JPH0955287A - Heater device for and melting heat-weldable resin-made tubular part by heating - Google Patents

Heater device for and melting heat-weldable resin-made tubular part by heating

Info

Publication number
JPH0955287A
JPH0955287A JP23204695A JP23204695A JPH0955287A JP H0955287 A JPH0955287 A JP H0955287A JP 23204695 A JP23204695 A JP 23204695A JP 23204695 A JP23204695 A JP 23204695A JP H0955287 A JPH0955287 A JP H0955287A
Authority
JP
Japan
Prior art keywords
resin
radiator
heater device
resin tubular
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23204695A
Other languages
Japanese (ja)
Inventor
Chosei Yamada
長政 山田
Kaoru Onizuka
薫 鬼塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GURIISU NITSUPURU KK
Original Assignee
NIPPON GURIISU NITSUPURU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GURIISU NITSUPURU KK filed Critical NIPPON GURIISU NITSUPURU KK
Priority to JP23204695A priority Critical patent/JPH0955287A/en
Priority to US08/566,016 priority patent/US5793017A/en
Priority to KR1019950046799A priority patent/KR960021473A/en
Publication of JPH0955287A publication Critical patent/JPH0955287A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • B29C65/1422Far-infrared radiation [FIR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1432Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface direct heating of the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • B29C66/5221Joining tubular articles for forming coaxial connections, i.e. the tubular articles to be joined forming a zero angle relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91421Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91212Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods involving measurement means being part of the welding jaws, e.g. integrated in the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91231Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Surface Heating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To melt the end surface of a resin-made tubular part in a short time and at low temparature, thereby reduce energy consumption quantity needed for melting. SOLUTION: This heater device is used when a pair of resin-made pipes (2 and 4) to be connected are faced with each other, the facing end surfaces of the pipes are heated and melted respectively, and then both the resin-made pipes are relatively neared to be welded. Also, this device is provided with radiators (10e and 10f) composed of; a material capable of radiating, at high emissivity, far infrared rays including a wavelength region, having a relatively high absorption coefficient in an absorption spectrum of the resin-made pipes to be connected; and a heating element (10a) for heating the radiators to radiate given far infrared rays. In a preferable example, the resin-made pipes are composed of fluor-resin such as PTFE, FET, PFA, ETFE, CTFE, and PVDF, etc., or a high grade engineering plastic-made pipe, and the radiator is composed of a ceramic-made thin layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、接続すべき一対の樹脂
製管状部品を互いに対向させ、その対向する端面をそれ
ぞれ加熱溶融し、しかる後、両樹脂製管状部品を相対的
に近づけて溶着する際使用するヒータ装置に係り、特
に、PTFE、FEP、PFA、ETFE、CTFE、
PVDF等の弗素系樹脂又はPPS等の高級エンジニア
リングプラスチック製の樹脂からなる配管材料を互いに
突き合わせて溶着する溶着装置に使用されるヒータ装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pair of resin-made tubular parts to be connected to each other, and heats and melts the opposing end faces respectively, and thereafter, the two resin-made tubular parts are relatively brought close to each other for welding. The heater device used when performing, especially PTFE, FEP, PFA, ETFE, CTFE,
The present invention relates to a heater device used in a welding device for welding pipe materials made of a fluorine-based resin such as PVDF or a resin made of high-class engineering plastic such as PPS, by butting them together.

【0002】[0002]

【従来の技術】近年、耐薬品性、クリーン度などから薬
品、食品、半導体産業、バイオテクノロジー、化学工
業、住宅、ガスの分野でより高品質の樹脂の要求が高ま
り、例えばポリフロロアルコキシ、ポリビニリデンフロ
ライドなどのフッ素樹脂、ポリフェニレンスルフィド
(PPS)やポリエーテルエーテルケトンなどのスーパ
ーエンジニアリングプラスチックなどが配管材料として
使用されるようになった。
2. Description of the Related Art In recent years, there has been an increasing demand for higher quality resins in the fields of chemicals, food, semiconductor industry, biotechnology, chemical industry, housing, and gas due to their chemical resistance and cleanliness. For example, polyfluoroalkoxy, poly Fluorine resins such as vinylidene fluoride and super engineering plastics such as polyphenylene sulfide (PPS) and polyether ether ketone have come to be used as piping materials.

【0003】その配管の施工方法としては、配管材料の
端面をフレアに加工し、フランジ接続とするか、または
フイッティング(継手)を使用して接続するのが一般的
であった。
As a method of constructing the pipe, it has been common to process the end surface of the pipe material into flare and make a flange connection, or use a fitting to make a connection.

【0004】しかしながら、この施工方法では、施工が
高価になる上、液漏れの危険性やクリーン度の保持が難
しいなどの問題点があった。
However, this construction method has problems that the construction is expensive, there is a risk of liquid leakage, and it is difficult to maintain cleanliness.

【0005】この問題点を解決するため、熱可塑性樹脂
製配管材料の溶着による施工方法が注目されるようにな
り、いくつかの溶着装置が開発されている。
In order to solve this problem, attention has been paid to a construction method by welding a piping material made of a thermoplastic resin, and some welding devices have been developed.

【0006】例えば、特開平4ー229231号公報に
示すように、特にプラスチック製管状部品を突き合わせ
溶接する装置において、軸方向に部品を保持するチャッ
ク装置と、接触することなく熱線により部品の端部を加
熱する加熱装置とを備え、前記加熱装置は、セラミック
被覆層により被覆された電気的に加熱可能な金属板の加
熱素子を備えているものがあった。
For example, as disclosed in Japanese Patent Laid-Open No. 4-229231, particularly in an apparatus for butt welding plastic tubular parts, a chuck device for holding the parts in the axial direction does not come into contact with the end portion of the parts by heat rays. There is a heating device for heating the heating element, the heating device including a heating element of a metal plate which is electrically heatable and is covered with a ceramic coating layer.

【0007】[0007]

【発明が解決しようとする課題】上述した特開平4ー2
29231号公報に示す加熱装置は、電気的に加熱可能
な金属板の加熱素子にセラミック被覆層を被覆したもの
である。この発明におけるセラミック被覆層は、下層の
伝熱性の良い金属板と相俟って熱エネルギの均一な放射
を意図して設けられたものであった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The heating device shown in Japanese Patent No. 29231 is a heating element of a metal plate that can be electrically heated and is coated with a ceramic coating layer. The ceramic coating layer in the present invention was provided with the intention of uniform radiation of heat energy in combination with the lower metal plate having good heat conductivity.

【0008】従って、接着すべき樹脂製管状部品の材質
の違いによる吸収スペクトルに対する着目や、まして
や、そのような吸収スペクトルの中で比較的吸収率の高
い波長領域を含む遠赤外線を放射し得る材料を選択する
ことを開示するものではなかった。
Therefore, attention is paid to the absorption spectrum due to the difference in the material of the resin-made tubular parts to be bonded, let alone the material capable of emitting far infrared rays including the wavelength region having a relatively high absorptance in such absorption spectrum. Was not disclosed.

【0009】そこで、上述した特開平4ー229231
号公報に示す加熱装置では、公報中では明示されていな
いが低温度での加熱はできず、そのためのエネルギ消費
量は高くなっていた。
Therefore, the above-mentioned Japanese Patent Laid-Open No. 4-229231
The heating device disclosed in Japanese Patent Laid-Open Publication No. 2003-123242 cannot heat at a low temperature, which is not specified in the Japanese Patent Publication, and the energy consumption for that is high.

【0010】本発明は、上述したような従来技術の課題
に鑑みてなされたものであり、接着すべき樹脂製管状部
品の吸収スペクトルの中で比較的吸収率の高い波長領域
を含む遠赤外線を放射し得る材料を放射体として選択す
ることで、短時間且つ低温度で樹脂製管状部品の端面を
溶融することができ、従って、それに要するエネルギ消
費量を小さくすることができる熱溶着可能な樹脂製管状
部品を加熱溶融させるヒータ装置を提供することを目的
とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to obtain far infrared rays including a wavelength region having a relatively high absorptance in the absorption spectrum of a resin tubular part to be bonded. By selecting a material capable of radiating as the radiator, the end face of the resin tubular component can be melted in a short time and at a low temperature, and thus the energy consumption required for the resin can be reduced by heat welding. It is an object of the present invention to provide a heater device that heats and melts a tubular part made of metal.

【0011】[0011]

【課題を解決するための手段】本発明は、接続すべき一
対の樹脂製管状部品を互いに対向させ、その対向する端
面をそれぞれ加熱溶融し、しかる後、両樹脂製管状部品
を相対的に近づけて溶着する際使用するヒータ装置であ
って、接続すべき樹脂製管状部品の吸収スペクトルの中
で比較的吸収率の高い波長領域を含む遠赤外線を高放射
率で放射し得る材料からなる放射体と、放射体を加熱
し、所定の遠赤外線を放射させる発熱体と、を備えて構
成されてなる熱溶着可能な樹脂製管状部品を加熱溶融さ
せるヒータ装置に係る。
SUMMARY OF THE INVENTION According to the present invention, a pair of resin tubular parts to be connected are opposed to each other, and the opposing end faces are respectively heated and melted, and then both resin tubular parts are brought relatively close to each other. A heater device used when welding by welding, and a radiator made of a material capable of emitting far infrared rays having a high emissivity including a wavelength region having a relatively high absorptance in an absorption spectrum of a resin tubular part to be connected. The present invention relates to a heater device for heating and melting a heat-weldable resin tubular part, which is configured to include a heating element that heats a radiator to emit a predetermined far infrared ray.

【0012】本発明の好ましい実施例において、樹脂製
管状部品が、PTFE、FEP、PFA、ETFE、C
TFE、PVDF等の弗素系樹脂又はPPS等の高級エ
ンジニアリングプラスチック製からなり、また、放射体
がセラミック製の薄い層から構成されている。
In a preferred embodiment of the present invention, the resin tubular component is PTFE, FEP, PFA, ETFE, C.
It is made of a fluorine resin such as TFE or PVDF or a high-grade engineering plastic such as PPS, and the radiator is composed of a thin ceramic layer.

【0013】本発明の他の好ましい実施例において、発
熱体は、放射体の表面を250℃から580℃未満に加
熱するように構成されている。
In another preferred embodiment of the present invention, the heating element is arranged to heat the surface of the radiator from 250 ° C to less than 580 ° C.

【0014】本発明のさらに他の好ましい実施例におい
て、樹脂製管状部品が、PFA又はPVDFからなり、
放射体が、PFA又はPVDFの吸収スペクトルの中で
比較的吸収率の高い波長領域6〜10μmにおいて放射
率が0.5以上、好ましくは、0.6以上の遠赤外線を
放射し得る材料からなる、又は、樹脂製管状部品が、P
PSからなり、放射体が、PPSの吸収スペクトルの中
で比較的吸収率の高い波長領域2.5〜3.5μm及び
6〜13μmにおいて放射率が0.5以上の遠赤外線を
放射し得る材料からなる。
In still another preferred embodiment of the present invention, the resin tubular component is made of PFA or PVDF,
The radiator is made of a material capable of emitting far infrared rays having an emissivity of 0.5 or more, preferably 0.6 or more in a wavelength region of 6 to 10 μm, which has a relatively high absorptance in the absorption spectrum of PFA or PVDF. , Or the resin tubular part is P
A material which is made of PS and whose radiator can emit far infrared rays having an emissivity of 0.5 or more in wavelength regions 2.5 to 3.5 μm and 6 to 13 μm, which have relatively high absorptance in the absorption spectrum of PPS. Consists of.

【0015】本発明の第二の態様は、接続すべき一対の
弗素系樹脂製又は高級エンジニアリングプラスチック製
の管状部品を互いに対向させ、その対向する端面をそれ
ぞれ加熱溶融し、しかる後、両樹脂製管状部品を相対的
に近づけて溶着する際使用するヒータ装置であって、接
続すべき前記樹脂製管状部品の吸収スペクトルの中で比
較的吸収率の高い波長領域における遠赤外線の放射率が
0.5以上、好ましくは、0.6以上である材料からな
る薄い放射体と、放射体の表面が250℃から580℃
未満となるように加熱し、その温度範囲において前記放
射体が所定の遠赤外線を放射するようにさせる発熱体と
を備えて構成されてなる一対の樹脂製管状部品のそれぞ
れにほぼ同量の熱エネルギを放射するヒータ装置に係
る。
According to a second aspect of the present invention, a pair of fluororesin-made or high-grade engineering plastic tubular parts to be connected are made to face each other, and the opposite end faces are respectively heated and melted. It is a heater device used when welding tubular parts relatively close to each other, and the emissivity of far infrared rays in a wavelength region having a relatively high absorptance in the absorption spectrum of the resin tubular parts to be connected is 0. A thin radiator made of a material having a temperature of 5 or more, preferably 0.6 or more, and a surface of the radiator having a temperature of 250 to 580 °
The heat of substantially the same amount as that of each of the pair of resin tubular parts, each of which is configured to include a heating element that heats the heating element to a temperature less than that and causes the radiator to emit a predetermined far infrared ray in the temperature range. The present invention relates to a heater device that emits energy.

【0016】本発明の第三の態様は、接続すべき一対の
弗素系樹脂製又は高級エンジニアリングプラスチック製
の管状部品を互いに対向させ、その対向する端面をそれ
ぞれ加熱溶融し、しかる後、両樹脂製管状部品を相対的
に近づけて溶着する際使用するヒータ装置であって、第
一及び第二の平坦な表面を有する遠赤外線透過性のガラ
ス板と、第一及び第二のガラス板の外面に積層されたセ
ラミック製の薄い放射体であって、接続すべき樹脂製管
状部品の吸収スペクトルの中で比較的吸収率の高い波長
領域における遠赤外線の放射率が0.5以上、好ましく
は0.6以上である材料からなる放射体と、両ガラス板
の間に間挿された電気的に加熱可能なヒータ要素であっ
て、放射体の表面が250℃から580℃未満となるよ
うに加熱し、その温度範囲において放射体が所定の遠赤
外線を放射するようにさせるヒータ要素と、そして、両
ガラス板の少なくともヒータ要素を取り囲む位置に且つ
該ヒータ要素の厚さよりも僅かに高い高さだけ肉盛りさ
れた該ガラス板に溶着可能なガラス材料からなる肉盛り
部とを備えて構成されてなる一対の樹脂製管状部品のそ
れぞれにほぼ同量の熱エネルギを放射するヒータ装置に
係る。
According to a third aspect of the present invention, a pair of fluororesin-made or high-grade engineering plastic tubular parts to be connected are opposed to each other, and the opposite end faces are respectively heated and melted. A heater device used when welding tubular parts relatively close to each other, which is a far-infrared transparent glass plate having first and second flat surfaces, and an outer surface of the first and second glass plates. The laminated ceramic thin radiator has a far-infrared emissivity of 0.5 or more in a wavelength region having a relatively high absorptance in an absorption spectrum of a resin tubular part to be connected, preferably 0. A radiator made of a material of 6 or more, and an electrically heatable heater element interposed between both glass plates, wherein the surface of the radiator is heated to 250 ° C to less than 580 ° C. A heater element that causes the radiator to emit a predetermined far infrared ray in a range of degrees, and is built up at a position that surrounds at least the heater element of both glass plates and at a height slightly higher than the thickness of the heater element. Further, the present invention relates to a heater device that radiates substantially the same amount of heat energy to each of a pair of resin tubular parts configured by including a built-up portion made of a glass material that can be welded to the glass plate.

【0017】[0017]

【作用】本発明のヒータ装置によれば、発熱体を加熱
し、それにより、放射体を所定の温度に加熱すると、接
続すべき樹脂製管状部品の吸収スペクトルの中で比較的
吸収率の高い波長領域を含む遠赤外線を高放射率で放射
する。樹脂製管状部品は、吸収率の高い波長領域を含む
遠赤外線により加熱されるため、放射体の温度が従来の
加熱装置に比較して低い温度であっても短時間に溶融温
度に達し溶融し始める。また、一旦、放射体が所定の温
度に達してしまえば、発熱体により加熱し続けなくても
所定の遠赤外線を放射し続ける。これらの性質と放射体
の温度が従来のものに比較して低くても良いことによ
り、樹脂製管状部品の端面を溶融するのに必要とされる
エネルギは小さくて済む。
According to the heater device of the present invention, when the heating element is heated to heat the radiator to a predetermined temperature, the absorption coefficient of the resin tubular parts to be connected is relatively high. It emits far-infrared rays including the wavelength region with high emissivity. Since the resin tubular part is heated by far infrared rays including the wavelength region with high absorptivity, even if the temperature of the radiator is lower than that of the conventional heating device, it reaches the melting temperature in a short time and melts. start. Further, once the radiator reaches a predetermined temperature, it continues to emit a predetermined far infrared ray without continuously heating it by the heating element. Since these properties and the temperature of the radiator may be lower than those of the conventional ones, the energy required to melt the end surface of the resin tubular component is small.

【0018】[0018]

【実施例】以下、図1〜図3を用いて本発明に係るヒー
タ装置について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A heater device according to the present invention will be described in detail below with reference to FIGS.

【0019】図1(a)〜(c)は、それぞれ、本発明
のヒータ装置を用いて樹脂製パイプを熱溶着させる各ス
テップを示す概略外観斜視図である。
1 (a) to 1 (c) are schematic perspective views showing respective steps of thermally welding a resin pipe using the heater device of the present invention.

【0020】熱溶着可能な樹脂製パイプの溶着は次のよ
うに行われる。
The welding of the heat-weldable resin pipe is carried out as follows.

【0021】図1(a)に示すように、一対のパイプ
2,4をそれぞれクランプで保持し、その中間に、本発
明のヒータ装置10を挿入する。ヒータ装置10のヒー
タ表面とパイプ2,4の端面との距離は等しくする。
As shown in FIG. 1 (a), a pair of pipes 2 and 4 are each held by a clamp, and the heater device 10 of the present invention is inserted in the middle thereof. The distance between the heater surface of the heater device 10 and the end faces of the pipes 2 and 4 is made equal.

【0022】パイプ2,4の端面から所定の深さまで加
熱されて溶融状態となった後、図1(b)に示すよう
に、ヒータ装置10を引き抜き、しかる後、図1(c)
に示すように、パイプ2,4を近付けて突き合わせ両者
を接続する。図面中、2a,4aは、溶融状態となった
パイプ2,4の部分を表す。
After being heated to a predetermined depth from the end faces of the pipes 2 and 4 to be in a molten state, the heater device 10 is pulled out as shown in FIG. 1 (b), and then, as shown in FIG. 1 (c).
As shown in FIG. 2, the pipes 2 and 4 are brought close to each other, but they are butted and connected. In the drawing, 2a and 4a represent the portions of the pipes 2 and 4 in a molten state.

【0023】ヒータ装置10は、一対のパイプ2,4の
間の加熱位置に挿入する前に所定の温度まで予熱してお
くことができ、加熱位置に挿入した時には、電源からの
電気の供給は停止させておくことができる。
The heater device 10 can be preheated to a predetermined temperature before it is inserted into the heating position between the pair of pipes 2 and 4, and when it is inserted into the heating position, the electricity is not supplied from the power source. It can be stopped.

【0024】次に、図2及び図3を用いて本発明に係る
ヒータ装置10について詳細に説明する。
Next, the heater device 10 according to the present invention will be described in detail with reference to FIGS. 2 and 3.

【0025】このヒータ装置10は、概略的に、第一及
び第二の平坦な赤外線透過性のガラス板10c、10d
と、第一及び第二のガラス板10c、10dの外面にそ
れぞれ積層された薄いセラミック層10e、10fと、
両ガラス板の間に間挿された電気的に加熱可能な板状タ
ングステンヒータ10aと、そして、両ガラス板の少な
くとも板状タングステンヒータ10aを取り囲む位置に
且つ板状タングステンヒータ10aの厚さよりも僅かに
高い高さだけ肉盛りされた該ガラス板に接着可能な石英
ガラスからなる肉盛り部10bとを備えて構成されてい
る。
This heater device 10 is roughly composed of first and second flat infrared ray transmitting glass plates 10c and 10d.
And thin ceramic layers 10e and 10f respectively laminated on the outer surfaces of the first and second glass plates 10c and 10d,
An electrically heatable plate-shaped tungsten heater 10a interposed between both glass plates, and at a position surrounding at least the plate-shaped tungsten heater 10a of both glass plates and slightly higher than the thickness of the plate-shaped tungsten heater 10a. And a built-up portion 10b made of quartz glass that can be bonded to the glass plate that is built up by the height.

【0026】セラミック層10e、10fは、接続すべ
き樹脂製パイプの吸収スペクトルの中で比較的吸収率の
高い波長領域を含む遠赤外線を高放射率で放射し得る材
料からなる。
The ceramic layers 10e and 10f are made of a material capable of emitting far infrared rays having a high emissivity including a wavelength region having a relatively high absorptance in the absorption spectrum of the resin pipe to be connected.

【0027】図4は、代表的な金属を加熱した時の波長
と分光放射率との関係を示したものである。そして、図
5は、各種の樹脂の赤外線吸収スペクトルである。
FIG. 4 shows the relationship between the wavelength and the spectral emissivity when a typical metal is heated. And FIG. 5 is an infrared absorption spectrum of various resins.

【0028】図4に示されているように、金属では近赤
外線での放射率は、0.4〜0.6程度の値を有してい
るが遠赤外線領域の放射率は0.3以下である。しかる
に、各種の樹脂の赤外線吸収スペクトルを観察すると、
一般に樹脂などの高分子材料は、6μm以上の波長の遠
赤外線の吸収率が高く近赤外線の吸収率は極めて小さ
い。これが、ニクロム系(NiーCr)発熱体や鉄・ク
ロム・アルミ系(FeーCrーAl)発熱体により、樹
脂を加熱しようとした時、高温且つ時間を要する理由で
あり、従って、加熱に必要とするエネルギも多大なもの
となっていた。
As shown in FIG. 4, metal has an emissivity in the near infrared region of about 0.4 to 0.6, but the emissivity in the far infrared region is 0.3 or less. Is. However, when observing the infrared absorption spectra of various resins,
Generally, a polymeric material such as a resin has a high absorptance of far infrared rays having a wavelength of 6 μm or more and an extremely low absorptance of near infrared rays. This is the reason why it takes high temperature and time to heat the resin by the Nichrome (Ni-Cr) heating element or the iron / chromium / aluminum (Fe-Cr-Al) heating element. The energy required was also enormous.

【0029】本発明は、接続すべき樹脂製パイプの吸収
スペクトルの中で比較的吸収率の高い波長領域を含む遠
赤外線を高放射率で放射し得る材料を放射体として選択
することにより、低温で且つ短時間に樹脂製パイプの端
面を溶融させることができるという知見に基づいてなさ
れたものである。
According to the present invention, by selecting a material capable of emitting far infrared rays having a high emissivity including a wavelength region having a relatively high absorptance in the absorption spectrum of a resin pipe to be connected, as a radiator, It was made based on the finding that the end face of the resin pipe can be melted in a short time.

【0030】近年、薬品、食品、半導体産業、バイオテ
クノロジー、化学工業等で多用されるようになったPT
FE、FEP、PFA、ETFE、CTFE、PVDF
等の弗素系樹脂やPPS等の高級エンジニアリングプラ
スチック製樹脂の吸収スペクトルも遠赤外線領域におけ
る吸収率が高く、従って、そのような遠赤外線を高放射
率で放射できる放射体を使用することが好ましい。
In recent years, PT has come to be widely used in medicine, food, semiconductor industry, biotechnology, chemical industry and the like.
FE, FEP, PFA, ETFE, CTFE, PVDF
The absorption spectra of fluorine-based resins such as PPS and high-grade engineering plastics such as PPS also have a high absorptivity in the far infrared region, and therefore it is preferable to use a radiator that can radiate such far infrared rays with a high emissivity.

【0031】図6は、PVDFの吸収スペクトル図であ
るが、この図からも分かるように、波長領域6〜10μ
mにおいて遠赤外線の吸収率が0.5以上となってい
る。図7は、セラミック層10e、10fとしてセラス
タッツBHA(商品名:販売元は大阪市中央区の島貿易
株式会社で製造元は大阪市東区のパーカー株式会社)を
用いた場合における赤外線分光放射出力を表している。
基準値として、500℃の黒体炉を選択し、セラミック
層10e、10fの表面温度が、686℃、500℃、
300℃及び250℃の各場合についてフーリエ変換赤
外分光光度計(FTIR)で測定した。
FIG. 6 is an absorption spectrum diagram of PVDF. As can be seen from FIG.
At m, the absorptivity of far infrared rays is 0.5 or more. FIG. 7 shows an infrared spectral radiation output in the case where the ceramic layers 10e and 10f are made of CERASTATS BHA (trade name: distributor: Shima Trading Co., Ltd., Chuo-ku, Osaka City; manufacturer: Parker Co., Ltd., Higashi-ku, Osaka City). ing.
As a reference value, a blackbody furnace of 500 ° C is selected, and the surface temperatures of the ceramic layers 10e and 10f are 686 ° C and 500 ° C.
It measured with the Fourier-transform infrared spectrophotometer (FTIR) about each case of 300 degreeC and 250 degreeC.

【0032】なお、図8は、セラミック層10e、10
fの表面温度とタングステンヒータ10aの温度との相
関関係を示す図である。この図の根拠となる実測値は以
下の通りであった。すなわち、セラミック層10e、1
0fの表面温度(赤外線放射温度計にて計測)が、68
6℃、500℃、400℃、300℃及び250℃の各
場合におけるタングステンヒータ10aの温度(ヒータ
内に設置したセンサによって計測)は、それぞれ、50
0℃、400℃、297℃、221℃及び192℃であ
った。
FIG. 8 shows the ceramic layers 10e, 10e.
It is a figure which shows the correlation of the surface temperature of f, and the temperature of the tungsten heater 10a. The actual measured values serving as the basis for this figure were as follows. That is, the ceramic layers 10e, 1
The surface temperature of 0f (measured by infrared radiation thermometer) is 68
The temperature of the tungsten heater 10a in each case of 6 ° C., 500 ° C., 400 ° C., 300 ° C. and 250 ° C. (measured by a sensor installed in the heater) is 50, respectively.
It was 0 degreeC, 400 degreeC, 297 degreeC, 221 degreeC, and 192 degreeC.

【0033】図7より明らかなように、セラミック層1
0e、10fの表面温度が500℃以下の場合、6μm
を越える波長領域では放射されるエネルギの絶対値はそ
れ程大きくはない。従って、そのような波長領域におけ
る遠赤外線放射体の放射率が低いと、例えば、0.5以
下であると、加熱しようとする物体がそのような波長領
域において吸収率が高い場合、効率的に熱エネルギに変
換されないこととなる。逆に言うと、そのような波長領
域における遠赤外線放射体の放射率が高い材質、加工方
法等を採用すると低い表面温度で且つ短時間で、物体を
加熱することができる。
As is apparent from FIG. 7, the ceramic layer 1
6 μm when the surface temperature of 0e and 10f is 500 ° C or lower
The absolute value of the radiated energy is not so large in the wavelength region exceeding. Therefore, if the emissivity of the far-infrared radiator in such a wavelength range is low, for example, 0.5 or less, if the object to be heated has a high absorptivity in such a wavelength range, it will be efficient. It will not be converted into heat energy. Conversely, if a material having a high emissivity of the far infrared radiator in such a wavelength range, a processing method, or the like is adopted, the object can be heated at a low surface temperature and in a short time.

【0034】図6に示されたPVDFの場合、吸収率が
0.5以上の波長領域は6〜10μmであるから、この
波長領域における放射率が高い材料を放射体として選択
することにより、PVDF製のパイプを効率的に、且つ
短時間に加熱することができる。
In the case of the PVDF shown in FIG. 6, since the wavelength range where the absorptance is 0.5 or more is 6 to 10 μm, by selecting a material having a high emissivity in this wavelength range as the radiator, Can be heated efficiently and in a short time.

【0035】図9は、PFAの吸収スペクトル図である
が、この図からも分かるように、PVDFの場合と同様
に波長領域6〜10μmにおいて遠赤外線の吸収率が
0.5以上となっている。従って、この波長領域におけ
る放射率が高い材料を放射体として選択することによ
り、PFA製のパイプを効率的に且つ短時間に加熱する
ことができる。
FIG. 9 is an absorption spectrum of PFA. As can be seen from FIG. 9, as in the case of PVDF, the absorptivity of far infrared rays is 0.5 or more in the wavelength range of 6 to 10 μm. . Therefore, by selecting a material having a high emissivity in this wavelength region as the radiator, the PFA pipe can be efficiently heated in a short time.

【0036】図10は、PPSの吸収スペクトル図であ
るが、この図からも分かるように、PPSの場合は、波
長領域2.5〜3.5μm及び6〜13μmにおいて断
続的に吸収率が0.5以上となっている。従って、この
波長領域における放射率が高い材料を放射体として選択
することにより、PPS製のパイプを効率的に且つ短時
間に加熱することができる。
FIG. 10 is an absorption spectrum diagram of PPS. As can be seen from FIG. 10, in the case of PPS, the absorption coefficient becomes 0 intermittently in the wavelength range of 2.5 to 3.5 μm and 6 to 13 μm. .5 or more. Therefore, by selecting a material having a high emissivity in this wavelength region as the radiator, the PPS pipe can be efficiently heated in a short time.

【0037】上述の説明より明らかなように、加熱しよ
うとする物体の吸収率がより高い値の領域に着目して、
そのような領域の放射率の高い材質を放射体として選定
すると、より効率的な加熱が可能である。例えば、PF
A及びPVDFの場合、放射率が0.6以上の波長領域
が6.8〜9.2μm及び7.2〜8.8μmとなって
いるため、そのような波長領域における放射率が、特に
高い材料を放射体として選択することにより、それらを
を効率的に、且つ短時間に加熱することができる。
As is clear from the above description, focusing on the region where the absorption rate of the object to be heated is higher,
If a material having a high emissivity in such a region is selected as the radiator, more efficient heating is possible. For example, PF
In the case of A and PVDF, since the wavelength region where the emissivity is 0.6 or more is 6.8 to 9.2 μm and 7.2 to 8.8 μm, the emissivity in such a wavelength region is particularly high. By selecting the materials as radiators, they can be heated efficiently and in a short time.

【0038】セラミック層10e、10fとして上述し
たセラスタッツBHAを採用し、その表面温度が500
℃の場合におけるPFA、PVDF及びPPS製パイプ
の端面における時間的な温度変化は、表1の通りであ
る。
The ceramic layers 10e and 10f are made of the above-mentioned ceramics BHA and have a surface temperature of 500.
Table 1 shows the temperature changes with time at the end faces of the PFA, PVDF and PPS pipes in the case of ° C.

【0039】[0039]

【表1】 表1に示されているように、いずれの場合もパイプの端
面における温度降下は緩やかとなっている。これは、電
源を切った後もヒーター装置は遠赤外線を放射し続けて
いるからである。この間も、パイプの端面から奥に向っ
て溶融は進み所定の溶融深さまでパイプを溶融すること
ができる。
[Table 1] As shown in Table 1, in all cases, the temperature drop at the end face of the pipe is gentle. This is because the heater device continues to emit far infrared rays even after the power is turned off. Also during this time, the melting progresses from the end face of the pipe to the inside, and the pipe can be melted to a predetermined melting depth.

【0040】なお、セラミックは、一般に遠赤外線領域
における放射率が大きいこと、および耐熱性に優れてい
るため、遠赤外線放射体として広く用いられている。
Ceramics are widely used as far-infrared radiators because they generally have a large emissivity in the far-infrared region and are excellent in heat resistance.

【0041】しかしながら、各セラミックスの赤外線放
射特性は、それを構成する金属元素の電子配列と抵抗率
に密接に関わっており、また、加工の仕方や材料の複合
の仕方によって大きくことなる。
However, the infrared radiation characteristics of each ceramic are closely related to the electron arrangement and the resistivity of the metal elements forming the ceramics, and depend on the processing method and the material combination method.

【0042】図11は、II〜IV族の金属酸化物セラ
ミックスの分光放射率である。図11に示されているよ
うに、例えば、アルミナ(Al)は10〜20μ
mの遠赤外線の放射率は必ずしも高くなく、接続すべき
樹脂製パイプの吸収スペクトルの中で比較的吸収率の高
い波長領域が10〜20μmであった場合には適さな
い。
FIG. 11 shows the spectral emissivity of II-IV group metal oxide ceramics. As shown in FIG. 11, for example, alumina (Al 2 O 3 ) contains 10 to 20 μm.
The far infrared ray emissivity of m is not necessarily high, and it is not suitable when the wavelength region having a relatively high absorptance is 10 to 20 μm in the absorption spectrum of the resin pipe to be connected.

【0043】一般に数種類の材料が複合されたものは、
複合される原材料のそれぞれの物性を併せ持った物性を
示すことが多く、赤外線放射特性についても同様の傾向
がある。これらの傾向を知った上で、接続すべき樹脂製
パイプの吸収スペクトルの中で比較的吸収率の高い波長
領域の赤外線を高放射率で放射する最適の材料を選択す
ることが可能となる。
Generally, a composite of several kinds of materials is
In many cases, the physical properties of the raw materials to be composited are combined, and the infrared radiation characteristics have the same tendency. Knowing these tendencies, it becomes possible to select the optimum material that emits infrared rays in a wavelength region having a relatively high absorptance in the absorption spectrum of the resin pipe to be connected with a high emissivity.

【0044】図示された本発明の好ましい実施例におい
て、赤外線透過性のガラス板は、石英ガラスを用いた
が、赤外線透過性のガラス板であればどのようなもので
も良く、例えば、アルミン酸カルシウム、ゲルマニウム
酸塩ガラス及び硫化ヒ素ガラスとすることもできる。
In the illustrated preferred embodiment of the present invention, the infrared transmissive glass plate is made of quartz glass, but any infrared transmissive glass plate may be used, such as calcium aluminate. Alternatively, germanate glass and arsenic sulfide glass may be used.

【0045】第一及び第二のガラス板10c、10dで
あってヒータ装置10の内部には、また、肉盛り部10
bの一部として所定の間隔の複数個の凸条(高さをほぼ
0.2mmとする)10eが肉盛り形成されている。こ
の複数個の凸条10e間には、板状タングステンヒータ
10aが配設されている。これにより、第一及び第二の
ガラス板10c、10dは、中央部においても複数個の
凸条10eによって支持されているから、ヒータ装置1
0の中央部に力を加えても割れる等の破損が生じる可能
性が低くなる。
Inside the heater device 10, which is the first and second glass plates 10c and 10d, the built-up portion 10 is also provided.
As a part of b, a plurality of ridges (having a height of approximately 0.2 mm) 10e at predetermined intervals are formed by padding. A plate-shaped tungsten heater 10a is arranged between the plurality of ridges 10e. As a result, the first and second glass plates 10c and 10d are supported by the plurality of ridges 10e even in the central portion, so that the heater device 1
Even if a force is applied to the center portion of 0, the possibility of breakage such as cracking is reduced.

【0046】本発明のヒータ装置10は、石英ガラスを
溶融して一方のガラス板10dに肉盛り部10b及び複
数個の凸条10gを肉盛りし、それらが固化するまえに
板状タングステンヒータ10aを載せ、さらにその上に
他方のガラス板10cを載せることにより、簡単且つ短
時間に制作することができる。
In the heater device 10 of the present invention, the quartz glass is melted and the padding portion 10b and the plurality of ridges 10g are padded on one glass plate 10d, and the plate-shaped tungsten heater 10a is provided before they solidify. Can be produced easily and in a short time by placing the other glass plate 10c thereon.

【0047】ヒータ装置10の中央部には、熱電対など
の温度センサ12が配設されている。溶融時におけるタ
ングステンヒータ10aの温度は、この温度センサ12
により図8を参照して適正な温度に制御設定される。
At the center of the heater device 10, a temperature sensor 12 such as a thermocouple is arranged. The temperature of the tungsten heater 10a during melting is determined by the temperature sensor 12
Thus, the temperature is controlled and set to an appropriate temperature with reference to FIG.

【0048】ヒータ装置10により溶融された他方のパ
イプ4を、ヒータ装置10により溶融された一方のパイ
プ2側に移動させて、両者のパイプ2,4を互いに溶着
させる。
The other pipe 4 melted by the heater device 10 is moved to the one pipe 2 side melted by the heater device 10 to weld the two pipes 2, 4 to each other.

【0049】ヒータ装置10におけるセラミック層10
e、10fとパイプ2,4の切削端面とは非接触であ
り、ほぼ1〜10mm好ましくは1.5〜2.5mmの
間隔をあける事が最適である。近すぎると、加熱時のパ
イプ2,4の膨脹によりその端面がヒータ装置10に接
触する虞があり、一方、遠くなるとヒータ装置10の温
度を高くしなければならないからである。この時の時間
は、ほぼ5〜150秒で、安定した放射熱でパイプ2,
4の端面は均一に溶融される。
Ceramic layer 10 in heater device 10
e, 10f and the cut end faces of the pipes 2, 4 are not in contact with each other, and it is optimal to provide an interval of approximately 1 to 10 mm, preferably 1.5 to 2.5 mm. If it is too close, the end faces of the pipes 2 and 4 may come into contact with the heater device 10 due to expansion of the pipes 2 and 4 at the time of heating, while on the other hand, the temperature of the heater device 10 must be raised if it is far away. The time at this time is about 5 to 150 seconds, and the stable radiation heat causes the pipe 2,
The end surface of No. 4 is melted uniformly.

【0050】[0050]

【発明の効果】本発明のヒータ装置では、発熱体により
直接接続すべき樹脂製管状部品の端面を加熱溶融させる
のではなく、そのような樹脂製管状部品の吸収スペクト
ルの中で比較的吸収率の高い波長領域を含む遠赤外線を
高放射率で放射する放射体を利用する点に特徴を有す
る。
According to the heater device of the present invention, the end surface of the resin tubular part to be directly connected by the heating element is not heated and melted, but the absorptance is relatively high in the absorption spectrum of such a resin tubular part. It is characterized by using a radiator that emits far infrared rays with a high emissivity including a high wavelength region of.

【0051】すなわち、発熱体を加熱し、それにより、
放射体を所定の温度に加熱すると、接続すべき樹脂製管
状部品の吸収スペクトルの中で比較的吸収率の高い波長
領域を含む遠赤外線を高放射率で放射する。
That is, the heating element is heated, whereby
When the radiator is heated to a predetermined temperature, far infrared rays including a wavelength region having a relatively high absorptance in the absorption spectrum of the resin tubular parts to be connected are radiated with a high emissivity.

【0052】樹脂製管状部品は、吸収率の高い波長領域
を含む遠赤外線により加熱されるため、放射体の温度が
従来の加熱装置に比較して低い温度であっても短時間に
溶融温度に達し溶融する効果がある。よって、樹脂製管
状部品の端面を溶融するのに必要とされるエネルギは小
さくて済むという効果がある。
Since the resin tubular part is heated by the far infrared rays including the wavelength region having a high absorptivity, even if the temperature of the radiator is lower than that of the conventional heating device, the melting temperature can be shortened in a short time. It has the effect of reaching and melting. Therefore, there is an effect that the energy required to melt the end surface of the resin tubular component can be small.

【0053】また、一旦、放射体が所定の温度に達して
しまえば、発熱体により加熱し続けなくても所定の遠赤
外線を放射し続けるため、発熱体を予熱しておき、接続
すべき樹脂製管状部品の端面を加熱溶融させる時には発
熱体の発熱自体は停止させておくことができる。これに
より、樹脂製管状部品の端面を溶融するのに必要とされ
るエネルギはさらに小さくて済むと共に加熱溶融に要す
る時間を短くすることができる。
Further, once the radiator reaches a predetermined temperature, a predetermined far-infrared ray is continuously emitted even if it is not continuously heated by the heating element. Therefore, the heating element is preheated and the resin to be connected is connected. When the end surface of the tubular component is melted by heating, the heat generation of the heating element can be stopped. As a result, the energy required to melt the end surface of the resin tubular component can be further reduced, and the time required for heating and melting can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (a)〜(c)は、それぞれ、本発明のヒー
タ装置を用いて樹脂製パイプを熱溶着させる各ステップ
を示す概略外観斜視図である。
1A to 1C are schematic external perspective views showing respective steps of thermally welding a resin pipe using the heater device of the present invention.

【図2】 本発明に係るヒータ装置の一実施例の横断面
図である。
FIG. 2 is a cross-sectional view of an embodiment of the heater device according to the present invention.

【図3】 図2のヒータ装置の縦断面図である。3 is a vertical cross-sectional view of the heater device of FIG.

【図4】 代表的な金属を加熱した時の波長と分光放射
率との関係を示したものである。
FIG. 4 shows the relationship between wavelength and spectral emissivity when a typical metal is heated.

【図5】 各種樹脂の赤外線吸収スペクトルである。FIG. 5 is an infrared absorption spectrum of various resins.

【図6】 PVDFの吸収スペクトル図である。FIG. 6 is an absorption spectrum diagram of PVDF.

【図7】 セラミック層としてセラスタッツBHAを用
いた場合における赤外線分光放射出力を表している。
FIG. 7 shows infrared spectral radiation output when Celastaz BHA is used as a ceramic layer.

【図8】 ヒータ装置のセラミック層の表面温度とタン
グステンヒータの温度との相関関係を示す図である。
FIG. 8 is a diagram showing a correlation between the surface temperature of the ceramic layer of the heater device and the temperature of the tungsten heater.

【図9】 PFAの吸収スペクトル図である。FIG. 9 is an absorption spectrum diagram of PFA.

【図10】 PPSの吸収スペクトル図である。FIG. 10 is an absorption spectrum diagram of PPS.

【図11】 II〜IV族の金属酸化物セラミックスの
分光放射率である。
FIG. 11 is a spectral emissivity of Group II-IV metal oxide ceramics.

【符号の説明】[Explanation of symbols]

2、4 パイプ 10 ヒータ装置 10a タングステンヒータ 10b 肉盛り部 10c、10d ガラス板 10e、10f セラミック層 10g 凸条 2, 4 pipe 10 heater device 10a tungsten heater 10b built-up portion 10c, 10d glass plate 10e, 10f ceramic layer 10g ridge

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 接続すべき一対の樹脂製管状部品を互い
に対向させ、その対向する端面をそれぞれ加熱溶融し、
しかる後、両樹脂製管状部品を相対的に近づけて溶着す
る際使用するヒータ装置であって、 接続すべき前記樹脂製管状部品の吸収スペクトルの中で
比較的吸収率の高い波長領域を含む遠赤外線を高放射率
で放射し得る材料からなる放射体と、 前記放射体を加熱し、所定の遠赤外線を放射させる発熱
体と、 を備えて構成されてなる一対の樹脂製管状部品のそれぞ
れにほぼ同量の熱エネルギを放射するヒータ装置。
1. A pair of resin tubular parts to be connected are made to face each other, and the facing end faces are respectively heated and melted,
After that, the heater device is used when welding the two resin tubular parts relatively close to each other, and the heater device includes a long range including a wavelength region having a relatively high absorptance in the absorption spectrum of the resin tubular parts to be connected. A radiator made of a material capable of radiating infrared rays with a high emissivity, and a heating element for heating the radiator to emit a predetermined far infrared ray, and a pair of resin tubular parts each of which is configured to include: A heater device that radiates almost the same amount of heat energy.
【請求項2】 請求項1に記載の熱溶着可能な樹脂製管
状部品を加熱溶融させるヒータ装置において、 前記樹脂製管状部品が、PTFE、FEP、PFA、E
TFE、CTFE、PVDF等の弗素系樹脂又はPPS
等の高級エンジニアリングプラスチックからなり、前記
放射体がセラミック製の薄い層から構成されてなるヒー
タ装置。
2. A heater device for heating and melting a heat-weldable resin tubular component according to claim 1, wherein the resin tubular component is PTFE, FEP, PFA, E.
Fluorinated resin such as TFE, CTFE, PVDF or PPS
A heater device made of a high-grade engineering plastic such as, and the radiator is composed of a thin ceramic layer.
【請求項3】 請求項2に記載の熱溶着可能な樹脂製管
状部品を加熱溶融させるヒータ装置において、 前記発熱体は、前記放射体の表面を250℃から580
℃未満に加熱するように構成されてなるヒータ装置。
3. A heater device for heating and melting a heat-weldable resin tubular component according to claim 2, wherein the heating element has a surface of the radiator from 250 ° C. to 580 ° C.
A heater device configured to heat below ℃.
【請求項4】 請求項2又は3のいずれか1項に記載の
熱溶着可能な樹脂製管状部品を加熱溶融させるヒータ装
置において、 前記樹脂製管状部品が、PFA又はPVDFからなり、
前記放射体が、PFA又はPVDFの吸収スペクトルの
中で比較的吸収率の高い波長領域6〜10μmにおいて
放射率が0.5以上、好ましくは、0.6以上の遠赤外
線を放射し得る材料からなることを特徴とするヒータ装
置。
4. A heater device for heating and melting a heat-weldable resin tubular part according to claim 2, wherein the resin tubular part is made of PFA or PVDF.
The radiator is made of a material capable of emitting far infrared rays having an emissivity of 0.5 or more, preferably 0.6 or more in a wavelength range of 6 to 10 μm, which has a relatively high absorptance in the absorption spectrum of PFA or PVDF. A heater device characterized by the following.
【請求項5】 請求項2又は3のいずれか1項に記載の
熱溶着可能な樹脂製管状部品を加熱溶融させるヒータ装
置において、 前記樹脂製管状部品が、PPSからなり、前記放射体
が、PPSの吸収スペクトルの中で比較的吸収率の高い
波長領域2.5〜3.5μm及び6〜13μmにおいて
放射率が0.5以上の遠赤外線を放射し得る材料からな
ることを特徴とするヒータ装置。
5. A heater device for heating and melting a heat-weldable resin tubular component according to claim 2, wherein the resin tubular component is made of PPS, and the radiator is A heater made of a material capable of emitting far infrared rays having an emissivity of 0.5 or more in wavelength regions 2.5 to 3.5 μm and 6 to 13 μm, which have relatively high absorptance in the absorption spectrum of PPS. apparatus.
【請求項6】 接続すべき一対の弗素系樹脂製又は高級
エンジニアリングプラスチック製の管状部品を互いに対
向させ、その対向する端面をそれぞれ加熱溶融し、しか
る後、両樹脂製管状部品を相対的に近づけて溶着する際
使用するヒータ装置であって、 接続すべき前記樹脂製管状部品の吸収スペクトルの中で
比較的吸収率の高い波長領域における遠赤外線の放射率
が0.5以上、好ましくは、0.6以上である材料から
なる薄い放射体と、 前記放射体の表面が250℃から580℃未満となるよ
うに加熱し、その温度範囲において前記放射体が所定の
遠赤外線を放射するようにさせる発熱体と、 を備えて構成されてなる一対の樹脂製管状部品のそれぞ
れにほぼ同量の熱エネルギを放射するヒータ装置。
6. A pair of fluororesin resin or high-grade engineering plastic tubular parts to be connected are made to face each other, and the opposite end faces are respectively heated and melted, and then both resin tubular parts are brought relatively close to each other. A heater device used for fusion welding, wherein the emissivity of far infrared rays in a wavelength region having a relatively high absorptance in the absorption spectrum of the resin tubular parts to be connected is 0.5 or more, preferably 0. A thin radiator made of a material having a thickness of 0.6 or more, and the surface of the radiator is heated to 250 ° C. to less than 580 ° C., and the radiator emits predetermined far infrared rays in the temperature range. A heater device that radiates approximately the same amount of heat energy to each of a pair of resin tubular parts configured by including a heating element.
【請求項7】 接続すべき一対の弗素系樹脂製又は高級
エンジニアリングプラスチック製の管状部品を互いに対
向させ、その対向する端面をそれぞれ加熱溶融し、しか
る後、両樹脂製管状部品を相対的に近づけて溶着する際
使用するヒータ装置であって、 第一及び第二の平坦な表面を有する遠赤外線透過性のガ
ラス板と、 前記第一及び第二のガラス板の外面に積層されたセラミ
ック製の薄い放射体であって、接続すべき前記樹脂製管
状部品の吸収スペクトルの中で比較的吸収率の高い波長
領域における遠赤外線の放射率が0.5以上、好ましく
は0.6以上である材料からなる放射体と、 前記両ガラス板の間に間挿された電気的に加熱可能なヒ
ータ要素であって、前記放射体の表面が250℃から5
80℃未満となるように加熱し、その温度範囲において
前記放射体が所定の遠赤外線を放射するようにさせるヒ
ータ要素と、そして、 前記両ガラス板の少なくとも前記ヒータ要素を取り囲む
位置に且つ該ヒータ要素の厚さよりも僅かに高い高さだ
け肉盛りされた該ガラス板に溶着可能なガラス材料から
なる肉盛り部と、 を備えて構成されてなる一対の樹脂製管状部品のそれぞ
れにほぼ同量の熱エネルギを放射するヒータ装置。
7. A pair of fluororesin-made or high-grade engineering plastic tubular parts to be connected are made to face each other, and the opposite end faces are respectively heated and melted, and then the two resin-made tubular parts are brought relatively close to each other. A heater device used for welding by means of: a far-infrared transparent glass plate having first and second flat surfaces; and a ceramic plate laminated on the outer surface of the first and second glass plates. A material that is a thin radiator and has a far infrared ray emissivity of 0.5 or more, preferably 0.6 or more in a wavelength region having a relatively high absorptance in the absorption spectrum of the resin tubular parts to be connected. And an electrically heatable heater element interposed between the glass plates, wherein the radiator has a surface of 250 ° C. to 5 ° C.
A heater element which is heated to less than 80 ° C. and causes the radiator to emit a predetermined far infrared ray in the temperature range, and at a position surrounding at least the heater element of both the glass plates and the heater An approximately equal amount for each of a pair of resin tubular parts made up of a built-up portion made of a glass material that can be welded to the glass plate, which is built up by a height slightly higher than the thickness of the element, and a pair of resin tubular parts. A heater device that radiates the heat energy of.
JP23204695A 1994-12-05 1995-08-18 Heater device for and melting heat-weldable resin-made tubular part by heating Pending JPH0955287A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23204695A JPH0955287A (en) 1995-06-08 1995-08-18 Heater device for and melting heat-weldable resin-made tubular part by heating
US08/566,016 US5793017A (en) 1994-12-05 1995-12-01 Apparatus for automatically welding tubular components of fusible resin and pipe clamping apparatus and heating apparatus used for the same
KR1019950046799A KR960021473A (en) 1994-12-05 1995-12-05 Automatic welding device for heat weldable resinous tubular parts, clamping device and heater device for pipes used therein

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16454295 1995-06-08
JP7-164542 1995-06-08
JP23204695A JPH0955287A (en) 1995-06-08 1995-08-18 Heater device for and melting heat-weldable resin-made tubular part by heating

Publications (1)

Publication Number Publication Date
JPH0955287A true JPH0955287A (en) 1997-02-25

Family

ID=26489602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23204695A Pending JPH0955287A (en) 1994-12-05 1995-08-18 Heater device for and melting heat-weldable resin-made tubular part by heating

Country Status (1)

Country Link
JP (1) JPH0955287A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167978A (en) * 1997-12-05 1999-06-22 Canon Inc Heating system
JPH11255242A (en) * 1998-03-11 1999-09-21 Nippon Grease Nipple Kk Method for seal-welding plate-like article in storage recessed part, and resin product welded using the method
JP2001239587A (en) * 2000-03-02 2001-09-04 Kakizaki Mamufacuturing Co Ltd Method and device for joining fluid apparatus made of fluoroplastic
JP2004529366A (en) * 2001-05-25 2004-09-24 エンテグリス・インコーポレーテッド Fluoropolymer flow meter
JP5661967B1 (en) * 2014-07-28 2015-01-28 坂口電熱株式会社 Fluorine resin film sheet heater
JP5753310B1 (en) * 2014-12-03 2015-07-22 坂口電熱株式会社 Fluorine resin film sheet heater
CN114007850A (en) * 2019-07-01 2022-02-01 美国圣戈班性能塑料公司 Section bar connecting piece
US11235535B2 (en) 2019-12-10 2022-02-01 Toyota Jidosha Kabushiki Kaisha Welding joining method and welding joined body
US11878476B2 (en) 2020-06-19 2024-01-23 Saint-Gobain Performance Plastics Corporation Composite article and method of forming a composite article

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11167978A (en) * 1997-12-05 1999-06-22 Canon Inc Heating system
JPH11255242A (en) * 1998-03-11 1999-09-21 Nippon Grease Nipple Kk Method for seal-welding plate-like article in storage recessed part, and resin product welded using the method
JP2001239587A (en) * 2000-03-02 2001-09-04 Kakizaki Mamufacuturing Co Ltd Method and device for joining fluid apparatus made of fluoroplastic
JP2004529366A (en) * 2001-05-25 2004-09-24 エンテグリス・インコーポレーテッド Fluoropolymer flow meter
JP2016031820A (en) * 2014-07-28 2016-03-07 坂口電熱株式会社 Fluorine resin film planar heater
JP5661967B1 (en) * 2014-07-28 2015-01-28 坂口電熱株式会社 Fluorine resin film sheet heater
JP5753310B1 (en) * 2014-12-03 2015-07-22 坂口電熱株式会社 Fluorine resin film sheet heater
JP2016110757A (en) * 2014-12-03 2016-06-20 坂口電熱株式会社 Fluororesin film planar heater
CN114007850A (en) * 2019-07-01 2022-02-01 美国圣戈班性能塑料公司 Section bar connecting piece
US11845230B2 (en) 2019-07-01 2023-12-19 Saint-Gobain Performance Plastics Corporation Profile connection
US11904552B2 (en) 2019-07-01 2024-02-20 Saint-Gobain Performance Plastics Corporation Profile connection
US11235535B2 (en) 2019-12-10 2022-02-01 Toyota Jidosha Kabushiki Kaisha Welding joining method and welding joined body
US11806940B2 (en) 2019-12-10 2023-11-07 Toyota Jidosha Kabushiki Kaisha Welding joining method and welding joined body
US11878476B2 (en) 2020-06-19 2024-01-23 Saint-Gobain Performance Plastics Corporation Composite article and method of forming a composite article

Similar Documents

Publication Publication Date Title
KR860000920A (en) Welding method of fluoropolymer pipes and attachments
JP5753310B1 (en) Fluorine resin film sheet heater
KR100368092B1 (en) Rapid Thermal Proessing Heater Technology and Method of Use
US5793017A (en) Apparatus for automatically welding tubular components of fusible resin and pipe clamping apparatus and heating apparatus used for the same
US10395953B2 (en) Composite substrate for layered heaters
JPH0955287A (en) Heater device for and melting heat-weldable resin-made tubular part by heating
CA2101439A1 (en) Fluid heater
JP2001523036A (en) Quartz substrate heater
KR20010088786A (en) Polytetrafluoroethylene laminate
JP5661967B1 (en) Fluorine resin film sheet heater
US3929541A (en) Method for heating thermoplastic elements
WO1992014686A1 (en) Method of bonding ceramics together and insert material for heat bonding
JPH08108479A (en) Butt welding device of thermoplastic resin tubing
JP3909136B2 (en) Manufacturing method of weldable resin product
US4334904A (en) Glass captivated heating unit for still or the like and method of fabricating same
JP3222073B2 (en) Thermal fixing device
EP0922564A1 (en) Method and apparatus for manufacturing laminate
JPH1044244A (en) Method for gas fusion of heat fusible member together and gas fusion apparatus used for it
JPH11258100A (en) Welded part checking method for welded resin product
JPH0872150A (en) Butt welding apparatus for thermoplastic resin pipe material
JPH08156102A (en) Automatic welder for thermally weldable resin-made tubular part
US6312543B1 (en) Process for producing tubular article for a fixation device
JP2641036B2 (en) Method of welding and connecting fluorine resin tubes
US20040190953A1 (en) Image fusing apparatus and methods
JPH05266738A (en) Manufacture of laminated sheath cable and its manufacturing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050105

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051014