置の窒素酸化物低減
方法。
4. The flue draft pressure is -5 mmAq.
The range of +2 mmAq is set, The nitrogen oxide reduction method of the gas-fired absorption refrigeration system of Claim 2 or 3 characterized by the above-mentioned.
【請求項5】 ガスだき式吸収冷凍装置の窒素酸化物低
減装置であって、非可動式流量制御手段が介装されてい
る空気吸込口ダクトと、煙道ドラフト制御手段の上流側
から分岐され、かつ前記空気吸込口ダクトの前記非可動
式流量制御手段の下流側に接続されている、排ガス再循
環量制御手段を有しない排ガス再循環ダクトとを備え、 送風手段が、定格最大負荷にて前記非可動式流量制御手
段の下流側の空気吸込口ダクト内の圧力を−30mmA
q程度とすることができる能力を有するものとされ、 前記排ガス再循環ダクトが、定格最大負荷にて排ガス再
循環量の燃焼用空気中における割合を、定格最大負荷に
おいて15%程度とする能力を有するものとされ、 前記煙道ドラフト圧力が−5mmAq〜+5mmAqの
範囲とされてなることを特徴とするガスだき式吸収冷凍
装置の窒素酸化物低減装置。
5. A nitrogen oxide reduction device for a gas-fired absorption refrigeration system, which branches from an air inlet duct in which a non-movable flow rate control means is interposed and an upstream side of a flue draft control means. And an exhaust gas recirculation duct having no exhaust gas recirculation amount control means, which is connected to the downstream side of the non-movable flow rate control means of the air suction port duct, and the blower means has a rated maximum load. The pressure in the air suction duct on the downstream side of the non-movable flow rate control means is set to -30 mmA.
It is assumed that the exhaust gas recirculation duct has a capacity of about 15% of the exhaust gas recirculation amount in the combustion air at the rated maximum load at the rated maximum load. A nitrogen oxide reduction device for a gas-fired absorption refrigeration system, characterized in that the flue draft pressure is in the range of -5 mmAq to +5 mmAq.
【請求項6】 排ガス出口部下流に配設されている煙道
ドラフト制御手段との協働により、煙道ドラフト圧力が
−5mmAq〜+5mmAqの範囲とされてなることを
特徴とする請求項5記載のガスだき式吸収冷凍装置の窒
素酸化物低減装置。
6. The flue draft pressure is set in the range of −5 mmAq to +5 mmAq in cooperation with a flue draft control means arranged downstream of the exhaust gas outlet. Nitrogen oxide reduction device for the gas-fired absorption refrigeration system of.
【請求項7】 前記非可動式流量制御手段が、流量制御
オリフィスとされていることを特徴とする請求項5記載
のガスだき式吸収冷凍装置の窒素酸化物低減装置。
7. The nitrogen oxide reduction apparatus for a gas-fired absorption refrigeration system according to claim 5, wherein the non-movable flow control means is a flow control orifice.
【請求項8】 請求項5、6または7記載の窒素酸化物
低減装置を備えてなることを特徴とするガスだき式吸収
冷凍装置。
8. A gas-fired absorption refrigeration system comprising the nitrogen oxide reduction device according to claim 5, 6, or 7.
JP24054695A 1995-08-25 1995-08-25 Nitrogen oxide reduction method and nitrogen oxide reduction device for gas-fired absorption refrigeration system Expired - Lifetime JP3718780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24054695A JP3718780B2 (en) 1995-08-25 1995-08-25 Nitrogen oxide reduction method and nitrogen oxide reduction device for gas-fired absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24054695A JP3718780B2 (en) 1995-08-25 1995-08-25 Nitrogen oxide reduction method and nitrogen oxide reduction device for gas-fired absorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH0960811A true JPH0960811A (en) 1997-03-04
JP3718780B2 JP3718780B2 (en) 2005-11-24

Family

ID=17061142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24054695A Expired - Lifetime JP3718780B2 (en) 1995-08-25 1995-08-25 Nitrogen oxide reduction method and nitrogen oxide reduction device for gas-fired absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3718780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838163B1 (en) * 2007-03-27 2008-06-13 주식회사 대열보일러 Low nox invertor boiler system and combustion controlling methode thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838163B1 (en) * 2007-03-27 2008-06-13 주식회사 대열보일러 Low nox invertor boiler system and combustion controlling methode thereof

Also Published As

Publication number Publication date
JP3718780B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP3795951B2 (en) Low NOx burner and exhaust gas recirculation control method
JP3557028B2 (en) Combustion burner and combustion method in furnace
JPH0960811A (en) Nitrogen oxide reduction method for gas fired absorption refrigerating unit and apparatus therefor
US5052917A (en) Double-combustor type pulsating combustion apparatus
JP3668910B2 (en) Nitrogen oxide reduction method and nitrogen oxide reduction device for oil-filled absorption refrigeration system
JP4554153B2 (en) Boiler combustion control system
JP3462394B2 (en) Combustion control method of regenerative burner device and burner device
JP3366924B2 (en) Method for reducing nitrogen oxides in oil-fired absorption refrigeration equipment
JPH0960812A (en) Nitrogen oxide reduction method for gas-fired absorption refrigerating unit
KR20040012524A (en) Combustion apparatus for reduction NOx
JP3177554B2 (en) Combustion control device
JPH09280511A (en) Combustion device
CN213178814U (en) Full-premixing gas water heater
JP2800474B2 (en) Air volume control method at the time of ignition in a combustion device
JPS6237607A (en) Starting procedure of burning device
JP2967454B2 (en) Fuel two-stage combustion device and control method thereof
JPH07332658A (en) Compound hot water heater
JP3830610B2 (en) Reheat steam control method for power generation boiler
CN2178327Y (en) Backfire arrester for oil burner and gas-fired furnace
JPH0113249Y2 (en)
JPH0552123A (en) Control device for gas turbine
JPH08188040A (en) Combustion heater
JP3259997B2 (en) Exhaust gas recirculation type combustion device
JPH033796Y2 (en)
CN116464951A (en) Boiler system for realizing ignition and denitration, denitration boiler and adjusting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

EXPY Cancellation because of completion of term