JP3830610B2 - Reheat steam control method for power generation boiler - Google Patents

Reheat steam control method for power generation boiler Download PDF

Info

Publication number
JP3830610B2
JP3830610B2 JP08838997A JP8838997A JP3830610B2 JP 3830610 B2 JP3830610 B2 JP 3830610B2 JP 08838997 A JP08838997 A JP 08838997A JP 8838997 A JP8838997 A JP 8838997A JP 3830610 B2 JP3830610 B2 JP 3830610B2
Authority
JP
Japan
Prior art keywords
air
boiler
burner
furnace
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08838997A
Other languages
Japanese (ja)
Other versions
JPH10281408A (en
Inventor
隆則 矢野
研滋 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP08838997A priority Critical patent/JP3830610B2/en
Publication of JPH10281408A publication Critical patent/JPH10281408A/en
Application granted granted Critical
Publication of JP3830610B2 publication Critical patent/JP3830610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、発電用ボイラの再熱蒸気制御方法に係り、特に、負荷降下時における再熱蒸気温度の適正化と火炎検出性能の改善とに関する。
【0002】
【従来の技術】
図3に、従来より知られているボイラ装置の構成を示す。この図において、1はボイラ火炉、2はボイラ火炉1の炉底、3はボイラ火炉1の炉壁に設けられた第1のバーナ段、4は第1のバーナ段3の下方に配置された第2のバーナ段、5は第1及び第2のバーナ段3,4に供給される燃焼空気の流量を制御するウィンドボックス入り口ダンパ、6はボイラ火炉1の出口に備えられた煙道、7は煙道6内に備えられた過熱器、8は同じく煙道6内に備えられた再熱器、9は煙道6より燃焼排ガスを抜き出して炉底2及び第1及び第2のバーナ段3,4に再循環させる排ガス再循環ファン、10はエアヒータ、11はエアヒータ10より各バーナ段3,4に供給される燃焼空気中に燃焼排ガスを混入するダンパを示している。
【0003】
かかる構成のボイラ装置において、図4(a)に示すようにt1 の時点で負荷の降下が指令されると、過熱器7の出口蒸気温度の過度の上昇を防止するため、ボイラ保有熱分を考慮して、図4(b)に実線で示すように、図4(b)に破線で示される静的な特性よりも燃料流量が引き下げられる。その結果、火炉出口ガス温度が過渡的に静的な状態に比較して低くなり、再熱器8の蒸気温度は低下傾向となる。再熱器8の蒸気温度を維持するため、従来においては図4(c)に示すように、排ガス再循環ファン9よりボイラ火炉1の炉底2に供給される排ガスの再循環量を過渡的に増加してボイラ火炉1における熱吸収を抑制し、図4(f)に示すように再熱蒸気温度を必要な値に維持するという方法が一般に採られている。なお、負荷降下に伴って休止する第2のバーナ段4には、火炉内からの輻射熱によるバーナの過熱を防止するため、図4(d)に示すように一定量の空気又は空気と燃焼排ガスとの混合気が供給される。
【0004】
【発明が解決しようとする課題】
しかしながら、図3に破線で示すように、炉底2より供給された再循環排ガス12は、燃焼に使用しているバーナ段のバーナ口に向かってボイラ火炉1の前壁及び後壁に偏った流れを形成するため、炉底2に供給される排ガスの再循環量を増加すると、バーナの火炎着火域に流れ込む再循環排ガス量が増加して火炎の安定性が害される。また、前記に伴って、火炎検出性能も悪くなる。
【0005】
本発明は、前記従来技術の不備を解決するためになされたものであって、その課題とするところは、負荷降下時において高い再熱蒸気温度を維持でき、しかも火炎の安定性と火炎検出性能を改善可能な発電用ボイラの再熱蒸気制御方法を提供するにある。
【0006】
【課題を解決するための手段】
本発明は、前記の課題を解決するため、火炉内に複数段のバーナを備えると共に、煙道内に過熱器と再熱器とを配置してなる発電用ボイラにおいて、ボイラ装置に負荷降下が指令されてからボイラ装置の負荷が指令された値まで降下する過程で、燃焼しているバーナよりも下段に配置された休止バーナより前記火炉内に投入される空気又は空気と燃焼排ガスとの混合気の流量を過渡的に増加し、前記再熱器の出口上記温度を適正に保つという構成にした。
【0007】
前記休止バーナから前記火炉内に投入される空気又は空気と燃焼排ガスとの混合気の流量を、ボイラ側運転制御装置から出力される信号又はタービン側からの負荷降下の要求に基づいて先行制御することができる。
【0008】
負荷降下時に、休止バーナより火炉内に適量の空気又は空気と燃焼排ガスとの混合気を過渡的に投入すると、ボイラ火炉1における熱吸収が抑制され、過熱器を通過して再熱器に達する熱量が増加するため、再熱蒸気温度を適正な高温に維持できる。また、燃焼しているバーナよりも下段に配置された休止バーナより火炉内に空気又は空気と燃焼排ガスとの混合気を投入すると、図1に示すように、当該空気又は混合気12がボイラ火炉1の中心部に噴射されるため、バーナの火炎着火部に流れ込む空気量あるいは混合気量が減少し、火炎の安定性と火炎検出性能とが改善される。また、図1に破線で示すように、炉底2より投入された再循環排ガス13も、図1に破線で示すように、休止バーナより投入される空気又は混合気12の流れによってボイラ火炉1の中心部に搬送されるため、バーナの火炎着火域に流れ込む量が減少する。よって、この点からも、火炎の安定性と火炎検出性能とが改善される。
【0009】
【発明の実施の形態】
以下、図1及び図2に基づいて、本発明に係る発電用ボイラの再熱蒸気制御方法の一例を説明する。図1はボイラ装置の構成図、図2は本発明に係る再熱蒸気制御方法を示すグラフ図である。
【0010】
図1から明らかなように、本例のボイラ装置も、全体的な構成については図3に示した従来のボイラ装置と同じであり、ボイラ火炉1と、ボイラ火炉1の炉壁に設けられた第1及び第2のバーナ段3,4と、これら第1及び第2のバーナ段3,4に供給される燃焼空気の流量を制御するウィンドボックス入り口ダンパ5と、煙道6と、煙道6内に備えられた過熱器7及び再熱器8と、排ガス再循環ファン9と、エアヒータ10と、ダンパ11から主に構成されている。
【0011】
かかる構成のボイラ装置において、図2(a)に示すようにt1 において負荷の降下が指令されると、過熱器7の出口蒸気温度の過度の上昇を防止するため、図2(b)に実線で示すように燃料流量が引き下げられる。ここまでは、前記した従来技術と同じである。本発明においては、燃焼中の第1のバーナ段3の火炎を安定化し、火炎検出性能を良好に保つため、図2(d)に示すように、休止中の第2のバーナ段4よりボイラ火炉1内に投入される空気又は空気と燃焼排ガスの混合気12の流量を過渡的に増加する。また、図2(c)に示すように、ボイラ火炉1の炉底2に排ガス再循環ファン9から一定量の燃焼排ガス13を供給し、休止中の第2のバーナ段4よりボイラ火炉1内に投入される空気又は混合気12と相俟ってボイラ火炉1における熱吸収を抑制し、燃料流量の引き下げに伴う再熱蒸気温度が低下するのを防止する。
【0012】
負荷降下時に、休止バーナより火炉内に適量の空気又は空気と燃焼排ガスとの混合気を過渡的に投入すると共に炉底2に燃焼排ガスを再循環させると、ボイラ火炉1における熱吸収が抑制され、過熱器を通過して再熱器に達する熱量が増加するため、再熱蒸気温度を適正な高温に維持できる。また、燃焼している第1のバーナ段3よりも下段に配置された休止中の第2のバーナ段4よりボイラ火炉1内に空気又は空気と燃焼排ガスとの混合気12を投入すると、図1に示すように、当該空気又は混合気12がボイラ火炉1の中心部に噴射されるため、バーナの火炎着火部に流れ込む空気量あるいは混合気量が減少し、火炎の安定性と火炎検出性能とが改善される。また、図1に破線で示すように、炉底2より投入された再循環排ガス13も、図1に破線で示すように、休止バーナより投入される空気又は混合気12の流れによってボイラ火炉1の中心部に搬送されるため、第1のバーナ段3の火炎着火域に流れ込む量が減少する。よって、この点からも、火炎の安定性と火炎検出性能とが改善される。
【0013】
上記の制御は、ボイラで発生した蒸気を供給するタービン側からの負荷降下の要求に基づいて行ってもよいが、好ましくは図2(b)に示すように、前記要求を受けてボイラ側運転制御装置から出力される信号に基づいて行われる。例えば、ボイラの燃料流量を急激に減少させるようなボイラ入力加速信号(BIR)が入力された場合に行うことで、動的な制御が可能となる。この場合、ボイラ入力加速信号に基づいて第2のバーナ段4よりボイラ火炉1内に投入される空気又は混合気12の流量を制御することができる。
【0014】
なお、前記実施形態例においては、第1のバーナ群3及び第2のバーナ群4のみを備えたボイラ装置を例にとって説明したが、3段以上のバーナ群を備えたボイラ装置の制御にも応用できることは勿論である。
【0015】
【発明の効果】
以上説明したように、本発明によれば、負荷降下時に、休止バーナより火炉内に適量の空気又は空気と燃焼排ガスとの混合気を過渡的に投入すると、ボイラ火炉における収熱が抑制され、過熱器を通過して再熱器に達する熱量が増加するため、再熱蒸気温度を適正な高温に維持できる。また、燃焼しているバーナよりも下段に配置された休止バーナより火炉内に空気又は空気と燃焼排ガスとの混合気を投入すると、当該空気又は混合気がボイラ火炉の中心部に噴射されるため、バーナの火炎着火部に流れ込む空気量あるいは混合気量が減少し、火炎の安定性と火炎検出性能とが改善される。また、炉底より投入された再循環排ガスも、休止バーナより投入される空気又は混合気の流れによってボイラ火炉1の中心部に搬送されるため、バーナの火炎着火域に流れ込む量が減少する。よって、この点からも、火炎の安定性と火炎検出性能とが改善される。
【図面の簡単な説明】
【図1】本発明に係るボイラ装置の構成図である。
【図2】本発明に係るボイラ装置の制御図である。
【図3】従来例に係るボイラ装置の構成図である。
【図4】従来例に係るボイラ装置の制御図である。
【符号の説明】
1 ボイラ火炉
2 炉底
3 第1のバーナ段
4 第2のバーナ段
5 ウィンドボックス入り口ダンパ
6 煙道
7 過熱器
8 再熱器
9 排ガス再循環ファン
10 エアヒータ
11 ダンパ
12 空気又は空気と燃焼排ガスとの混合気
13 再循環排ガス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reheat steam control method for a power generation boiler, and more particularly to optimization of a reheat steam temperature and improvement of flame detection performance during load drop.
[0002]
[Prior art]
FIG. 3 shows a configuration of a conventionally known boiler apparatus. In this figure, 1 is a boiler furnace, 2 is a bottom of the boiler furnace 1, 3 is a first burner stage provided on the furnace wall of the boiler furnace 1, and 4 is disposed below the first burner stage 3. The second burner stage 5 is a wind box inlet damper for controlling the flow rate of the combustion air supplied to the first and second burner stages 3 and 4, 6 is a flue provided at the outlet of the boiler furnace 1, 7 Is a superheater provided in the flue 6, 8 is a reheater also provided in the flue 6, and 9 is a furnace bottom 2 and first and second burner stages that extract combustion exhaust gas from the flue 6. Exhaust gas recirculation fans 10 and 4 are recirculated, 10 is an air heater, 11 is a damper that mixes combustion exhaust gas into the combustion air supplied from the air heater 10 to each burner stage 3 and 4.
[0003]
In boiler apparatus having such a configuration, when the drop in the load at the time of t 1 is instructed, as shown in FIG. 4 (a), in order to prevent an excessive increase of the outlet steam temperature of the superheater 7, the boiler holders pyrolytic In consideration of the above, as shown by the solid line in FIG. 4B, the fuel flow rate is lowered from the static characteristic shown by the broken line in FIG. As a result, the furnace outlet gas temperature becomes lower than that in a transient static state, and the steam temperature of the reheater 8 tends to decrease. In order to maintain the steam temperature of the reheater 8, conventionally, as shown in FIG. 4C, the recirculation amount of the exhaust gas supplied from the exhaust gas recirculation fan 9 to the furnace bottom 2 of the boiler furnace 1 is made transient. In general, the heat absorption in the boiler furnace 1 is suppressed and the reheat steam temperature is maintained at a necessary value as shown in FIG. 4 (f). In addition, in order to prevent overheating of the burner due to radiant heat from the inside of the furnace, the second burner stage 4 that stops with a load drop has a certain amount of air or air and combustion exhaust gas as shown in FIG. The air-fuel mixture is supplied.
[0004]
[Problems to be solved by the invention]
However, as shown by a broken line in FIG. 3, the recirculated exhaust gas 12 supplied from the furnace bottom 2 is biased toward the front wall and the rear wall of the boiler furnace 1 toward the burner port of the burner stage used for combustion. If the amount of recirculated exhaust gas supplied to the furnace bottom 2 is increased in order to form a flow, the amount of recirculated exhaust gas flowing into the flame ignition region of the burner increases and flame stability is impaired. As a result, the flame detection performance also deteriorates.
[0005]
The present invention has been made in order to solve the deficiencies of the prior art, and the problem is that a high reheat steam temperature can be maintained at the time of load drop, and flame stability and flame detection performance are achieved. It is in providing the reheat steam control method of the boiler for electric power generation which can improve.
[0006]
[Means for Solving the Problems]
The present invention for solving the above problems, provided with a plurality of stages of burners into the furnace, the power boiler formed by arranging the superheater and reheater in a flue, the load drop command to the boiler apparatus In the process in which the load on the boiler device is lowered to the commanded value after that, air or a mixture of air and combustion exhaust gas introduced into the furnace from a pause burner disposed below the burning burner The flow rate of the reheater was increased transiently to maintain the above temperature at the outlet of the reheater properly.
[0007]
Prior control of the flow rate of the air or the mixture of air and combustion exhaust gas introduced from the pause burner into the furnace based on a signal output from the boiler side operation control device or a load drop request from the turbine side be able to.
[0008]
When an appropriate amount of air or a mixture of air and combustion exhaust gas is transiently introduced into the furnace from the pause burner at the time of load drop, heat absorption in the boiler furnace 1 is suppressed and passes through the superheater and reaches the reheater. Since the amount of heat increases, the reheat steam temperature can be maintained at an appropriate high temperature. Further, when air or a mixture of air and combustion exhaust gas is introduced into the furnace from a dormant burner disposed below the burning burner, as shown in FIG. 1, the air or mixture 12 becomes boiler furnace. Since it is injected to the center of 1, the amount of air or air-fuel mixture flowing into the flame igniting portion of the burner is reduced, and flame stability and flame detection performance are improved. Further, as shown by a broken line in FIG. 1, the recirculated exhaust gas 13 introduced from the furnace bottom 2 is also converted into the boiler furnace 1 by the flow of air or the air-fuel mixture 12 introduced from the idle burner, as indicated by the broken line in FIG. 1. Therefore, the amount flowing into the flame ignition area of the burner is reduced. Therefore, also from this point, flame stability and flame detection performance are improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, based on FIG.1 and FIG.2, an example of the reheat steam control method of the boiler for electric power generation which concerns on this invention is demonstrated. FIG. 1 is a block diagram of a boiler device, and FIG. 2 is a graph showing a reheat steam control method according to the present invention.
[0010]
As is clear from FIG. 1, the boiler apparatus of this example is the same as the conventional boiler apparatus shown in FIG. 3 in terms of the overall configuration, and is provided on the boiler furnace 1 and the furnace wall of the boiler furnace 1. First and second burner stages 3 and 4, a wind box inlet damper 5 for controlling the flow rate of combustion air supplied to the first and second burner stages 3 and 4, a flue 6, and a flue 6 mainly includes a superheater 7 and a reheater 8, an exhaust gas recirculation fan 9, an air heater 10, and a damper 11.
[0011]
In boiler apparatus having such a configuration, when the drop in the load at t 1 as shown in FIG. 2 (a) is commanded, in order to prevent an excessive increase of the outlet steam temperature of the superheater 7, FIG. 2 (b) As indicated by the solid line, the fuel flow rate is reduced. Up to this point, it is the same as the above-described prior art. In the present invention, in order to stabilize the flame of the first burner stage 3 during combustion and maintain good flame detection performance, as shown in FIG. The flow rate of the air or the air-fuel mixture 12 mixed with flue gas is increased transiently. Further, as shown in FIG. 2 (c), a certain amount of combustion exhaust gas 13 is supplied from the exhaust gas recirculation fan 9 to the furnace bottom 2 of the boiler furnace 1, and the boiler furnace 1 is supplied from the second burner stage 4 that is stopped. Combined with the air or air-fuel mixture 12 supplied to the boiler, the heat absorption in the boiler furnace 1 is suppressed, and the reheat steam temperature accompanying the reduction of the fuel flow rate is prevented from decreasing.
[0012]
When an appropriate amount of air or a mixture of air and combustion exhaust gas is transiently introduced into the furnace from the rest burner at the time of load drop, and the combustion exhaust gas is recirculated to the furnace bottom 2, heat absorption in the boiler furnace 1 is suppressed. Since the amount of heat passing through the superheater and reaching the reheater increases, the reheat steam temperature can be maintained at an appropriate high temperature. Further, when air or an air-fuel mixture 12 of air and combustion exhaust gas is introduced into the boiler furnace 1 from the second burner stage 4 that is disposed below the first burner stage 3 that is burning, FIG. 1, since the air or air-fuel mixture 12 is injected into the center of the boiler furnace 1, the amount of air or air-fuel mixture flowing into the flame ignition part of the burner is reduced, and flame stability and flame detection performance. And will be improved. Further, as shown by a broken line in FIG. 1, the recirculated exhaust gas 13 introduced from the furnace bottom 2 is also converted into the boiler furnace 1 by the flow of air or the air-fuel mixture 12 introduced from the idle burner, as indicated by the broken line in FIG. 1. Therefore, the amount flowing into the flame ignition area of the first burner stage 3 is reduced. Therefore, also from this point, flame stability and flame detection performance are improved.
[0013]
The above control may be performed based on a load drop request from the turbine side that supplies steam generated in the boiler. Preferably, as shown in FIG. This is performed based on a signal output from the control device. For example, when a boiler input acceleration signal (BIR) that rapidly decreases the fuel flow rate of the boiler is input, dynamic control can be performed. In this case, based on the boiler input acceleration signal, the flow rate of the air or the air-fuel mixture 12 introduced into the boiler furnace 1 from the second burner stage 4 can be controlled.
[0014]
In the above-described embodiment, the boiler apparatus having only the first burner group 3 and the second burner group 4 has been described as an example. However, the boiler apparatus having three or more burner groups is also controlled. Of course, it can be applied.
[0015]
【The invention's effect】
As described above, according to the present invention, when a suitable amount of air or a mixture of air and combustion exhaust gas is transiently introduced into the furnace from the pause burner at the time of load drop, heat recovery in the boiler furnace is suppressed, Since the amount of heat reaching the reheater through the superheater increases, the reheat steam temperature can be maintained at an appropriate high temperature. In addition, when air or a mixture of air and combustion exhaust gas is introduced into the furnace from a dormant burner disposed below the burning burner, the air or mixture is injected into the center of the boiler furnace. The amount of air or air-fuel mixture flowing into the flame ignition part of the burner is reduced, and flame stability and flame detection performance are improved. Moreover, since the recirculated exhaust gas input from the furnace bottom is also transported to the center of the boiler furnace 1 by the flow of air or air-fuel mixture input from the rest burner, the amount flowing into the flame ignition region of the burner is reduced. Therefore, also from this point, flame stability and flame detection performance are improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a boiler apparatus according to the present invention.
FIG. 2 is a control diagram of the boiler device according to the present invention.
FIG. 3 is a configuration diagram of a boiler device according to a conventional example.
FIG. 4 is a control diagram of a boiler device according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler furnace 2 Furnace bottom 3 1st burner stage 4 2nd burner stage 5 Windbox entrance damper 6 Flue 7 Superheater 8 Reheater 9 Exhaust gas recirculation fan 10 Air heater 11 Damper 12 Air or air and combustion exhaust gas Mixture of 13 Recirculated exhaust gas

Claims (2)

火炉内に複数段のバーナを備えると共に、煙道内に過熱器と再熱器とを配置してなる発電用ボイラにおいて、ボイラ装置に負荷降下が指令されてからボイラ装置の負荷が指令された値まで降下する過程で、燃焼しているバーナよりも下段に配置された休止バーナより前記火炉内に投入される空気又は空気と燃焼排ガスとの混合気の流量を過渡的に増加し、前記再熱器の出口上記温度を適正に保つことを特徴とする発電用ボイラの再熱蒸気制御方法。In a power generation boiler with a multi-stage burner in the furnace and a superheater and reheater arranged in the flue , the load command of the boiler device is commanded after the load drop is commanded to the boiler device In the process of descending, the flow of air or the mixture of air and combustion exhaust gas is gradually increased from a dormant burner disposed below the burning burner, and the reheat is performed. A reheat steam control method for a power generation boiler characterized by maintaining the above temperature appropriately. 請求項1に記載の再熱蒸気制御方法において、前記休止バーナから前記火炉内に投入される空気又は空気と燃焼排ガスとの混合気の流量を、ボイラ側運転制御装置から出力される信号又はタービン側からの負荷降下の要求に基づいて制御することを特徴とする発電用ボイラの再熱蒸気制御方法。2. The reheat steam control method according to claim 1, wherein a signal output from a boiler- side operation control device or a turbine indicates a flow rate of air or a mixture of air and combustion exhaust gas introduced into the furnace from the pause burner. A reheat steam control method for a power generation boiler, characterized in that control is performed based on a load drop request from the side .
JP08838997A 1997-04-07 1997-04-07 Reheat steam control method for power generation boiler Expired - Fee Related JP3830610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08838997A JP3830610B2 (en) 1997-04-07 1997-04-07 Reheat steam control method for power generation boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08838997A JP3830610B2 (en) 1997-04-07 1997-04-07 Reheat steam control method for power generation boiler

Publications (2)

Publication Number Publication Date
JPH10281408A JPH10281408A (en) 1998-10-23
JP3830610B2 true JP3830610B2 (en) 2006-10-04

Family

ID=13941448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08838997A Expired - Fee Related JP3830610B2 (en) 1997-04-07 1997-04-07 Reheat steam control method for power generation boiler

Country Status (1)

Country Link
JP (1) JP3830610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690924B2 (en) * 2006-03-29 2011-06-01 東京電力株式会社 Coal-fired boiler control equipment
WO2013032485A1 (en) * 2011-09-02 2013-03-07 International Engine Intellectual Property Company, Llc Protection system for whr system and engine system

Also Published As

Publication number Publication date
JPH10281408A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
US4728282A (en) Method and apparatus for conducting a substantially isothermal combustion process in a combustor
CN110094725B (en) Ultralow nitrogen combustion method for coal-fired power generating unit
JP3830610B2 (en) Reheat steam control method for power generation boiler
JPH03286906A (en) Boiler
JP4554153B2 (en) Boiler combustion control system
JPH0263125B2 (en)
JPS6237607A (en) Starting procedure of burning device
JPH0522803B2 (en)
JPS62123208A (en) Low nox duct burner for additional heating
JPH08159411A (en) Cogeneration system
JPH0735302A (en) Method for warming always mill of coal fired boiler
JP3882294B2 (en) Combustion air flow rate control method and apparatus in exhaust recombustion combined cycle power plant
JP2667607B2 (en) Structure of low NOx boiler
JP2715840B2 (en) Different fuel combustion method in co-firing boiler
JPH0688609A (en) Exhaust gas-burning gas burner
JPH11132443A (en) Method and device for controlling boiler exhaust gas flow rate of air preheater in exhaust re-burning type combined cycle power plant
JPH0668369B2 (en) Carbon black manufacturing equipment Tail gas combustion method
JPS58102008A (en) Starting of fluidized bed boiler
JPS586843B2 (en) boiler
JP3707088B2 (en) NOx control device in exhaust recombustion combined cycle plant
SU885704A2 (en) Fire-box operation method
JPS64604B2 (en)
JPH0223924Y2 (en)
JPH0547947Y2 (en)
JPH08200614A (en) Burner system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees