JPH095509A - Formation of master disk for curved diffraction grating - Google Patents

Formation of master disk for curved diffraction grating

Info

Publication number
JPH095509A
JPH095509A JP15452795A JP15452795A JPH095509A JP H095509 A JPH095509 A JP H095509A JP 15452795 A JP15452795 A JP 15452795A JP 15452795 A JP15452795 A JP 15452795A JP H095509 A JPH095509 A JP H095509A
Authority
JP
Japan
Prior art keywords
diffraction grating
master
substrate
curved
flexible material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15452795A
Other languages
Japanese (ja)
Inventor
Toshiaki Suzuki
稔明 鈴木
Kazunari Tokuda
一成 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15452795A priority Critical patent/JPH095509A/en
Publication of JPH095509A publication Critical patent/JPH095509A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE: To provide a method for forming a master disk of a curved diffraction grating used in the case of forming diffraction gratings on a curved surface. CONSTITUTION: The master disk of the curved diffraction gratings is formed by a stage for templating the diffraction gratings formed on a flat planar mother substrate with a film-like flexible material and a stage for sticking the film of the flexible material transferred with the diffraction gratings to a master substrate having the curved surface. In this case, the curved surface of the master substrate 4 is formed as a spherical surface 4a and the mother substrate 1 formed with the diffraction gratings 1a expressed by pitch T=T0 /(1+ε) when the elongation rate of the flexible material in the case of sticking the mother substrate to the spherical surface 4a is defined as ε and the pitch of the desired diffraction gratings as T0 is used. The master disk having the precise curved diffraction gratings 2a free from distortions is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、凹面鏡等の曲面上に回
折格子を形成する曲面回折格子の原盤作成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a master for a curved diffraction grating for forming a diffraction grating on a curved surface such as a concave mirror.

【0002】[0002]

【従来の技術】近年、凹面鏡の上に回折格子が形成され
た部品が、光学系を簡略化できるとの理由から分光計に
採用されるようになった。この部品は原盤より成形型を
起こし、射出成形で効率的に複製生産されている。従来
は、特開昭62−30201号公報に示されるように、
干渉露光波面に非球面波を用いる非球面干渉露光法によ
り、フォトレジストを塗布した球面基板に干渉縞を露光
したのち現像することによってフォトレジストパターン
を得る。そして、津島製品カタログに示されるように、
斜め方向から基板をイオンビームエッチングすることに
より球面上に鋸歯状の回折格子を加工している。
2. Description of the Related Art In recent years, a component in which a diffraction grating is formed on a concave mirror has been adopted for a spectrometer because it can simplify an optical system. This part is raised from the master disk and is efficiently reproduced by injection molding. Conventionally, as disclosed in JP-A-62-30201,
The photoresist pattern is obtained by exposing and then developing interference fringes on a spherical substrate coated with a photoresist by an aspherical interference exposure method using an aspherical wave as an interference exposure wavefront. And, as shown in the Tsushima product catalog,
The sawtooth diffraction grating is processed on the spherical surface by ion-beam etching the substrate from an oblique direction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では干渉露光機という複雑かつ大がかりな装置
を必要とし、干渉縞を露光するため、所望のパターンの
干渉縞を生成しようとすると、それに対応する複雑な干
渉光学系が必要となり、それらの実現性次第でパターン
の制約も出てくる。また、干渉縞を安定させるために空
気の流れや温度、振動等極めて精密な環境管理が必要と
なる。
However, the above-mentioned conventional method requires a complicated and large-scale apparatus called an interference exposure device, and when the interference fringes are exposed to generate an interference fringe of a desired pattern, it is possible to deal with it. Complex interferometric optics are required, and pattern restrictions will also occur depending on their feasibility. Further, in order to stabilize the interference fringes, extremely precise environmental management such as air flow, temperature, and vibration is required.

【0004】本発明は、上記従来技術の問題点に鑑みて
なされたもので、簡単な装置で、かつ厳密な環境管理を
必要とせず、回折格子を曲面上に形成する曲面回折格子
の原盤作成方法を提供することを目的とする。
The present invention has been made in view of the above problems of the prior art, and is a master for a curved diffraction grating for forming a diffraction grating on a curved surface with a simple device and without requiring strict environmental management. The purpose is to provide a method.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は以下のように構成した。請求項1の発明
は、平板のマザー基板上にピッチが中心から外側に向か
って広がる回折格子の形状を形成する工程と、前記回折
格子の形状を膜状の可撓性材料で型取る工程と、前記回
折格子の形状を形成した膜状の可撓性材料を球面からな
る曲面を有するマスター基板の前記曲面上に張り付ける
工程とから曲面回折格子の原盤を作成した。
Means for Solving the Problems In order to solve the above problems, the present invention is configured as follows. According to a first aspect of the present invention, a step of forming a shape of a diffraction grating whose pitch spreads outward from the center on a flat mother substrate, and a step of shaping the shape of the diffraction grating with a film-shaped flexible material. Then, a master of a curved diffraction grating was prepared by a step of sticking a film-like flexible material having the shape of the diffraction grating on the curved surface of a master substrate having a curved surface made of a spherical surface.

【0006】請求項2の発明は、請求項1にあって、マ
スター基板の球面に張り付けられる際に、前記球面の中
心位置から任意距離における可撓性材料の伸び率をε、
所望する回折格子のピッチをT0 とする時、T=T0
(1+ε)で表されるピッチの回折格子を形成したマザ
ー基板を使用することとした。
According to a second aspect of the present invention, in the first aspect, when the flexible substrate is attached to the spherical surface of the master substrate, the elongation percentage of the flexible material at an arbitrary distance from the center position of the spherical surface is ε,
When the pitch of the desired diffraction grating is T 0 , T = T 0 /
It was decided to use a mother substrate on which a diffraction grating having a pitch represented by (1 + ε) was formed.

【0007】請求項3の発明は、平板のマザー基板上に
形成された回折格子の形状を膜状の可撓性材料で型取る
工程と、前記回折格子を転写した可撓性材料の膜を曲面
のマスター基板に張り付ける工程とより曲面回折格子の
原盤を作成するにあたり、マスター基板として、前記曲
面がマスター基板の中心部と外周部とで可撓性材料の膜
が引き伸ばされる割合を一定にした非球面を有する基板
を用いることにより曲面回折格子の原盤を作成した。
According to a third aspect of the present invention, there is provided a step of forming a shape of a diffraction grating formed on a flat mother substrate with a film-shaped flexible material, and a step of forming a film of the flexible material on which the diffraction grating is transferred. In the step of sticking to a curved master substrate and creating a master for a curved diffraction grating, as a master substrate, the curved surface makes the ratio of stretching of the flexible material film at the central portion and the outer peripheral portion of the master substrate constant. A master of a curved diffraction grating was prepared by using the substrate having the aspherical surface.

【0008】[0008]

【作用】請求項1、2の構成にあっては、以下の作用を
得ることができる。まず、最初に平面のマザー基板上に
回折格子を形成するという手段を取っているので、平面
のマザー基板上に直接回折格子を形成することは、特に
難しい技術を必要とせず、従来より半導体プロセス等で
一般化されている公知の方法によって容易に平面上に回
折格子を形成できる。次に、この回折格子を可撓性材料
の薄膜に転写することにより、回折格子が形成された伸
び縮み自在な膜が得られる。よって、前記可撓性材料の
薄膜は平面状態でマザー基板の回折格子を転写しても伸
び縮み自在なので、可撓性材料薄膜をマスター基板の曲
面上に張り付けることができる。従って従来技術の組み
合わせによって曲面回折格子の原盤を得ることが可能に
なる。
According to the constitutions of claims 1 and 2, the following actions can be obtained. First of all, since the method of forming the diffraction grating on the flat mother substrate is taken first, forming the diffraction grating directly on the flat mother substrate does not require a particularly difficult technique and is more difficult than the conventional semiconductor process. The diffraction grating can be easily formed on a flat surface by a known method that is generalized in the above. Next, this diffraction grating is transferred to a thin film of a flexible material to obtain a stretchable and contractible film on which the diffraction grating is formed. Therefore, since the thin film of the flexible material can expand and contract even when the diffraction grating of the mother substrate is transferred in a flat state, the thin film of the flexible material can be attached on the curved surface of the master substrate. Therefore, it is possible to obtain a master of a curved diffraction grating by combining the conventional techniques.

【0009】ここで、マスター基板の曲面が球面の場
合、図2(a)に示すマザー基板10に形成した回折格
子10aを型取った可撓性材料薄膜11をマスター基板
に張り付けると、図2(b)に示すように、マスター基
板に張り付けられた可撓性材料薄膜11上に形成した回
折格子11aは中心部のピッチが外周部より広がるよう
に歪む。この歪みの原因は、可撓性材料薄膜11をマス
ター基板の球面に張り付ける際に、薄膜11がマスター
基板の球面に沿って引き伸ばされる割合が、球面の中心
と外周とで異なることにある。図3は薄膜11がマスタ
ー基板4の球面4a上で引き伸ばされる割合の違いを幾
何学的に示す図で、図3(a)はマスター基板4の斜視
図、図3(b)は図3(a)の弧Xを示している。すな
わち、球面4aの中心部では薄膜11は大きな弧Oに沿
って引き伸ばされ、中心からxの距離では弧Oより小さ
い弧Xに沿って引き延ばされ、回折格子11aのピッチ
は引き伸ばされる量によってそれぞれ広がる。結果とし
て回折格子11aは、図2(b)に示すように中心部の
ピッチが広く、外周のピッチが狭い歪みを生ずる。
Here, when the curved surface of the master substrate is a spherical surface, when the flexible material thin film 11 in which the diffraction grating 10a formed on the mother substrate 10 shown in FIG. As shown in FIG. 2 (b), the diffraction grating 11a formed on the flexible material thin film 11 attached to the master substrate is distorted so that the pitch of the central portion is wider than that of the outer peripheral portion. The cause of this distortion is that, when the flexible material thin film 11 is attached to the spherical surface of the master substrate, the thin film 11 is stretched along the spherical surface of the master substrate at different rates between the center and the outer periphery of the spherical surface. FIG. 3 is a diagram geometrically showing the difference in the ratio of the thin film 11 stretched on the spherical surface 4a of the master substrate 4, FIG. 3 (a) is a perspective view of the master substrate 4, and FIG. 3 (b) is FIG. The arc X of a) is shown. That is, the thin film 11 is stretched along the large arc O at the center of the spherical surface 4a, and is stretched along the arc X smaller than the arc O at the distance x from the center, and the pitch of the diffraction grating 11a depends on the stretched amount. Each spreads. As a result, in the diffraction grating 11a, as shown in FIG. 2B, distortion occurs in which the central pitch is wide and the outer peripheral pitch is narrow.

【0010】そこで、図1(a)に示すように、張り付
ける前の回折格子の中心部のピッチが予め狭くなるよう
にマザー基板1の回折格子1aを形成しておけば、図1
(b)に示すように、回折格子1aを型取った回折格子
2aを有する可撓性材料2の膜をマスター基板4の曲面
4aに張り付けた際に、マスター基板4の曲面4aの中
心部と外周部とで回折格子2aのピッチの差が無くな
り、回折格子2aの歪みを無くすることができる。
Therefore, as shown in FIG. 1 (a), if the diffraction grating 1a of the mother substrate 1 is formed so that the pitch of the central portion of the diffraction grating before the attachment is narrowed beforehand,
As shown in (b), when the film of the flexible material 2 having the diffraction grating 2a obtained by patterning the diffraction grating 1a is attached to the curved surface 4a of the master substrate 4, the central portion of the curved surface 4a of the master substrate 4 is There is no difference in the pitch of the diffraction grating 2a from the outer peripheral portion, and distortion of the diffraction grating 2a can be eliminated.

【0011】具体的には、図3(a)に示すように、マ
スター基板4の球面4a中心部における大きい弧Oおよ
び弧Oの弦(弧の底面、以下同じ)の中心oから距離x
の位置に弧Oと平行な小さい弧Xを考える。ここで、弧
Oの弦の長さをDとすると、小さい弧Xの弦の長さDX
は式(1)のようになる。また、球面4a(弧O)の曲
率半径をRとすると、小さい弧Xの中心OX を中心とす
る弧Xの半径RX は式(2)のようになり、弧Xの中心
角の半角をαとすると、弧Xの長さLは式(3)で表さ
れる。一方、弧Xの部分に張り付けられる平面状の可撓
性材料膜の元の長さL0 は弧Xの弦の長さDX と同じで
あるから式(1)で表され、可撓性材料の膜をマスター
基板4の球面4aに張り付ける際の伸び率εは式(4)
のようになる。したがって、球面4aのマスター基板4
の中心Oから前記した任意の距離xの位置で曲面4a上
で要求される回折格子のピッチT0 に対して、距離xに
おける平板のマザー基板上に形成する回折格子のピッチ
Tに、T(x)=T0 /(1+ε(x))で表される分
布を持たせておけばよい。上記式(1)〜(4)を以下
に示す。
Specifically, as shown in FIG. 3 (a), a distance x from the center o of the large arc O and the chord of the arc O (bottom of the arc, the same applies hereinafter) at the center of the spherical surface 4a of the master substrate 4.
Consider a small arc X parallel to the arc O at the position. Assuming that the length of the chord of the arc O is D, the length of the chord of the small arc X D X
Becomes like the formula (1). Further, when the radius of curvature of the spherical surface 4a (arc O) is R, the radius R X of the arc X centered on the center O X of the small arc X is given by equation (2), and the half angle of the center angle of the arc X is Where α is α, the length L of the arc X is expressed by equation (3). On the other hand, since the original length L 0 of the planar flexible material film attached to the portion of the arc X is the same as the chord length D X of the arc X, it is represented by the formula (1), The elongation rate ε when the material film is attached to the spherical surface 4a of the master substrate 4 is given by the equation (4).
become that way. Therefore, the master substrate 4 having the spherical surface 4a
With respect to the pitch T 0 of the diffraction grating required on the curved surface 4a at the position of the above-mentioned arbitrary distance x from the center O of T, the pitch T of the diffraction grating formed on the flat mother substrate at the distance x is T ( x) = T 0 / (1 + ε (x)). The above formulas (1) to (4) are shown below.

【0012】[0012]

【数1】 [Equation 1]

【0013】請求項3の構成にあっては、以下の作用を
得ることができる。可撓性材料の膜をマスター基板の曲
面に張り付ける際に、マスター基板の曲面が球面である
と、マスター基板の中心部と外周部とで膜が引き伸ばさ
れる割合ε(x)が異なるので、回折格子に歪みが生ず
ることになるが、マスター基板の曲面としてε(x)=
一定、となるような非球面の曲面を用いることによっ
て、マスター基板上の回折格子の歪みを無くすることが
できる。
According to the structure of claim 3, the following actions can be obtained. When a flexible material film is attached to the curved surface of the master substrate, if the curved surface of the master substrate is spherical, the ratio ε (x) at which the film is stretched is different between the central portion and the outer peripheral portion of the master substrate. Although distortion will occur in the diffraction grating, ε (x) =
By using an aspherical curved surface that is constant, distortion of the diffraction grating on the master substrate can be eliminated.

【0014】[0014]

【実施例】【Example】

[実施例1]本発明の実施例1を図4に基づいて説明す
る。図4は本実施例の工程を示す断面図で、図4(a)
はマザー基板の回折格子をシリコンゴムに型取る工程、
図4(b)はシリコンゴムをマスター基板に張り付ける
工程、図4(c)はシリコンゴムをマスター基板の球面
に貼り付けた状態をそれぞれ示している。
[First Embodiment] A first embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view showing the process of this embodiment, and FIG.
Is a process of molding the diffraction grating of the mother substrate into silicon rubber,
FIG. 4B shows a step of sticking silicone rubber to the master substrate, and FIG. 4C shows a state where silicone rubber is stuck to the spherical surface of the master substrate.

【0015】まず、図4(a)に示すように、平面のマ
ザー基板1に形成されたブレーズ格子1aの形状を可撓
性材料からなるシリコンゴム2で型取りする。次に、図
4(b)に示すように、マザー基板1から転写した格子
2aを上向きにしてシリコンゴム2の膜をスリーブ3の
上端面に張り付けた後、図4(c)に示すように、スリ
ーブ3の底部よりマスター基板4を挿入してマスター基
板4の球面4aをシリコンゴム2の裏面(格子2aを設
けた面の反対側面)に当接させるように移動し、シリコ
ンゴム2の膜をマスター基板4の凸状の球面4aに沿わ
せて張り付けることによりマスター基板4の凸状の球面
4a上にブレーズ格子5を形成する。
First, as shown in FIG. 4 (a), the shape of the blazed grating 1a formed on the flat mother substrate 1 is molded with a silicone rubber 2 made of a flexible material. Next, as shown in FIG. 4 (b), after the lattice 2a transferred from the mother substrate 1 faces upward, the film of the silicone rubber 2 is attached to the upper end surface of the sleeve 3, and then as shown in FIG. 4 (c). , The master substrate 4 is inserted from the bottom of the sleeve 3, and the spherical surface 4a of the master substrate 4 is moved so as to come into contact with the back surface of the silicon rubber 2 (the side opposite to the surface on which the lattice 2a is provided). Is attached along the convex spherical surface 4a of the master substrate 4 to form the blazed grating 5 on the convex spherical surface 4a of the master substrate 4.

【0016】本実施例では、マスター基板4として、曲
率半径82mm、直径40mmの凸球面に回折格子を造
る場合について示す。この場合、マスター基板4の寸法
より計算したシリコンゴム2の伸び率εは、図5に示す
ように、マスター基板4の中心が最大約1%となり、外
周にいくにつれ減少するものとなる。そこで、図5のグ
ラフより得られる伸び率εの値を用いて、図6に示すよ
うに、マザー基板1上の回折格子1aのピッチに、中心
が狭く、外周のピッチが広がるよう、T(x)=T0
(1+ε(x))で表される分布を持たせた。このよう
なマザー基板1の作成方法は、例えばフォトリソグラフ
ィー等の公知の技術でガラス板の上に回折格子のパター
ンを描画すればよい。
In this embodiment, as the master substrate 4, a case where a diffraction grating is formed on a convex spherical surface having a radius of curvature of 82 mm and a diameter of 40 mm will be described. In this case, the elongation rate ε of the silicon rubber 2 calculated from the dimensions of the master substrate 4 is about 1% at the center of the master substrate 4 as shown in FIG. 5, and decreases toward the outer periphery. Therefore, using the value of the elongation rate ε obtained from the graph of FIG. 5, as shown in FIG. 6, the pitch of the diffraction grating 1a on the mother substrate 1 is set to T ( x) = T 0 /
The distribution represented by (1 + ε (x)) was given. The mother substrate 1 may be formed by drawing a diffraction grating pattern on a glass plate by a known technique such as photolithography.

【0017】本実施例にあっては、マザー基板1として
シリコンゴム2膜の伸びを考慮して回折格子1aを形成
したものを使用すれば、マザー基板1から回折格子1a
のパターン写しをとったシリコンゴム2の膜をマスター
基板4の球面4aに張り付ける際に、シリコンゴム2の
膜の伸びによる回折格子2aの変形が相殺される。
In this embodiment, when the mother substrate 1 on which the diffraction grating 1a is formed in consideration of the elongation of the silicon rubber 2 film is used, the diffraction grating 1a is separated from the mother substrate 1.
When the film of the silicon rubber 2 on which the pattern is copied is attached to the spherical surface 4a of the master substrate 4, the deformation of the diffraction grating 2a due to the expansion of the film of the silicon rubber 2 is offset.

【0018】本実施例によれば、前記したごとく簡単な
装置にて、マスター基板4の球面4a上に歪みのない回
折格子を形成することができる。よって、これを原盤と
して使用し電気鋳造法で成形型をおこせば、精密な曲面
回折格子を生産することが可能である。
According to this embodiment, it is possible to form a distortion-free diffraction grating on the spherical surface 4a of the master substrate 4 with a simple apparatus as described above. Therefore, it is possible to produce a precise curved diffraction grating by using this as a master and forming a molding die by an electroforming method.

【0019】[実施例2]本発明の実施例2を図7およ
び図8に基づいて説明する。図7は本実施例に用いるマ
スター基板を一部断面にして示す斜視図、図8は前記マ
スター基板の曲面に張り付ける回折格子を型取ったシリ
コンゴムの膜を示す斜視図である。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is a perspective view showing a partial cross section of the master substrate used in this embodiment, and FIG. 8 is a perspective view showing a silicon rubber film in which a diffraction grating stuck to the curved surface of the master substrate is modeled.

【0020】本実施例では、マザー基板として平行で等
ピッチの回折格子を形成した平板を使用し、マスター基
板7として凸状の非球面7aを有するものを使用する。
マスター基板7の非球面7a形状は、図7に示すよう
に、マスター基板7の中心軸に平行な断面と非球面7a
との交線の長さLと、前記断面と非球面7aの底面との
交線(弦)の長さL0 に関して、それらの比L/L0
任意の断面において一定であるような面を用いる。その
他の工程は実施例1と同様である。
In this embodiment, a flat plate on which parallel and equidistant diffraction gratings are formed is used as a mother substrate, and a master substrate 7 having a convex aspherical surface 7a is used.
As shown in FIG. 7, the shape of the aspherical surface 7a of the master substrate 7 has a cross section parallel to the central axis of the master substrate 7 and the aspherical surface 7a.
With respect to the length L of the line of intersection with the line L and the length L 0 of the line of intersection (chord) between the cross section and the bottom surface of the aspherical surface 7a, a ratio L / L 0 thereof is constant in any cross section. To use. The other steps are the same as in the first embodiment.

【0021】本実施例にあっては、かかる非球面7aの
マスター基板7に、図示を省略した平板のマザー基板か
ら回折格子のパターンを型取りした回折格子8aを有す
るシリコンゴム8の膜(図8参照)を貼り付けた場合、
膜の伸び率εは、ε=(L/L0 )−1=一定、となる
ので、シリコンゴム8の膜の伸び方は、マスター基板7
の非球面7a上のどの部分でも一定となる。
In this embodiment, a film of silicon rubber 8 having a diffraction grating 8a obtained by patterning a diffraction grating pattern from a flat mother substrate (not shown) is formed on the master substrate 7 having the aspherical surface 7a (see FIG. 8) is attached,
Since the elongation rate ε of the film is ε = (L / L 0 ) −1 = constant, the elongation of the film of the silicon rubber 8 depends on the master substrate 7
Is constant on any part of the aspherical surface 7a.

【0022】本実施例によれば、シリコンゴム8の膜に
型取られた回折格子8aをマスター基板7の非球面7a
に張り付けても、回折格子8aに歪みは生じない。故
に、本実施例においても簡単な装置にて、精密な曲面回
折格子の原盤を作成することができる。
According to this embodiment, the diffraction grating 8a formed on the film of the silicon rubber 8 is formed on the aspherical surface 7a of the master substrate 7.
Even if the diffraction grating 8a is attached to the substrate, no strain is generated in the diffraction grating 8a. Therefore, also in this embodiment, it is possible to produce a precise master of a curved diffraction grating with a simple device.

【0023】[0023]

【発明の効果】本発明によれば、以下の効果を得ること
ができる。請求項1および請求項2の方法によれば、マ
スター基板の曲面に回折格子を形成した膜状の可撓性材
料を張り付けた際に、可撓性材料が引き伸ばされる割合
に応じたピッチの回折格子のパターンを平板のマザー基
板に形成し、この回折格子を可撓性材料で型取るように
したので、簡単な装置にて、歪みの無い精密な曲面回折
格子の原盤を作成することができる。
According to the present invention, the following effects can be obtained. According to the method of claims 1 and 2, when a film-shaped flexible material having a diffraction grating formed thereon is attached to the curved surface of the master substrate, diffraction is performed at a pitch according to the rate at which the flexible material is stretched. Since the grating pattern is formed on a flat mother substrate and this diffraction grating is molded with a flexible material, it is possible to create a precise curved diffraction grating master without distortion with a simple device. .

【0024】請求項3の方法によれば、マスター基板の
曲面をその中心部と外周部とで可撓性材料の膜が引き伸
ばされる割合が一定になるような非球面にしたので、膜
状の可撓性材料で型取る平板のマザー基板上に形成する
回折格子を平行な回折格子のパターンにすることがで
き、簡単な装置にて、歪みの無い精密な曲面回折格子の
原盤を作成することができる。
According to the third aspect of the present invention, the curved surface of the master substrate is formed into an aspherical surface so that the ratio of the stretched film of the flexible material between the central portion and the outer peripheral portion thereof becomes constant. Diffraction grating formed on a flat-plate mother substrate that is molded with a flexible material can be made into a parallel diffraction grating pattern, and a simple curved disc diffraction grating master can be created with a simple device. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明する概念図で、図1(a)はマザ
ー基板を示す斜視図、図(b)は曲面回折格子の原盤を
示す斜視図である。
1A and 1B are conceptual diagrams illustrating the present invention, FIG. 1A is a perspective view showing a mother substrate, and FIG. 1B is a perspective view showing a master of a curved diffraction grating.

【図2】図2(a)は平行な回折格子を形成したマザー
基板を示す平面図、図2(b)は図2(a)のマザー基
板から型取った回折格子を有する可撓性材料の膜をマス
ター基板の曲面に貼り付けた状態を示す平面図である。
2A is a plan view showing a mother substrate on which parallel diffraction gratings are formed, and FIG. 2B is a flexible material having a diffraction grating formed from the mother substrate of FIG. 2A. FIG. 6 is a plan view showing a state in which the film of FIG.

【図3】本発明の作用を説明するための図で、図3
(a)はマスター基板を示す斜視図、図3(b)は弧X
を示す図である。
FIG. 3 is a diagram for explaining the operation of the present invention.
3A is a perspective view showing a master substrate, and FIG. 3B is an arc X.
FIG.

【図4】本発明の実施例1の工程を示す断面図で、図4
(a)はマザー基板の回折格子をシリコンゴムに型取る
工程、図4(b)はシリコンゴムをマスター基板に張り
付ける工程、図4(c)はシリコンゴムをマスター基板
の球面に貼り付けた状態を示している。
FIG. 4 is a cross-sectional view showing the process of Embodiment 1 of the present invention.
4A is a step of molding the diffraction grating of the mother substrate on silicon rubber, FIG. 4B is a step of attaching the silicon rubber to the master substrate, and FIG. 4C is a step of attaching the silicon rubber to the spherical surface of the master substrate. It shows the state.

【図5】本発明の実施例1に用いるマスター基板の球面
上に張り付けるシリコンゴムの伸び率を示す図である。
FIG. 5 is a diagram showing an elongation rate of silicon rubber stuck on the spherical surface of the master substrate used in Example 1 of the present invention.

【図6】図5に基づいてマザー基板に形成した回折格子
のピッチを示す図である。
6 is a diagram showing pitches of diffraction gratings formed on a mother substrate based on FIG.

【図7】本発明の実施例2に用いるマスター基板を一部
断面にして示す斜視図である。
FIG. 7 is a perspective view showing a partial cross section of a master substrate used in Example 2 of the present invention.

【図8】本発明の実施例2に用いる回折格子を型取った
シリコンゴムを示す斜視図である。
FIG. 8 is a perspective view showing a silicone rubber modeled with a diffraction grating used in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1 マザー基板 1a 回折格子 2 シリコンゴム 2a 回折格子 4 マスター基板 5 回折格子 4a 球面 7 マスター基板 7a 非球面 8 シリコンゴム 8a 回折格子 1 Mother Substrate 1a Diffraction Grating 2 Silicon Rubber 2a Diffraction Grating 4 Master Substrate 5 Diffraction Grating 4a Spherical 7 Master Substrate 7a Aspherical Surface 8 Silicon Rubber 8a Diffraction Grating

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平板のマザー基板上にピッチが中心から
外側に向かって広がる回折格子の形状を形成する工程
と、前記回折格子の形状を膜状の可撓性材料で型取る工
程と、前記回折格子の形状を形成した膜状の可撓性材料
を球面からなる曲面を有するマスター基板の前記曲面上
に張り付ける工程とからなることを特徴とする曲面回折
格子の原盤作成方法。
1. A step of forming a shape of a diffraction grating whose pitch spreads outward from the center on a flat mother substrate, a step of shaping the shape of the diffraction grating with a film-like flexible material, A method of producing a master for a curved diffraction grating, comprising a step of sticking a film-shaped flexible material having a shape of the diffraction grating onto the curved surface of a master substrate having a curved surface made of a spherical surface.
【請求項2】 マスター基板の球面に貼り付けられる際
に、前記球面の中心位置から任意距離における可撓性材
料の伸び率をε、所望する回折格子のピッチをT0 とす
る時、T=T0 /(1+ε)で表されるピッチの回折格
子を形成したマザー基板を使用することを特徴とする請
求項1記載の曲面回折格子の原盤作成方法。
2. When affixed to a spherical surface of a master substrate, where the elongation percentage of the flexible material at an arbitrary distance from the center position of the spherical surface is ε and the desired pitch of the diffraction grating is T 0 , T = The method for producing a master for a curved diffraction grating according to claim 1, wherein a mother substrate having a diffraction grating with a pitch represented by T 0 / (1 + ε) is used.
【請求項3】 平板のマザー基板上に形成された回折格
子の形状を膜状の可撓性材料で型取る工程と、前記回折
格子を転写した可撓性材料の膜を曲面のマスター基板に
張り付ける工程とより曲面回折格子の原盤を作成するに
あたり、マスター基板として、前記曲面がマスター基板
の中心部と外周部とで可撓性材料の膜が引き伸ばされる
割合を一定にした非球面を有する基板を用いることを特
徴とする曲面回折格子の原盤作成方法。
3. A step of molding the shape of a diffraction grating formed on a flat mother substrate with a film-shaped flexible material, and a film of the flexible material to which the diffraction grating is transferred is formed on a curved master substrate. In the step of sticking and making a master of a curved diffraction grating, as the master substrate, the curved surface has an aspherical surface in which the ratio of stretching of the flexible material film is constant between the central portion and the outer peripheral portion of the master substrate. A method for producing a master for a curved diffraction grating, characterized by using a substrate.
JP15452795A 1995-06-21 1995-06-21 Formation of master disk for curved diffraction grating Withdrawn JPH095509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15452795A JPH095509A (en) 1995-06-21 1995-06-21 Formation of master disk for curved diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15452795A JPH095509A (en) 1995-06-21 1995-06-21 Formation of master disk for curved diffraction grating

Publications (1)

Publication Number Publication Date
JPH095509A true JPH095509A (en) 1997-01-10

Family

ID=15586212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15452795A Withdrawn JPH095509A (en) 1995-06-21 1995-06-21 Formation of master disk for curved diffraction grating

Country Status (1)

Country Link
JP (1) JPH095509A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413702B1 (en) * 2000-06-27 2002-07-02 Michael Hercher Method for making a holographic linear position encoder
JP2010107878A (en) * 2008-10-31 2010-05-13 Toppan Printing Co Ltd Transfer device for concavo-convex structure pattern
WO2013183601A1 (en) 2012-06-08 2013-12-12 株式会社日立ハイテクノロジーズ Curved face diffraction grating fabrication method, curved face diffraction grating cast, and curved face diffraction grating employing same
WO2014148118A1 (en) 2013-03-19 2014-09-25 株式会社日立ハイテクノロジーズ Curved diffraction grating, production method therefor, and optical device
WO2019130835A1 (en) 2017-12-27 2019-07-04 株式会社日立ハイテクノロジーズ Method for manufacturingconcave diffraction grating, concave diffraction grating, and analysis device using same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413702B1 (en) * 2000-06-27 2002-07-02 Michael Hercher Method for making a holographic linear position encoder
JP2010107878A (en) * 2008-10-31 2010-05-13 Toppan Printing Co Ltd Transfer device for concavo-convex structure pattern
WO2013183601A1 (en) 2012-06-08 2013-12-12 株式会社日立ハイテクノロジーズ Curved face diffraction grating fabrication method, curved face diffraction grating cast, and curved face diffraction grating employing same
JP2014013366A (en) * 2012-06-08 2014-01-23 Hitachi High-Technologies Corp Manufacturing method for curved diffraction grating, mold for curved diffraction grating, and curved diffraction grating using the same
WO2014148118A1 (en) 2013-03-19 2014-09-25 株式会社日立ハイテクノロジーズ Curved diffraction grating, production method therefor, and optical device
JP2014182301A (en) * 2013-03-19 2014-09-29 Hitachi High-Technologies Corp Curved diffraction grating and manufacturing method of the same, and optical device
EP2977795A4 (en) * 2013-03-19 2016-10-26 Hitachi High Tech Corp Curved diffraction grating, production method therefor, and optical device
CN105074512B (en) * 2013-03-19 2017-07-28 株式会社日立高新技术 Curved diffraction gratings, its manufacture method and Optical devices
US9945993B2 (en) 2013-03-19 2018-04-17 Hitachi High-Technologies Corporation Curved grating, method for manufacturing the same, and optical device
WO2019130835A1 (en) 2017-12-27 2019-07-04 株式会社日立ハイテクノロジーズ Method for manufacturingconcave diffraction grating, concave diffraction grating, and analysis device using same
US11391871B2 (en) 2017-12-27 2022-07-19 Hitachi High-Tech Corporation Manufacturing method of concave diffraction grating, concave diffraction grating, and analyzer using the same

Similar Documents

Publication Publication Date Title
Gale et al. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists
JP2001108812A (en) Optical element
JPH095509A (en) Formation of master disk for curved diffraction grating
JP3611613B2 (en) Three-dimensional shape forming method, three-dimensional structure formed by the method, and press mold
JPH07191209A (en) Production of microoptical element
JP4595548B2 (en) Manufacturing method of mask substrate and microlens
JPH06201907A (en) Production of blaze grating
JPS599920A (en) Preparation of partial grating
JPH0821908A (en) Production of optical element
JPS6144628A (en) Preparation of fresnel microlens
JPH0895231A (en) Spherical photomask and pattern forming method
JPH0915410A (en) Production of optical element and production of metal mold for optical element
JPS62161532A (en) Manufacture of plastic lens and so on
JP4744749B2 (en) Aspheric lens array, mold manufacturing method, and aspheric lens array manufacturing method
CN114089457B (en) Sub-micron blazed grating imprinting template prepared by electron beam lithography and method thereof
JP2020120023A (en) Imprint mold and manufacturing method of the same
JP2001166109A (en) Method of forming curved face having short period structure and optical device
JPS6033505A (en) Manufacture of diffraction grating
CN113759451B (en) Curved surface grating processing device and preparation method
JP2008116606A (en) Method for manufacturing microlens
JPH11133219A (en) Diffracting optical element and its production
JP2004200577A (en) Method for forming microstructure
JPH0688254B2 (en) Method for manufacturing mold for fine pattern duplication
JPH08187791A (en) Production of optical element
JPS5983111A (en) Preparation of optical integrated circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903