JPH0959738A - Aluminum alloy casting for sliding member excellent in strength and wear resistance and its production - Google Patents

Aluminum alloy casting for sliding member excellent in strength and wear resistance and its production

Info

Publication number
JPH0959738A
JPH0959738A JP21785695A JP21785695A JPH0959738A JP H0959738 A JPH0959738 A JP H0959738A JP 21785695 A JP21785695 A JP 21785695A JP 21785695 A JP21785695 A JP 21785695A JP H0959738 A JPH0959738 A JP H0959738A
Authority
JP
Japan
Prior art keywords
casting
aluminum alloy
wear resistance
strength
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21785695A
Other languages
Japanese (ja)
Inventor
Shoichi Sakota
正一 迫田
Akira Hideno
晃 秀野
Nobuaki Ohara
伸昭 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP21785695A priority Critical patent/JPH0959738A/en
Publication of JPH0959738A publication Critical patent/JPH0959738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To micronize primary-crystal Si, to improve strength, and to provide excellent wear resistance by specifying the composition of a hyper-eutectic Si-aluminum alloy of JIS-AC9A or -AC9B type and performing pressure casting and then aging treatment. SOLUTION: An alloy, having a composition consisting of, by weight ratio, 16.5-25% Si, 2.0-6.0% Cu, 0.5-1.0% Mg, 0.4-1.0% Mn, 0.5-1.2% Zn, <=200ppm Ca, and the balance Al with inevitable impurities, is used. A molten alloy of this composition is poured into a metal mold, solidified under a pressure as high as >=500kgf/cm<2> , and then subjected to solution heat treatment, hardening, and aging treatment, by which a casting of >=Hv180 hardness is formed. By the above treatment, hard and fine primary-crystal Si is uniformly dispersed and wear resistance and thermal expansion resistance can be improved. Further, the occurrence of casting defects, such as porosity and crack, can be prevented and also stable mechanical properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カークーラー等に
使用されるコンプレッサー部品あるいはエンジン部品、
シフトフォークのような慴動部材とした好適なアルミニ
ウム合金鋳物に関し、更に詳しくは従来の同用途のアル
ミニウム合金鋳物に比べ強度、耐磨耗性ともに向上した
慴動部材用アルミニウム合金鋳物およびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to compressor parts or engine parts used for car coolers,
The present invention relates to a suitable aluminum alloy casting for a sliding member such as a shift fork, and more specifically, an aluminum alloy casting for a sliding member having improved strength and wear resistance as compared with a conventional aluminum alloy casting for the same purpose and a method for producing the same. Regarding

【0002】[0002]

【従来の技術】慴動部材は、その慴動面に高耐磨耗性が
要求されるため、従来鋳鉄、焼き入れ鋼あるいはアルミ
青銅などが使用され、また慴動面にメッキ、陽極酸化皮
膜処理が施されるものもあった。ところが、近年あらゆ
る部品に対し、軽量化、小型化が要求されるようにな
り、慴動部材に対しても軽量のアルミニウム合金を使用
することが多くなっている。これらの慴動部材として用
いられるアルミニウム合金はJISAC9A,AC9
B、あるいはAA(米国アルミニウム協会)規格である
A390等のSiを15〜20重量%(以下重量%を単
に%と略記する)程度含有する過共晶Si合金で、主と
して金型鋳造法あるいはダイカスト法により製造されて
いる。また、連続鋳造法により鋳造棒として生産され、
そのまま或いは押出加工後、製品形状に鍛造加工されて
いるものもある。しかし、上記金型鋳造による製品は凝
固速度が遅いため、初晶珪素が粗大化し、強度特に靭性
が劣化すると共に切削性が劣化するという問題がある。
また、一部のシフトフォークやエンジンブロック等で実
績のあるダイカスト法は、溶湯を急冷できるため、初晶
珪素が微細となるが、ダイカスト特有のガスポロシテ
イ、凝固チル層等の鋳造欠陥を多数生じ、安定して十分
な強度、靭性が得られない。
2. Description of the Related Art Sliding members are required to have a high wear resistance on their sliding surfaces. Therefore, cast iron, hardened steel, aluminum bronze, etc. are conventionally used, and the sliding surface is plated or anodized. Some were processed. However, in recent years, it has been required to reduce the weight and size of all parts, and a lightweight aluminum alloy is often used also for the sliding member. Aluminum alloys used as these sliding members are JIS AC9A, AC9
B or a hypereutectic Si alloy containing about 15 to 20% by weight of Si (such as A390 of AA (American Aluminum Association) standard) (hereinafter, weight% is simply abbreviated as "%"), which is mainly used for die casting or die casting. Manufactured by law. Also, it is produced as a casting rod by the continuous casting method,
In some cases, the product shape is forged as it is or after extrusion. However, since the product obtained by the die casting has a slow solidification rate, primary crystal silicon is coarsened, and there is a problem that strength, particularly toughness deteriorates and machinability deteriorates.
In addition, the die casting method, which has a proven track record in some shift forks and engine blocks, allows the molten metal to be rapidly cooled, so the primary crystal silicon becomes fine, but many gas casting defects peculiar to die casting, solidification chill layers, and other casting defects, Stable and sufficient toughness and toughness cannot be obtained.

【0003】また、連続鋳造法による鋳造棒は内部欠陥
も少なく、良好な素材であるが、Si含有量が18%を
越えると実質的には連続鋳造そのものが困難となる。ま
たこの素材を用いて最終製品を得るためには、通常、連
続鋳造棒(場合によっては更に、押出加工した押出棒)
材を適当な長さに切断したものを鍛造加工して使用する
ことが多く、予備成形、粗打ち、仕上げ打ち等の多くの
工程を経るため、歩留りが悪くなると共に、切削加工時
の工具磨耗が著しく、切削加工時の製造コストも高くな
るという欠点を有している。
Further, the casting rod produced by the continuous casting method has few internal defects and is a good material, but if the Si content exceeds 18%, the continuous casting itself becomes substantially difficult. Moreover, in order to obtain a final product using this material, it is usually a continuous casting rod (in some cases, further extruded rod).
Often used after cutting the material into an appropriate length by forging, many processes such as preforming, roughing and finishing are performed, resulting in poor yield and tool wear during cutting. However, there is a drawback that the manufacturing cost at the time of cutting becomes high.

【0004】最近のアルミ化に対しては軽量化効率とと
もにコスト低減も必須であるため、鍛造材と同等の性能
を有し、かつコストを低減しうる鋳物材料の開発が強く
望まれている。最近この要求を満足すべく高圧鋳造法に
よって鋳造上の問題を克服しようとする試みがなされて
いる。高圧鋳造法は溶湯を型内に低速で充填し、凝固が
完了するまで加圧力をかけ続ける方法であり、溶湯充填
時のエアーの巻き込みに起因するポロシテイおよび凝固
収縮に起因する引け巣が防止でき、安定した機械的性能
が得られる利点がある。また、ダイカスト法と同様に冷
却速度が早いため、初晶Si粒径が微細となる利点もあ
る。しかし厚肉部品の場合、表層に初晶Siが少ないか
或いは全くない領域(以下表面チル層と称する)を生じ
る一方、湯口あるいは肉厚中央部といった最終凝固部に
は初晶Siが粗大化した領域を生じることがある。
Since weight reduction efficiency and cost reduction are indispensable for the recent aluminumization, it is strongly desired to develop a casting material having the same performance as a forged material and capable of reducing the cost. Recently, attempts have been made to overcome casting problems by the high pressure casting method so as to satisfy this demand. The high-pressure casting method is a method in which the molten metal is filled into the mold at a low speed and pressure is applied continuously until the solidification is completed. The advantage is that stable mechanical performance can be obtained. Further, since the cooling rate is high as in the die casting method, there is an advantage that the primary crystal Si grain size becomes fine. However, in the case of thick-walled parts, a region with little or no primary crystal Si (hereinafter referred to as a surface chill layer) is generated in the surface layer, while primary crystal Si is coarsened in the final solidified portion such as the sprue or the center part of the wall thickness. May give rise to areas.

【0005】鋳物素材は、製品形状に応じて慴動面ある
いは機械接合面を機械加工する場合が多い。その際に、
粗大なSi粒があると機械加工時に工具磨耗を促進する
と共に、機械加工面の仕上がり状態も劣化する。また製
品表面に局部的に、初晶Siが殆ど存在しない表面チル
層が存在すると、慴動部材として使用する際の耐磨耗性
が著しく劣化する恐れがある。従って、鋳物素材には、
耐磨耗性を確保しつつ、切削性を阻害しない程度の一定
サイズの初晶Siが場所に関係なく均一に分散すること
が要求される。このため、通常は初晶Siを微細化する
改良処理材として溶湯中にCuPあるいは燐系のフラッ
クスを添加するが、十分な改良処理効果を得るためには
800℃以上の高温に保持する必要があるため、溶湯中
への水素ガス量の増加により、ガス欠陥を生じやすくな
る、また炉材が損耗しやすい、製造効率が低下する、あ
るいは高価な改良処理材の添加が必要となる等のため、
製造コストがアップする等の問題がある。
In many cases, a casting material is machined on its sliding surface or mechanical joining surface depending on the shape of the product. At that time,
Coarse Si particles promote tool wear during machining and also deteriorate the finished state of the machined surface. Further, if a surface chill layer containing almost no primary crystal Si is locally present on the surface of the product, the abrasion resistance when used as a sliding member may be significantly deteriorated. Therefore, in the casting material,
It is required that primary crystal Si of a certain size that does not impair machinability be dispersed uniformly regardless of location while ensuring wear resistance. Therefore, CuP or phosphorus-based flux is usually added to the molten metal as an improvement treatment material for refining the primary crystal Si, but it is necessary to keep it at a high temperature of 800 ° C. or higher in order to obtain a sufficient improvement treatment effect. Therefore, due to the increase in the amount of hydrogen gas in the molten metal, gas defects are more likely to occur, the furnace material is easily worn, the production efficiency is reduced, or it is necessary to add an expensive improved treatment material. ,
There are problems such as an increase in manufacturing cost.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、上記
の問題を解決して、強度と耐摩耗性に優れ、かつ低コス
トで製造できる慴動部材用アルミニウム合金鋳物および
その製造方法を提供することにある。具体的には、前述
の初晶Siを微細化するための改良処理材を使用するこ
となく、鋳物全体にわたって即ち湯口近傍、肉厚中央部
その他各部にわたって初晶Siを微細化し又その分布を
適正化し、更にマトリックス自体の強度も向上すること
によって、強度と耐摩耗性に優れた慴動部材用アルミニ
ウム合金鋳物とその製造方法を得ることである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide an aluminum alloy casting for sliding members which is excellent in strength and wear resistance and can be manufactured at low cost, and a manufacturing method thereof. To do. Specifically, without using the above-described improved treatment material for refining the primary crystal Si, the primary crystal Si is refined over the entire casting, that is, in the vicinity of the sprue, the central portion of the wall thickness and other parts, and its distribution is appropriate. And to further improve the strength of the matrix itself, to obtain an aluminum alloy casting for sliding members having excellent strength and wear resistance, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の請求項1の発明は、Si16.5〜25%、Cu2.
0〜6.0%、Mg0.5〜1.0%、Mn0.4〜
1.0%、Zn0.5〜1.2%を含み、さらにCaを
200pmm以下に規制し、残部がアルミニウムと不可
避的不純物とからなるアルミニウム合金であって、材料
の硬さHvが180以上であることを特徴とする強度と
耐磨耗性に優れた慴動部材用アルミニウム合金鋳物であ
り、また請求項2の発明は、Si16.5〜25%、C
u2.0〜6.0%、Mg0.5〜1.0%、Mn0.
4〜1.0%、Zn0.5〜1.2%を含み、さらにC
aを200ppm以下に規制し、残部がアルミニウムと
不可避的不純物とからなるアルミニウム合金溶湯を金型
内に充填して、500kgf/cm2 以上の高圧下で凝
固させ、その後溶体化熱処理、焼き入れ、時効処理を施
すことによって材料硬さHvを180以上とすることを
特徴とする強度と耐磨耗性に優れた慴動部材用アルミニ
ウム合金鋳物の製造方法である。
According to the invention of claim 1 for solving the above-mentioned problems, Si16.5 to 25%, Cu2.
0-6.0%, Mg 0.5-1.0%, Mn 0.4-
An aluminum alloy containing 1.0% and 0.5 to 1.2% Zn, further controlling Ca to 200 pmm or less, and the balance being aluminum and unavoidable impurities, and having a hardness Hv of 180 or more. It is an aluminum alloy casting for sliding members which is characterized by having excellent strength and wear resistance, and the invention of claim 2 is Si 16.5 to 25%, C
u2.0-6.0%, Mg0.5-1.0%, Mn0.
4 to 1.0%, Zn 0.5 to 1.2%, and further C
a is regulated to 200 ppm or less, the balance is filled with an aluminum alloy molten metal composed of aluminum and unavoidable impurities, and solidified under a high pressure of 500 kgf / cm 2 or more, then solution heat treatment, quenching, A method for producing an aluminum alloy casting for sliding member, which is excellent in strength and abrasion resistance, characterized in that a material hardness Hv is 180 or more by performing an aging treatment.

【0008】[0008]

【発明の実施の形態】以下、本発明について、詳細に説
明する。前記請求項1の発明において、合金の組成を前
記の如くするのは以下の理由によるものである。Si
は、硬質の初晶Siとして晶出し耐磨耗性および耐熱膨
張性を向上させるために有効な元素であるが、その添加
量が16.5%未満ではその効果がなく、25%を越え
ると鋳造温度が750℃以上となり、溶湯の溶存ガス量
が増加し、ガス欠陥を生じやすくなると共に、炉材の損
傷等を生じやすくなるため実用上の弊害がある。従って
Siは16.5〜25%とする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the invention of claim 1, the composition of the alloy is as described above for the following reason. Si
Is an element effective for improving the abrasion resistance and the thermal expansion resistance as crystallized as hard primary crystal Si, but if the addition amount is less than 16.5%, there is no effect, and if it exceeds 25%. When the casting temperature is 750 ° C. or higher, the amount of dissolved gas in the molten metal increases, gas defects are likely to occur, and damage to the furnace material is likely to occur, which is a practical problem. Therefore, Si is set to 16.5 to 25%.

【0009】CuとMgは、ともに強度の向上に有効な
元素であるが、添加量がそれぞれ2.0%および0.5
%未満では十分な強度が得られず、逆にそれぞれ6.0
%および1.0%を越えると強度付与のために行う溶体
化熱処理時に容易に共晶溶融を生じやすくなると共に、
耐蝕性が劣化する。従ってCuは2.0〜6.0%、M
gは0.5〜1.0%とする。Mnは、アルミニウム中
の不可避的不純物として晶出する針状のアルミー鉄系化
合物と結合し塊状のアルミー鉄ーマンガン系化合物を生
成する結果、素材の靱性を向上させる働きがある。その
添加量が0.4%未満では前記の効果がなく、1.0%
を越えると粗大な化合物を生じてかえって靱性が劣化す
る。従って、Mnは0.4〜1.0%とする。
Cu and Mg are both effective elements for improving the strength, but their added amounts are 2.0% and 0.5, respectively.
If it is less than%, sufficient strength cannot be obtained, and conversely 6.0
% And 1.0%, eutectic melting tends to occur easily during solution heat treatment for strength imparting.
Corrosion resistance deteriorates. Therefore, Cu is 2.0 to 6.0%, M
g is 0.5 to 1.0%. Mn combines with a needle-shaped aluminium-iron-based compound that crystallizes as an unavoidable impurity in aluminum to form a lump-shaped aluminium-iron-manganese-based compound, and as a result, acts to improve the toughness of the material. If the added amount is less than 0.4%, the above effect does not occur and 1.0%
If it exceeds the range, a coarse compound is produced and the toughness deteriorates. Therefore, Mn is 0.4 to 1.0%.

【0010】Znは、マトリックス中に固溶し、熱処理
後の強度、硬さを向上して耐磨耗性の改善に効果があ
る。その添加量が0.5%未満では前記の効果がなく、
1.2%を越えると凝固割れを生じやすくなると共に耐
蝕性が劣化する。従って、Znは0.5〜1.2%とす
る。また、不純物として含まれるCaは、羽毛状の粗大
な初晶Si粒を生じやすくなり切削性を著しく阻害する
ため、Ca量は200ppm以下に規制する必要があ
る。その他の不純物として含有されるFeは、針状の金
属間化合物として晶出するため好ましくないが、Mnの
同時添加によりその影響が緩和されるため、1.0%ま
での混入は問題ない。請求項1の発明においては、前記
の要件のほかに、材料の硬さをHvで180以上とする
ものであるが、材料の硬さをこのようにするのは耐磨耗
性を著しく向上するためである。
Zn forms a solid solution in the matrix and improves the strength and hardness after heat treatment, and is effective in improving wear resistance. If the added amount is less than 0.5%, the above effect does not occur,
If it exceeds 1.2%, solidification cracking tends to occur and the corrosion resistance deteriorates. Therefore, Zn is 0.5 to 1.2%. Further, since Ca contained as an impurity is likely to generate feather-like coarse primary crystal Si grains and significantly impairs machinability, the amount of Ca needs to be regulated to 200 ppm or less. Fe, which is contained as another impurity, is not preferable because it crystallizes as an acicular intermetallic compound, but since its effect is mitigated by the simultaneous addition of Mn, mixing up to 1.0% is not a problem. In the invention of claim 1, in addition to the above requirements, the hardness of the material is set to 180 or more in Hv, but such hardness of the material remarkably improves wear resistance. This is because.

【0011】次に、請求項2の製造方法の発明におい
て、前記の組成のアルミニウム合金溶湯を金型内に充填
して凝固させる際に500kgf/cm2 以上の高圧下
で凝固させるのは、ポロシテイ、引け巣、鋳造割れ等の
鋳物の内部欠陥を減少させ健全な内部品質を得るためで
ある。鋳造圧力が500kgf/cm2 未満では、これ
らの内部欠陥が発生し、機械的性能が低下するため、前
記の圧力で凝固させる必要がある。また、本発明の製造
方法においては、前記の高圧下で凝固させた後、機械的
性質の向上のために熱処理が施される。即ち溶体化熱処
理、焼き入れ、時効処理が施される。この熱処理条件は
特に限定されるものではなく、通常の処理条件で実施さ
れ材料の硬さをHvで180以上とする。材料の硬さを
このようにするのは、前記した如く慴動部材用としての
耐磨耗性を付与するためである。
Next, in the invention of the manufacturing method according to claim 2, when the molten aluminum alloy having the above composition is filled in a mold and solidified, solidification under a high pressure of 500 kgf / cm 2 or more is a porosity. This is to reduce the internal defects of the casting such as shrinkage cavities and casting cracks and to obtain sound internal quality. If the casting pressure is less than 500 kgf / cm 2 , these internal defects occur and the mechanical performance deteriorates. Therefore, it is necessary to solidify at the above-mentioned pressure. In addition, in the production method of the present invention, after solidification under the above-mentioned high pressure, heat treatment is performed to improve mechanical properties. That is, solution heat treatment, quenching, and aging treatment are performed. This heat treatment condition is not particularly limited, and the hardness of the material is set to 180 or more in Hv by carrying out under normal treatment conditions. The hardness of the material is set in this way in order to impart abrasion resistance for the sliding member as described above.

【0012】[0012]

【実施例】以下、実施例によって本発明を詳細に説明す
る。まず鋳造には図1に示す鋳造装置を用いた。この鋳
造装置は金型に形成されたキャビテイ部(製品部)2
と溶湯補給経路3および一定量の溶湯が注湯される射出
スリーブ4、射出スリーブ内を慴動し溶湯をキャビテイ
部内に充填、加圧するプランジャチップ5とからなる。
ここで金型にはキャビテイに沿って一定間隔で水冷パ
イプ6を通し、場所に応じて水冷量を変えられる構造と
した。ここで表1に示す組成のアルミニウム合金を通常
の方法により溶解し、溶湯温度750℃で20分程度の
Arガスバブリングにより脱ガス処理を行った後、表2
に示す鋳造条件で加圧鋳造を行い、肉厚20mm×幅1
00mm×長さ200mmの平板試験片を作製した。ま
た鋳込時の金型温度は鋳込みを行いながら各部位の水冷
パイプの水量を変えることにより制御した。
The present invention will be described below in detail with reference to examples. First, the casting apparatus shown in FIG. 1 was used for casting. This casting apparatus has a cavity portion (product portion) 2 formed in a mold 1.
It comprises a molten metal supply path 3, an injection sleeve 4 into which a fixed amount of molten metal is poured, and a plunger tip 5 which moves inside the injection sleeve to fill and pressurize the molten metal in the cavity portion.
Here, a water cooling pipe 6 is passed through the mold 1 at regular intervals along the cavity so that the amount of water cooling can be changed depending on the location. Here, the aluminum alloys having the compositions shown in Table 1 were melted by a normal method, degassed by Ar gas bubbling for about 20 minutes at a melt temperature of 750 ° C.
Pressure casting is performed under the casting conditions shown in, and the wall thickness is 20 mm and width is 1.
A flat plate test piece having a length of 00 mm and a length of 200 mm was prepared. The mold temperature during casting was controlled by changing the amount of water in the water-cooled pipe at each site while casting.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】これらのアルミニウム合金鋳物の断面を研
磨し、引け巣、鋳造割れ等の内部欠陥を実体顕微鏡にて
観察した。また前記試験片に、490℃で4時間保持の
溶体化熱処理、水冷、180℃にて8時間保持の時効処
理を施した後、鋳物断面の硬さHv(ビッカース硬さ)
を測定した。また引張試験片、シャルピー試験片を採取
し、引張強さ、伸び値および靱性の指標値となるシャル
ピー衝撃値を測定した。また同様にテストピースを切り
出し、大越式摩耗試験機を使用して耐摩耗性の指標値で
ある比摩耗量を測定した。これらの結果を表2に示す。
The cross sections of these aluminum alloy castings were polished, and internal defects such as shrinkage cavities and casting cracks were observed with a stereoscopic microscope. Further, after subjecting the test piece to solution heat treatment at 490 ° C. for 4 hours, water cooling, aging treatment at 180 ° C. for 8 hours, hardness Hv (Vickers hardness) of the cross section of the casting
Was measured. Further, a tensile test piece and a Charpy test piece were sampled, and a Charpy impact value which was an index value of tensile strength, elongation value and toughness was measured. Similarly, a test piece was cut out and a specific wear amount, which is an index value of wear resistance, was measured using an Ogoshi-type wear tester. Table 2 shows the results.

【0016】表2から明らかなように、本発明に係わる
組成の合金を所定の鋳造条件で鋳込んだ試験片は内部欠
陥は観察されず、また従来から慴動部材用途として使用
されているA390合金鋳物に比べ、強度、靱性共に優
れていることがわかる。また本発明に係わる合金鋳物は
硬さHvが180以上であり、従来の合金鋳物に比べ、
比摩耗量が少なく、耐摩耗性も優れていることがわか
る。一方、合金組成が本願の請求の範囲から外れる場合
は、十分な強度、靱性が得られず、耐摩耗性も劣る。さ
らに合金組成が本願の請求の範囲内でも鋳造圧力が低い
場合は、製品内に引け巣、鋳造割れ等の内部欠陥を多発
し、安定した機械的性能が得られていないことがわか
る。
As is clear from Table 2, no internal defects were observed in the test pieces obtained by casting the alloy having the composition according to the present invention under the predetermined casting conditions, and A390 which has been conventionally used for sliding members is used. It is clear that both strength and toughness are superior to alloy castings. Further, the alloy casting according to the present invention has a hardness Hv of 180 or more, which is higher than that of conventional alloy castings.
It can be seen that the specific wear amount is small and the wear resistance is also excellent. On the other hand, when the alloy composition deviates from the scope of the claims of the present application, sufficient strength and toughness cannot be obtained, and wear resistance is poor. Further, even when the alloy composition is within the scope of the claims of the present application, if the casting pressure is low, internal defects such as shrinkage cavities and casting cracks frequently occur in the product, and stable mechanical performance cannot be obtained.

【0017】[0017]

【発明の効果】このように本発明によれば、従来のアル
ミニウム合金鋳物に比べ、低コストで耐摩耗性に優れ、
かつ内部欠陥が残留していない健全な鋳物が得られるた
め、コンプッレサー部品およびエンジン部品等の慴動部
材に使用でき、鍛造材と同等の性能で製造コストをさげ
ることができる等工業的に顕著な効果を奏するものであ
る。
As described above, according to the present invention, compared with the conventional aluminum alloy castings, the cost is low and the wear resistance is excellent.
In addition, since it is possible to obtain a sound casting with no internal defects remaining, it can be used for sliding members such as compressor parts and engine parts, and it is possible to reduce the manufacturing cost with the same performance as forging material. It is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における加圧鋳造装置であり、
その説明のための主要部の概略断面図である。
FIG. 1 is a pressure casting apparatus according to an embodiment of the present invention,
It is a schematic sectional drawing of the principal part for the description.

【符号の説明】 金型 2 キャビテイ部(製品部) 3 溶湯補給経路 4 プランジャスリーブ 5 プランジャチップ 6 水冷パイプ 7 ガス抜き部[Explanation of symbols] 1 Mold 2 Cavity part (product part) 3 Molten metal supply path 4 Plunger sleeve 5 Plunger tip 6 Water cooling pipe 7 Gas vent

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Si16.5〜25重量%(以下重量%を
単に%と略記する)、Cu2.0〜6.0%、Mg0.
5〜1.0%、Mn0.4〜1.0%、Zn0.5〜
1.2%を含み、さらにCaを200ppm以下に規制
し、残部がアルミニウムと不可避的不純物とからなるア
ルミニウム合金であって、材料の硬さHvが180以上
であることを特徴とする強度と耐磨耗性に優れた慴動部
材用アルミニウム合金鋳物
1. Si 16.5 to 25 wt% (hereinafter wt% is simply abbreviated as%), Cu 2.0 to 6.0%, Mg 0.
5 to 1.0%, Mn 0.4 to 1.0%, Zn 0.5 to
An aluminum alloy containing 1.2%, further limiting Ca to 200 ppm or less, the balance being aluminum and unavoidable impurities, and having a material hardness Hv of 180 or more. Aluminum alloy castings for sliding parts with excellent wear resistance
【請求項2】Si16.5〜25%、Cu2.0〜6.
0%、Mg0.5〜1.0%、Mn0.4〜1.0%、
Zn0.5〜1.2%を含み、さらにCaを200pp
m以下に規制し、残部がアルミニウムと不可避的不純物
とからなるアルミニウム合金溶湯を金型内に充填して、
500kgf/cm2 以上の高圧下で凝固させ、その後
溶体化熱処理、焼き入れ、時効処理を施すことによって
材料の硬さHvを180以上とすることを特徴とする強
度と耐磨耗性に優れた慴動部材用アルミニウム合金鋳物
の製造方法
2. Si 16.5 to 25%, Cu 2.0 to 6.
0%, Mg 0.5 to 1.0%, Mn 0.4 to 1.0%,
Zn 0.5-1.2% is included, and Ca is further added at 200 pp.
It is regulated to m or less, and the mold is filled with a molten aluminum alloy whose balance is aluminum and unavoidable impurities.
Excellent in strength and abrasion resistance, characterized by setting the hardness Hv of the material to 180 or more by solidifying it under a high pressure of 500 kgf / cm 2 or more and then subjecting it to solution heat treatment, quenching, and aging treatment. Manufacturing method of aluminum alloy casting for sliding member
JP21785695A 1995-08-25 1995-08-25 Aluminum alloy casting for sliding member excellent in strength and wear resistance and its production Pending JPH0959738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21785695A JPH0959738A (en) 1995-08-25 1995-08-25 Aluminum alloy casting for sliding member excellent in strength and wear resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21785695A JPH0959738A (en) 1995-08-25 1995-08-25 Aluminum alloy casting for sliding member excellent in strength and wear resistance and its production

Publications (1)

Publication Number Publication Date
JPH0959738A true JPH0959738A (en) 1997-03-04

Family

ID=16710845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21785695A Pending JPH0959738A (en) 1995-08-25 1995-08-25 Aluminum alloy casting for sliding member excellent in strength and wear resistance and its production

Country Status (1)

Country Link
JP (1) JPH0959738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392158A (en) * 2011-11-22 2012-03-28 东北轻合金有限责任公司 Manufacturing method of engine aluminium alloy piston die forging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392158A (en) * 2011-11-22 2012-03-28 东北轻合金有限责任公司 Manufacturing method of engine aluminium alloy piston die forging

Similar Documents

Publication Publication Date Title
CN111032897A (en) Method of forming cast aluminum alloy
AU753538B2 (en) Die casting magnesium alloy
FR2573777A1 (en) HEAT-RESISTANT HEAT-RESISTANT ALUMINUM ALLOY AND METHOD FOR MANUFACTURING CARRIER COMPONENT THEREOF
JP2005264301A (en) Casting aluminum alloy, casting of aluminum alloy and manufacturing method therefor
JP2506115B2 (en) High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method
JP2006322032A (en) Aluminum alloy for semi-solid casting, and aluminum-alloy casting and its manufacturing method
JPS6210237A (en) Aluminum alloy for hot forging
JP2009108409A (en) Al-Mg TYPE ALUMINUM ALLOY FOR FORGING, WITH EXCELLENT TOUGHNESS, AND CAST MEMBER COMPOSED THEREOF
EP3170594B1 (en) Aluminum alloy powder for hot forging of sliding component, method of producing the same, aluminum alloy forged product for sliding component, and method of producing the same
JP4328321B2 (en) Piston for internal combustion engine
US20210180159A1 (en) Aluminum alloy for die casting and method of manufacturing cast aluminum alloy using the same
JP7513621B2 (en) Magnesium alloy, piston made from said magnesium alloy, and method for manufacturing said piston
JPH0967635A (en) Aluminum alloy casting excellent in strength and toughness, by high pressure casting, and its production
JP2001020047A (en) Stock for aluminum alloy forging and its production
JP2010168639A (en) Steel for die-casting mold
JP4755072B2 (en) Method for manufacturing aluminum alloy cylinder block
JP7167483B2 (en) Steel for die casting molds and die casting molds
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP2000355722A (en) Al-Si DIECAST PRODUCT EXCELLENT IN AIRTIGHTNESS AND WEAR RESISTANCE, AND ITS MANUFACTURE
JPS5913040A (en) Heat- and wear-resistant high-strength aluminum alloy powder and molded body of said alloy powder and their manufacture
JPH0959738A (en) Aluminum alloy casting for sliding member excellent in strength and wear resistance and its production
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP7293696B2 (en) Aluminum alloy casting material and manufacturing method thereof
JPH03223437A (en) Low thermal expansion aluminum alloy excellent in wear resistance and elastic modulus