JPH095813A - Image blurring correcting device and optical device - Google Patents

Image blurring correcting device and optical device

Info

Publication number
JPH095813A
JPH095813A JP17163595A JP17163595A JPH095813A JP H095813 A JPH095813 A JP H095813A JP 17163595 A JP17163595 A JP 17163595A JP 17163595 A JP17163595 A JP 17163595A JP H095813 A JPH095813 A JP H095813A
Authority
JP
Japan
Prior art keywords
line
vibration
detecting
sight
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17163595A
Other languages
Japanese (ja)
Inventor
Yoichi Iwasaki
陽一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17163595A priority Critical patent/JPH095813A/en
Publication of JPH095813A publication Critical patent/JPH095813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustment Of Camera Lenses (AREA)

Abstract

PURPOSE: To automatically switch the actuation state or the non-actuation state of a correction means without operating an external switch by providing an actuation state setting means switching the actuation or the non-actuation state of the correction means based on an output from a line-of-sight detecting means. CONSTITUTION: The line-of-sight detecting means 104 to 110 obtain a visual line(gazing point) by projecting a luminous flux from a light source 104 to the front eye part of a photographer's eye 15 and utilizing a cornea reflected image based on reflected light from the cornea and the image-formation position of a pupil. Then, the actuation state setting means, that is, a frequency detection means 21' is provided, which switches the actuation or the non-actuation state of the correction means, that is, a variable apex angle prism 9 and a driving circuit 8 in accordance with the output from the detecting means 104 to 110. By obtaining positional information on the line of sight, for example, from the output from the detecting means 104 to 110 and detecting whether vibration is caused or not, the actuation or the non-actuation state of a prism 9 and a driving circuit 8 being the correction means is switched.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カメラ等に具備される
像振れ補正装置や像振れ補正機能及び視線検出機能を具
備した光学装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image blur correction device provided in a camera or the like and an improvement of an optical device having an image blur correction function and a visual axis detection function.

【0002】[0002]

【従来の技術】図4は従来の像振れ補正装置の要部を示
す構成図であり、その説明を以下に示す。
2. Description of the Related Art FIG. 4 is a block diagram showing a main part of a conventional image blur correction device, and its description will be given below.

【0003】図4において、1は振動ジャイロ等の角速
度検出手段であり、撮影装置に取り付けられている。2
は前記角速度検出手段1から出力される速度信号の直流
成分を遮断するDCカットフィルタ(あるいは任意の帯
域で信号を遮断するハイパスフィルタ)である。3は入
力される角速度信号を適当な感度に増幅するアンプであ
る。4はA/D変換器、5は任意の帯域で特性を可変で
き得る機能を有したHPF、6は積分回路、7は位相及
び利得補正手段、20はパン/チルト等の撮影状態を判
別する撮影状態判別手段であり、21は周波数検出手段
である。
In FIG. 4, reference numeral 1 denotes an angular velocity detecting means such as a vibration gyro, which is attached to the photographing device. Two
Is a DC cut filter (or a high-pass filter that cuts off the signal in an arbitrary band) that cuts off the DC component of the velocity signal output from the angular velocity detection means 1. An amplifier 3 amplifies the input angular velocity signal to an appropriate sensitivity. Reference numeral 4 is an A / D converter, 5 is an HPF having a function capable of varying the characteristics in an arbitrary band, 6 is an integrating circuit, 7 is a phase and gain correction means, and 20 is a shooting state such as pan / tilt. 21 is a frequency detecting means.

【0004】上記A/D変換器4から位相及び利得補正
手段7まで、及び、撮影状態判別手段20及び周波数検
出手段21は、例えばマイクロコンピュータ(以下、マ
イコン)によって実現される。
The A / D converter 4 to the phase and gain correction means 7, and the photographing state determination means 20 and the frequency detection means 21 are realized by, for example, a microcomputer (hereinafter, microcomputer).

【0005】A/D変換器4は入力される角速度信号を
デジタル値に変換し、積分回路7は前記HPF5介する
角速度信号を角変位信号に変換する。また、撮影状態判
別手段20は、前記A/D変換器4からの角速度信号と
前記積分回路6からの角変位信号を用いてパン/チルト
等の撮影状態の判別を行い、この判別結果に基づいて前
記HPF5の特性を変更する。また、周波数検出手段2
1は入力される角速度信号の周波数を検知し、該検知周
波数を位相及び利得補正手段7へ出力する。位相及び利
得補正手段7は前記周波数検出手段21からの信号に基
づいて入力される角変位信号の位相及び利得補正を行
い、この補正が施された角変位信号が不図示のD/A変
換器にてアナログ値に変換されて、あるいはPWM等の
パルス出力としてマイコンから出力される。
The A / D converter 4 converts the input angular velocity signal into a digital value, and the integrating circuit 7 converts the angular velocity signal through the HPF 5 into an angular displacement signal. Further, the photographing state discrimination means 20 discriminates the photographing state such as pan / tilt using the angular velocity signal from the A / D converter 4 and the angular displacement signal from the integration circuit 6, and based on the discrimination result. To change the characteristics of the HPF5. Further, the frequency detecting means 2
Reference numeral 1 detects the frequency of the input angular velocity signal and outputs the detected frequency to the phase and gain correction means 7. The phase and gain correction means 7 corrects the phase and gain of the angular displacement signal input based on the signal from the frequency detection means 21, and the corrected angular displacement signal is a D / A converter (not shown). Is converted into an analog value or is output from the microcomputer as a pulse output such as PWM.

【0006】8は駆動回路であり、前記マイコンから加
算器17及び増幅器18を介して入力される信号に基づ
いて画像振れを抑制するように可変頂角プリズム9を駆
動する。なお、前記加算器17には位相及び利得補正手
段7からのコントロール信号と可変頂角プリズム9の後
述する頂角検知用の受光素子99からの出力信号とが入
力しており、これらの信号が等しくなるように可変頂角
プリズム9は制御される。その結果、撮影者の手振れが
除かれた画像を得ることができる。
Reference numeral 8 denotes a drive circuit which drives the variable apex angle prism 9 so as to suppress image shake based on a signal input from the microcomputer via the adder 17 and the amplifier 18. The adder 17 is supplied with a control signal from the phase / gain correction means 7 and an output signal from a light receiving element 99 for detecting the apex angle of the variable apex angle prism 9 which will be described later. The variable apex angle prisms 9 are controlled to be equal. As a result, it is possible to obtain an image from which the camera shake of the photographer has been removed.

【0007】ここで、前記可変頂角プリズム9は、図4
に示す様に、対向した二枚の透明平行板91,92の間
に透明な高屈折率の弾性体、又は不活性液体93を充填
し、その外周を樹脂フィルム等の封止材94にて弾力的
に封止して成り、透明平行板91,92が相対的に揺動
可能に構成されている。
The variable apex angle prism 9 is shown in FIG.
As shown in FIG. 2, a transparent elastic material having a high refractive index or an inert liquid 93 is filled between the two transparent parallel plates 91 and 92 facing each other, and the outer periphery thereof is sealed with a sealing material 94 such as a resin film. The transparent parallel plates 91 and 92 are elastically sealed so that they can swing relative to each other.

【0008】そして、可変頂角プリズム9の二枚の透明
平行板91,92のうちの一方の透明平行板91が軸9
bを中心として支持枠9aによって回動自在に支持され
ており、これによって頂角を可変するようになってい
る。
Then, one of the two transparent parallel plates 91, 92 of the variable apex angle prism 9 is the transparent parallel plate 91.
It is rotatably supported by a support frame 9a around b, and the apex angle can be varied by this.

【0009】尚、この支持枠9aは軸9bと直行する軸
方向にも図示しない支持機構により透明平行板91を回
動自在に支持しており、これによってX,Y方向におけ
る手振れを補正することができるようになっている。そ
して、これら両軸についてそれぞれ以下に述べるアクチ
ュエータ,頂角センサが設けられているが、説明の便宜
上、軸9b方向についてのみ説明する。
The support frame 9a also rotatably supports the transparent parallel plate 91 by a support mechanism (not shown) in the axial direction orthogonal to the shaft 9b, thereby correcting camera shake in the X and Y directions. You can do it. An actuator and an apex angle sensor, which will be described below, are provided for both of these axes, but for convenience of explanation, only the direction of the axis 9b will be described.

【0010】前記可変頂角プリズム9を駆動する為のア
クチュエータは、コイル95と支持枠9aに一体形成さ
れた突片に取り付けられたマグネット96とから成り、
コイル95に電流を流すことによって両者の間に発生す
る電磁力により支持枠9aを軸9bを中心に回動し、可
変頂角プリズム9の頂角を可変するものである。従っ
て、コイル95に供給する電流量によって可変頂角プリ
ズム9の駆動量及び方向を制御することができる。
An actuator for driving the variable apex angle prism 9 comprises a coil 95 and a magnet 96 attached to a projecting piece integrally formed on the support frame 9a.
When a current is passed through the coil 95, the support frame 9a is rotated about the shaft 9b by the electromagnetic force generated between the two, and the apex angle of the variable apex angle prism 9 is changed. Therefore, the driving amount and direction of the variable apex angle prism 9 can be controlled by the amount of current supplied to the coil 95.

【0011】また、可変頂角プリズム9の頂角を検出す
る為の頂角センサは、支持枠9aに一体に形成されたス
リット板9cを挟んで上下に配された、駆動回路97に
より駆動されるLED等の発光素子98及びPSD等の
受光素子99とから成り、可変頂角プリズム9の頂角変
位に応じてスリット板9cが移動し、そのスリット像が
受光素子99上を移動することによって、該可変頂角プ
リズム9の頂角を検出することができる。
Further, the apex angle sensor for detecting the apex angle of the variable apex angle prism 9 is driven by a drive circuit 97 arranged vertically with a slit plate 9c formed integrally with the support frame 9a interposed therebetween. The slit plate 9c is composed of a light emitting element 98 such as an LED and a light receiving element 99 such as a PSD. The slit plate 9c moves according to the vertical angle displacement of the variable vertical angle prism 9, and the slit image moves on the light receiving element 99. The apex angle of the variable apex angle prism 9 can be detected.

【0012】前記可変頂角プリズム9の頂角をδ、高屈
折率液体93の屈折率をnとすると、被写体からの入射
光束は可変頂角プリズム99を通過するときに楔形プリ
ズムの原理により、傾角φ(φ=(n−1)δ)だけ偏
向されて出射される。そして、この様に可変頂角プリズ
ム9によって入射角度が変えられた光束はレンズユニッ
ト10によってCCD等の撮像素子11の撮像面上に結
像され、撮像素子11からは入射光を光電変換した撮像
信号が出力され、カメラ信号処理回路12で適当な信号
処理が施された後にレコーダー13に入力される。ま
た、カメラ信号処理回路12からの信号はLCD等の画
像表示器14に入力され、ここで画像として撮影者の眼
15に供されることになる。
Assuming that the apex angle of the variable apex angle prism 9 is δ and the refractive index of the high refractive index liquid 93 is n, the incident light flux from the subject passes through the variable apex angle prism 99 according to the principle of a wedge prism. The light is deflected by an inclination angle φ (φ = (n−1) δ) and emitted. Then, the light flux whose incident angle is thus changed by the variable apex angle prism 9 is imaged on the image pickup surface of the image pickup device 11 such as CCD by the lens unit 10, and the image pickup device 11 performs photoelectric conversion of the incident light. A signal is output, and is subjected to appropriate signal processing by the camera signal processing circuit 12 and then input to the recorder 13. Further, the signal from the camera signal processing circuit 12 is input to the image display device 14 such as an LCD, and is provided to the photographer's eye 15 as an image here.

【0013】22は像振れ補正装置全体の作動・非作動
を選択する為のスイッチであり、撮影時にあるいは撮影
前に撮影者の判断によってオン・オフされるようになっ
ている。
Reference numeral 22 denotes a switch for selecting whether to activate or deactivate the entire image blur correction device, which is turned on or off at the time of photographing or before photographing according to the judgment of the photographer.

【0014】[0014]

【発明が解決しようとする課題】ところで、上記従来の
像振れ補正装置においては、該装置の作動・非作動は撮
影者の判断により(スイッチ22の操作により)行われ
ているため、次のような問題点があった。
By the way, in the above-described conventional image blur correction device, since the operation / non-operation of the device is performed by the photographer's judgment (by operating the switch 22), the following is performed. There was a problem.

【0015】1)前記スイッチ22がオフ状態で撮影を
開始したが、撮影途中で手振れが多くなったので像振れ
補正機能を働かせたいと思っても、前記スイッチ22を
手動でオン状態にしなければならない。
1) Shooting is started with the switch 22 in the off state, but even if the user wants to activate the image blur correction function because of a large amount of camera shake during shooting, the switch 22 must be manually turned on. I won't.

【0016】2)上記1)の逆で、前記スイッチ22が
オン状態で撮影を開始したが、撮影途中で像振れ補正機
能を働かせる必要が無い状況(例えば、手持ち撮影から
三脚固定撮影に変更した場合等)になったときも、撮影
者は前記スイッチ22を一々手動操作によりオフ状態に
しなければならない。尚この際、スイッチ22をオフに
するのは、手振れがない状態でも該スイッチ22がオン
されている限り、常に装置の電力が消費されてしまいの
で、この無駄な電力消費を防止する為である。
2) In the reverse of the above 1), the shooting is started with the switch 22 turned on, but it is not necessary to activate the image blur correction function during the shooting (for example, handheld shooting is changed to tripod fixed shooting). In such a case), the photographer must manually turn off the switch 22 one by one. At this time, the switch 22 is turned off in order to prevent the useless power consumption because the power of the device is always consumed as long as the switch 22 is turned on even when there is no camera shake. .

【0017】また、角速度検出手段1からの出力を用い
てパン/チルト等の撮影状態の判別や手振れの中心周波
数を検知し、前述した様にHPF5の特性や利得・位相
特性を変化させ、手振れに起因する像振れ補正を行える
ようにしているが、前記角速度検出手段1の出力のみを
用いて像振れ補正の制御を行っている為、最適な制御状
態になるまでに時間的遅れがあった。
Further, the output from the angular velocity detecting means 1 is used to detect the photographing state such as pan / tilt and the center frequency of the camera shake is detected, and the characteristics of the HPF 5 and the gain / phase characteristics are changed as described above, thereby causing the camera shake. However, since the image blur correction is controlled by using only the output of the angular velocity detecting means 1, there is a time delay until the optimal control state is achieved. .

【0018】(発明の目的)本発明の第1の目的は、外
部スイッチの操作をすることなく、補正手段の作動・非
作動状態を自動的に切り換えることのできる像振れ補正
装置及び光学装置を提供することである。
(Object of the Invention) A first object of the present invention is to provide an image blur correction device and an optical device capable of automatically switching the operating / non-operating state of the correction means without operating an external switch. Is to provide.

【0019】本発明の第2の目的は、最適な像振れ補正
動作を素早く行うことのできる像振れ補正装置を提供す
ることである。
A second object of the present invention is to provide an image blur correction device capable of quickly performing an optimum image blur correction operation.

【0020】[0020]

【課題を解決するための手段】上記第1の目的を達成す
るために、請求項1及び2記載の本発明は、視線検出手
段からの出力に基づいて、補正手段の作動・非作動状態
を切り換える作動状態設定手段を設け、視線検出手段の
出力から例えば視線の位置情報を得、振動が生じている
状態か否かを検知し、補正手段の作動・非作動状態を切
り換えるようにしている。
In order to achieve the first object, the present invention according to claims 1 and 2 determines whether the correction means is operated or not based on the output from the line-of-sight detection means. The operating state setting means for switching is provided, for example, the position information of the line of sight is obtained from the output of the line-of-sight detecting means, and it is detected whether or not vibration is occurring, and the operating state or non-operating state of the correcting means is switched.

【0021】また、上記第2の目的を達成するために、
請求項3記載の本発明は、視線検出手段からの出力に基
づいて振動検出手段の出力に補正を加え、補正手段の駆
動信号を生成し、補正手段の駆動制御を行う制御手段を
設け、視線検出手段の出力から視線の周波数,振幅情報
を得、この情報に基づいて振動検出手段の出力に補正を
加え、補正手段の駆動信号を生成するようにしている。
In order to achieve the second object,
According to a third aspect of the present invention, there is provided control means for correcting the output of the vibration detecting means based on the output from the visual axis detecting means, generating a drive signal for the correcting means, and controlling the driving of the correcting means. The frequency and amplitude information of the line of sight is obtained from the output of the detection means, the output of the vibration detection means is corrected based on this information, and the drive signal of the correction means is generated.

【0022】[0022]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the illustrated embodiments.

【0023】図1は本発明の一実施例における像振れ補
正装置の要部を示す構成図であり、図4に示した従来装
置と同一構成部分には同一符号を付し、その説明を省略
する。
FIG. 1 is a block diagram showing a main part of an image blur correction device according to an embodiment of the present invention. The same components as those of the conventional device shown in FIG. To do.

【0024】可変頂角プリズム9を通過した被写体から
の光束はレンズユニット10によって撮像素子11上に
結像される。そして、この撮像素子11にて光電変換さ
れて画像信号としてカメラ信号処理回路12に出力さ
れ、ここで所定の処理が施された後、LCD等の表示器
14及びレコーダー13へ出力される。これにより、前
記表示器14上に被写体画像が映し出され、これが撮影
者の眼15によって観察され、又レコーダー13に画像
として記録される。
The light flux from the subject that has passed through the variable apex angle prism 9 is imaged on the image pickup device 11 by the lens unit 10. Then, it is photoelectrically converted by the image pickup device 11 and output as an image signal to the camera signal processing circuit 12, where it is subjected to predetermined processing and then output to a display device 14 such as an LCD and a recorder 13. As a result, a subject image is displayed on the display device 14, which is observed by the photographer's eyes 15 and recorded as an image on the recorder 13.

【0025】図2にて後述する104〜110は、光源
からの光束を撮影者の眼15の前眼部へ投射し、角膜か
らの反射光に基づく角膜反射像と瞳孔の結像位置を利用
して視軸(注視点)を求める視線検出手段であり、例え
ば特開昭61−172552号公報により開示されたも
のである。
Reference numerals 104 to 110, which will be described later with reference to FIG. 2, project a light beam from a light source onto the anterior segment of the photographer's eye 15 and utilize the corneal reflection image based on the reflected light from the cornea and the image forming position of the pupil. The line-of-sight detecting means for obtaining the visual axis (gazing point) is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-172552.

【0026】ここで、この視線検出手段の構成及びその
概略の動作について、図2を用いて説明する。
Here, the structure of the line-of-sight detecting means and its general operation will be described with reference to FIG.

【0027】図2において、104は観察者に対して不
感の赤外光を放射する発光ダイオード等の光源であり、
投光レンズ106の焦点面に配置されている。
In FIG. 2, reference numeral 104 denotes a light source such as a light emitting diode which emits infrared light insensitive to an observer,
It is arranged on the focal plane of the light projecting lens 106.

【0028】前記光源104より投射された赤外光は投
光レンズ106により平行光となり、ハーフミラー10
5で反射して眼球101(眼15に相当する)の角膜1
02を照明する。このとき角膜102の表面で反射した
赤外光の一部に基づく角膜反射像dはハーフミラー10
5を透過して受光レンズ107により集光され、CCD
等のイメージセンサ108上の位置d´に角膜反射像d
を再結像する。
The infrared light projected from the light source 104 becomes parallel light by the light projecting lens 106, and the half mirror 10
The cornea 1 of the eyeball 101 (corresponding to the eye 15) reflected by 5
Illuminate 02. At this time, the corneal reflection image d based on a part of the infrared light reflected on the surface of the cornea 102 is the half mirror 10.
5, the light is collected by the light receiving lens 107, and the CCD
The corneal reflection image d at the position d ′ on the image sensor 108 such as
Re-image.

【0029】また、虹彩103の端部a,bからの光束
はハーフミラー105及び受光レンズ107を介してイ
メージセンサ108上に導光され、その位置a´,b´
に該端部a,bの像を結像する。
Light fluxes from the ends a and b of the iris 103 are guided onto the image sensor 108 via the half mirror 105 and the light receiving lens 107, and their positions a'and b '.
The images of the end portions a and b are formed on.

【0030】前記受光レンズ107の光軸アに対する眼
球101の光軸イの回転角θが小さい場合、虹彩103
の端部a,bのZ座標をZa,Zbとすると、虹彩10
3の中心位置cの座標Zcは ZC≒(Za+Zb)/2 と表される。
When the rotation angle θ of the optical axis a of the eyeball 101 with respect to the optical axis a of the light receiving lens 107 is small, the iris 103
If the Z-coordinates of the edges a and b of the iris are Za and Zb, the iris 10
The coordinate Zc of the center position c of 3 is expressed as ZC≈ (Za + Zb) / 2.

【0031】また、角膜反射像の発生位置dのZ座標を
Zd、角膜101の曲率中心Oと虹彩103の中心Cま
での距離をOCとすると、眼球光軸イの回転角θは OC・sinθ≒Zc−Zd ・・・・(1) の関係式を略満足する。
When the Z coordinate of the position d of the corneal reflection image is Zd and the distance between the center of curvature O of the cornea 101 and the center C of the iris 103 is OC, the rotation angle θ of the optical axis a of the eyeball is OC · sin θ. ≈Zc-Zd ··· (1) The relational expression is substantially satisfied.

【0032】このため、イメージセンサ108上に投影
された各特異点(角膜反射像d及び虹彩の端部a,b)
の位置を、図1の視線検出回路109によって検出する
ことにより、眼球光軸イの回転角θを求めることができ
る。この時上記(1)式は β・OC・sinθ≒(Za´+Zb´)/2−Zd ・・・・(2) と書き換えられる。但し、βは角膜反射像の発生位置d
と受光レンズ107との距離Lと受光レンズ107とイ
メージセンサ108との距離L0で決まる倍率である。
Therefore, each singular point projected on the image sensor 108 (corneal reflection image d and iris edges a and b)
The angle of rotation θ of the optical axis a of the eyeball can be obtained by detecting the position of 1 by the visual axis detection circuit 109 of FIG. At this time, the above equation (1) is rewritten as β · OC · sin θ≈ (Za ′ + Zb ′) / 2−Zd (2). Here, β is the position d where the corneal reflection image is generated.
And the distance L0 between the light receiving lens 107 and the distance L0 between the light receiving lens 107 and the image sensor 108.

【0033】このように撮影者の被検眼の視線の方向
(注視点)を検出することにより、例えばビデオカメラ
等においては、撮影者がファインダ面上のどの位置を観
察しているかを知ることができる。
By detecting the direction of the line of sight (gazing point) of the eye to be inspected by the photographer in this manner, it is possible to know which position on the finder surface the photographer is observing in, for example, a video camera. it can.

【0034】尚、図1では上下方向の視線を検出する視
線検出手段のみ示したが、不図示の左右方向(紙面に対
し垂直方向)の視線を検出する視線検出手段も具備され
ていることは言うまでもない。
In FIG. 1, only the line-of-sight detecting means for detecting the vertical line-of-sight is shown, but it is also provided with the line-of-sight detecting means for detecting the line-of-sight in the left-right direction (perpendicular to the paper). Needless to say.

【0035】図1に示す視線検知回路109の出力信号
はマイコン内の周波数検出手段21´に入力され、ここ
で視線情報(視線の周波数・振幅及び位置)が求められ
る。又、この周波数検出手段21´では、従来と同様
に、角速度検出手段1からの角速度信号より像振れの中
心周波数も求められている。
The output signal of the line-of-sight detection circuit 109 shown in FIG. 1 is input to the frequency detecting means 21 'in the microcomputer, where the line-of-sight information (frequency / amplitude and position of the line of sight) is obtained. Further, in the frequency detecting means 21 ', the center frequency of the image shake is also obtained from the angular velocity signal from the angular velocity detecting means 1 as in the conventional case.

【0036】前記視線情報からは、例えばパンニング状
態であるのか、手振れ状態であるのかを知ることができ
る。つまり、手振れが生じている際には表示器14に映
し出された画像も例えば左右に揺れており、撮影者の視
線もこれに伴って左右に揺動(主被写体を眼で追う為)
する為、この種の情報を視線情報より検知(視線の方向
やその速度等により)することにより大まかな手振れ量
を知ることができ、又視線が一方向にある一定の速度を
持って動いていることを検知した場合には、例えばパン
ニング中であることを知ることができる。
From the line-of-sight information, it is possible to know, for example, whether it is a panning state or a camera shake state. In other words, when camera shake occurs, the image displayed on the display device 14 also shakes, for example, left and right, and the line of sight of the photographer also shakes left and right accordingly (to follow the main subject with the eyes).
Therefore, by detecting this kind of information from the line-of-sight information (depending on the direction of the line-of-sight and its speed, etc.), it is possible to know the approximate amount of camera shake, and the line-of-sight moves in one direction at a constant speed. When it is detected that there is a pan, it is possible to know that panning is in progress, for example.

【0037】よって、前記視線情報より得られる手振れ
量より、後述の様に駆動回路8への電源供給を断って可
変頂角プリズム9の作動・非作動を自動的に制御するこ
とが可能となる。
Therefore, it becomes possible to automatically control the actuation / non-actuation of the variable apex angle prism 9 by cutting off the power supply to the drive circuit 8 as described later on the basis of the amount of camera shake obtained from the line-of-sight information. .

【0038】また、視線が一方向へ移動することを示す
等の視線情報によって角速度検出手段1より得られる周
波数特性を変化させ、前記HPF5の特性変更や位相及
び利得補正手段7の制御を行うことにより、撮影状態の
判別を素早く行える、つまり像振れ補正を素早く行うこ
とができる。
Further, the frequency characteristic obtained from the angular velocity detecting means 1 is changed according to the line-of-sight information indicating that the line of sight moves in one direction, and the characteristic of the HPF 5 is changed and the phase and gain correcting means 7 are controlled. As a result, it is possible to quickly determine the shooting state, that is, to quickly perform image blur correction.

【0039】次に、図1のマイコンによる補正手段であ
る可変頂角プリズムの作動・非作動に関わる部分の動作
を、図3のフローチャートにより説明する。
Next, the operation of the portion relating to the operation / non-operation of the variable apex angle prism, which is the correcting means by the microcomputer of FIG. 1, will be described with reference to the flowchart of FIG.

【0040】まず、ステップ201において、像振れ補
正動作中であるか否かを判別し、動作中であればステッ
プ202へ進み、入力される角速度信号をA/D変換し
て手振れ量を検出する。そして、次のステップ203に
おいて、前記手振れ量が所定値a以下であるか否かを判
別し、もし所定値aを越えるようであればステップ20
7へ進み、駆動回路8への給電を継続して可変頂角プリ
ズム9の作動状態を保持し、ステップ201へ戻る。
First, in step 201, it is judged whether or not the image blur correction operation is being performed. If the image blur correction operation is in progress, the process proceeds to step 202 and the input angular velocity signal is A / D converted to detect the amount of camera shake. . Then, in the next step 203, it is determined whether or not the amount of camera shake is less than or equal to the predetermined value a, and if it exceeds the predetermined value a, step 20
7, the power supply to the drive circuit 8 is continued, the operating state of the variable apex angle prism 9 is maintained, and the process returns to step 201.

【0041】また、上記ステップ203において手振れ
量が所定値a以下であった場合には次にステップ204
へ進み、ここで視線検出手段より視線情報を取り込む。
そして、次のステップ205において、所定値bと視線
情報から得られる手振れ量とを比較し、該視線情報より
得られる手振れ量が所定値bを越える場合には、前述し
たステップ207へ進み、駆動回路8への給電を継続し
て可変頂角プリズム9の作動状態を保持し、ステップ2
01へ戻る。
If the amount of camera shake is less than or equal to the predetermined value a in step 203, then step 204
Then, the process advances to (5) where the line-of-sight information is fetched from the line-of-sight detecting means.
Then, in the next step 205, the predetermined value b is compared with the shake amount obtained from the line-of-sight information. If the shake amount obtained from the line-of-sight information exceeds the predetermined value b, the process proceeds to step 207 described above to drive. The power supply to the circuit 8 is continued to maintain the operating state of the variable apex angle prism 9, and step 2
Return to 01.

【0042】また、上記ステップ205において視線情
報より得られる手振れ量が所定値b以下であった場合に
は、像振れ補正動作を継続する必要がないとして、可変
頂角プリズム9を駆動する駆動回路8への給電を停止、
つまり可変頂角プリズム9を作動状態から非作動状態に
切り換え、ステップ201へ戻る。
If the amount of camera shake obtained from the line-of-sight information in step 205 is less than or equal to the predetermined value b, it is determined that it is not necessary to continue the image shake correction operation, and the drive circuit for driving the variable apex angle prism 9 is provided. Stop power supply to 8,
That is, the variable apex angle prism 9 is switched from the operating state to the non-operating state, and the process returns to step 201.

【0043】一方、ステップ201において、振れ補正
動作が停止された状態であることを判別した場合にはス
テップ208へ進み、入力される角速度信号をA/D変
換して手振れ量を検出する。そして、次のステップ20
9において、前記手振れ量が所定値c以上であるか否か
を判別し、もし所定値c未満であればステップ213へ
進み、駆動回路8への給電停止を継続して可変頂角プリ
ズム9の非作動状態を保持し、ステップ201へ戻る。
On the other hand, when it is determined in step 201 that the shake correction operation is stopped, the routine proceeds to step 208, where the input angular velocity signal is A / D converted to detect the amount of camera shake. And the next step 20
In 9, it is determined whether or not the amount of camera shake is equal to or greater than a predetermined value c, and if it is less than the predetermined value c, the process proceeds to step 213, where the power supply to the drive circuit 8 is stopped and the variable apex angle prism 9 is continuously operated. The non-operating state is maintained, and the process returns to step 201.

【0044】また、上記ステップ209において手振れ
量が所定値a以上であった場合には次にステップ210
へ進み、ここで視線検出手段より視線情報を取り込む。
そして、次のステップ211において、所定値dと視線
情報から得られる手振れ量とを比較し、該視線情報より
得られる手振れ量が所定値b未満の場合には、前述した
ステップ213へ進み、駆動回路8への給電停止を継続
して可変頂角プリズム9の非作動状態を保持し、ステッ
プ201へ戻る。
If the amount of camera shake is greater than or equal to the predetermined value a in step 209, then step 210
Then, the process advances to (5) where the line-of-sight information is fetched from the line-of-sight detecting means.
Then, in the next step 211, the predetermined value d is compared with the shake amount obtained from the line-of-sight information, and if the shake amount obtained from the line-of-sight information is less than the predetermined value b, the process proceeds to step 213 described above to drive. The power supply to the circuit 8 is continuously stopped to keep the variable apex angle prism 9 in the inoperative state, and the process returns to step 201.

【0045】また、上記ステップ211において視線情
報より得られる手振れ量が所定値d以上であった場合に
は、手振れが大きいので像振れ補正動作を開始させる為
に駆動回路8への給電を開始して可変頂角プリズム9を
非作動状態から作動状態に切り換え、ステップ201へ
戻る。
If the amount of camera shake obtained from the line-of-sight information is greater than or equal to the predetermined value d in step 211, the camera shake is large, so power supply to the drive circuit 8 is started to start the image shake correction operation. The variable apex angle prism 9 is switched from the non-operating state to the operating state by returning to step 201.

【0046】以上の様に、振れ補正装置に視線検出手段
を具備し、あるいは、既に具備されている視線検出手段
を用いることにより、可変頂角プリズム9(駆動回路
8)の作動・非作動を自動的に設定することができ、撮
影者が手振れ状況を判断して外部スイッチのオン・オフ
操作を一々行わなければならないといった煩わしさを無
くすことができる。
As described above, the variable-angle prism 9 (driving circuit 8) is activated / deactivated by providing the shake correcting device with the visual axis detecting means or by using the visual axis detecting means already provided. It can be automatically set, and the troublesomeness of the photographer having to perform the on / off operation of the external switch one by one depending on the hand shake situation can be eliminated.

【0047】また、視線情報をも加味して可変頂角プリ
ズムの駆動制御を行う様にしている為、素早く像振れ補
正を行うことが可能となる。
Further, since the drive control of the variable apex angle prism is performed in consideration of the line-of-sight information, it is possible to quickly perform image blur correction.

【0048】以上の様に、従来の像振れ補正装置に較
べ、該装置の総合的性能を格段に上げることが可能とな
る。
As described above, it is possible to significantly improve the overall performance of the image blur correction device as compared with the conventional image blur correction device.

【0049】(発明と実施例の対応)本実施例におい
て、可変頂角プリズム9及び駆動回路8が本発明の補正
手段に相当し、角速度検出手段1が本発明の振動検出手
段に相当し、光源104から視線検出回路109までが
本発明の視線検出手段に相当し、周波数検出手段21´
が本発明の作動状態設定手段に相当し、A/D変換器4
から位相及び利得補正手段7まで、及び、撮影状態判別
手段20,周波数検出手段21´が本発明の制御手段に
相当する。
(Correspondence between Invention and Embodiment) In this embodiment, the variable apex angle prism 9 and the drive circuit 8 correspond to the correcting means of the present invention, and the angular velocity detecting means 1 corresponds to the vibration detecting means of the present invention. The light source 104 to the line-of-sight detection circuit 109 corresponds to the line-of-sight detection means of the present invention, and the frequency detection means 21 '.
Corresponds to the operating state setting means of the present invention, and is the A / D converter 4
To the phase and gain correction means 7, the shooting state determination means 20, and the frequency detection means 21 'correspond to the control means of the present invention.

【0050】(変形例)本発明は、振れ検出手段として
振動ジャイロ等の角速度検出手段を用いているが、角加
速度検出手段、加速度検出手段、速度検出手段、角変位
検出手段、変位検出手段、更には画像振れ自体を検出す
る方法等、振れが検出できるものであればどのようなも
のであっても良い。
(Modification) In the present invention, the angular velocity detecting means such as the vibration gyro is used as the shake detecting means, but the angular acceleration detecting means, the acceleration detecting means, the speed detecting means, the angular displacement detecting means, the displacement detecting means, Further, any method such as a method of detecting the image shake itself may be used as long as the shake can be detected.

【0051】本発明は、光束変更手段として、可変頂角
プリズムを用いた例を示しているが、これに限定される
ものではなく、光軸に垂直な面内で光学部材を動かすシ
フト光学系や等の光束変更手段や、光軸に垂直な面内で
撮影面を動かすもの、更には画像処理により振れを補正
するもの等、振れが防止できるものであればどのような
ものであってもよい。
The present invention shows an example in which a variable apex angle prism is used as the light flux changing means, but the invention is not limited to this, and a shift optical system for moving an optical member in a plane perpendicular to the optical axis. Any means such as a light flux changing means such as or, a means for moving the photographing surface in a plane perpendicular to the optical axis, a means for correcting shake by image processing, and the like can be used as long as the shake can be prevented. Good.

【0052】また、本発明は、一眼レフカメラ,レンズ
シャッタカメラ,ビデオカメラ等のカメラに適用した場
合を述べているが、その他の防振機能と視線検出機能を
具備した光学装置にも適用することができるものであ
る。
Although the present invention has been described as applied to a camera such as a single-lens reflex camera, a lens shutter camera, and a video camera, it is also applicable to other optical devices having a vibration isolation function and a line-of-sight detection function. Is something that can be done.

【0053】[0053]

【発明の効果】以上説明したように、本発明によれば、
視線検出手段からの出力に基づいて、補正手段の作動・
非作動状態を切り換える作動状態設定手段を設け、視線
検出手段の出力から例えば視線の位置情報を得、振動が
生じている状態か否かを検知し、補正手段の作動・非作
動状態を切り換えるようにしている。
As described above, according to the present invention,
Based on the output from the line-of-sight detection means, the operation of the correction means
The operating state setting means for switching the non-operating state is provided, for example, the position information of the line of sight is obtained from the output of the line-of-sight detecting means, and it is detected whether or not vibration is occurring, and the operating state or the non-operating state of the correcting means is switched. I have to.

【0054】よって、外部スイッチの操作をすることな
く、補正手段の作動・非作動状態を自動的に切り換える
ことができる。
Therefore, the operating / non-operating state of the correcting means can be automatically switched without operating the external switch.

【0055】また、本発明によれば、視線検出手段から
の出力に基づいて振動検出手段の出力に補正を加え、補
正手段の駆動信号を生成し、補正手段の駆動制御を行う
制御手段を設け、視線検出手段の出力から視線の周波
数,振幅情報を得、この情報に基づいて振動検出手段の
出力に補正を加え、補正手段の駆動信号を生成するよう
にしている。
Further, according to the present invention, there is provided control means for correcting the output of the vibration detecting means on the basis of the output from the line-of-sight detecting means to generate the drive signal of the correcting means and for controlling the driving of the correcting means. The frequency and amplitude information of the line of sight is obtained from the output of the line-of-sight detection means, the output of the vibration detection means is corrected based on this information, and the drive signal of the correction means is generated.

【0056】よって、最適な像振れ補正動作を素早く行
うことができる。
Therefore, the optimum image blur correction operation can be quickly performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における像振れ補正装置の要
部を示す構成図である。
FIG. 1 is a configuration diagram showing a main part of an image blur correction device according to an embodiment of the present invention.

【図2】図1の視線検出手段による視線検出動作につい
て説明する為の図である。
FIG. 2 is a diagram for explaining a visual axis detecting operation by a visual axis detecting means in FIG.

【図3】図2のマイコンによる可変頂角プリズムの作動
/非作動に関わる部分の動作を示すフローチャートであ
る。
FIG. 3 is a flowchart showing an operation of a part related to actuation / non-actuation of a variable apex angle prism by the microcomputer of FIG.

【図4】従来の像振れ補正装置の要部を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a main part of a conventional image blur correction device.

【符号の説明】[Explanation of symbols]

1 角速度検出手段 4 A/D変換器 5 HPF 6 積分回路 8 駆動回路 7 位相及び利得補正手段 9 可変頂角プリズム 11 撮像素子 20 撮影状態判別手段 21´ 周波数検出手段 104 光源 105 ハーフミラー 106 投光レンズ 107 受光レンズ 108 イメージセンサ 109 視線検出回路 DESCRIPTION OF SYMBOLS 1 Angular velocity detection means 4 A / D converter 5 HPF 6 Integration circuit 8 Drive circuit 7 Phase and gain correction means 9 Variable apex angle prism 11 Image sensor 20 Imaging state determination means 21 'Frequency detection means 104 Light source 105 Half mirror 106 Light projection Lens 107 Light receiving lens 108 Image sensor 109 Line-of-sight detection circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 振動を検出する振動検出手段と、前記振
動に起因する像振れを補正する為の補正手段と、前記振
動検出手段の出力に基づいて前記補正手段の駆動制御を
行う制御手段と、観察者の画面内における視線を検出す
る視線検出手段と、前記視線検出手段からの出力に基づ
いて、前記補正手段の作動・非作動状態を切り換える作
動状態設定手段とを備えた像振れ補正装置。
1. A vibration detecting means for detecting vibration, a correcting means for correcting an image blur caused by the vibration, and a control means for controlling driving of the correcting means based on an output of the vibration detecting means. An image blur correction device including a line-of-sight detection unit that detects the line-of-sight of the observer's screen, and an operation state setting unit that switches the operation state and the non-operation state of the correction unit based on the output from the line-of-sight detection unit. .
【請求項2】 振動を検出する振動検出手段,前記振動
に起因する像振れを補正する為の補正手段,前記振動検
出手段の出力に基づいて前記補正手段を制御する制御手
段より成る像振れ補正手段と、観察者の画面内における
視線を検出する視線検出手段とを備えた光学装置であっ
て、前記視線検出手段からの出力に基づいて、前記補正
手段の作動・非作動状態を切り換える作動状態設定手段
を設けたことを特徴とする光学装置。
2. An image blur correction comprising vibration detection means for detecting vibration, correction means for correcting image blur caused by the vibration, and control means for controlling the correction means based on the output of the vibration detection means. An optical device comprising: means and a visual axis detecting means for detecting a visual axis in an observer's screen, wherein the operating state is such that the correcting means is switched between an operating state and a non-operating state based on an output from the visual line detecting means. An optical device comprising setting means.
【請求項3】 振動を検出する振動検出手段と、前記振
動に起因する像振れを補正する為の補正手段と、観察者
の画面内における視線を検出する視線検出手段と、該視
線検出手段からの出力に基づいて前記振動検出手段の出
力に補正を加え、前記補正手段の駆動信号を生成し、前
記補正手段の駆動制御を行う制御手段とを備えた像振れ
補正装置。
3. A vibration detecting means for detecting a vibration, a correcting means for correcting an image blur caused by the vibration, a visual line detecting means for detecting a visual line in a screen of an observer, and the visual line detecting means. An image blur correction apparatus including: a control unit that corrects the output of the vibration detection unit based on the output of the control unit, generates a drive signal of the correction unit, and controls the drive of the correction unit.
JP17163595A 1995-06-15 1995-06-15 Image blurring correcting device and optical device Pending JPH095813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17163595A JPH095813A (en) 1995-06-15 1995-06-15 Image blurring correcting device and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17163595A JPH095813A (en) 1995-06-15 1995-06-15 Image blurring correcting device and optical device

Publications (1)

Publication Number Publication Date
JPH095813A true JPH095813A (en) 1997-01-10

Family

ID=15926857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17163595A Pending JPH095813A (en) 1995-06-15 1995-06-15 Image blurring correcting device and optical device

Country Status (1)

Country Link
JP (1) JPH095813A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465229A (en) * 2010-11-13 2012-05-23 山西太钢不锈钢股份有限公司 Ferro-titanium alloying method for titaniferous stainless steel
EP3162244A1 (en) 2015-11-02 2017-05-03 Tom Schmied Packaging assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102465229A (en) * 2010-11-13 2012-05-23 山西太钢不锈钢股份有限公司 Ferro-titanium alloying method for titaniferous stainless steel
EP3162244A1 (en) 2015-11-02 2017-05-03 Tom Schmied Packaging assembly

Similar Documents

Publication Publication Date Title
JP4738672B2 (en) Camera with image stabilization function
US7286163B2 (en) Image taking device with bent optical system
JP4272863B2 (en) Camera and camera system
JPH05232373A (en) Device for detecting direction of line of sight for camera
JP5895586B2 (en) Lens unit
JPH06301078A (en) Camera provided with special effect photographing function
JPH05107621A (en) Image blur correcter and camera with image blur correcting function
JPH07151950A (en) Camera
JP2000147586A (en) Camera provided with camera shake correcting function
JP2004228809A (en) Imaging apparatus
JP2002214659A (en) Camera with shake correcting function
JP2001100264A (en) Camera
JPH095813A (en) Image blurring correcting device and optical device
JP2881990B2 (en) Image blur correction device and camera
JPH0556924A (en) Video camera
JPH0933972A (en) Optical device
JPH0738065B2 (en) Equipment for display devices
JPH10339909A (en) Display device
JPH07110501A (en) Blur preventing camera
JP2003029132A (en) Autofocus camera
JPH07253605A (en) Image blurring preventing device for optical device
JP3809046B2 (en) Image blur correction device
JPH07199265A (en) Camera provided with image blurring correcting function
JPH10339893A (en) Image shake preventing device
JPH09181958A (en) Image pickup device