JPH0953893A - Heat transfer tube having internal groove - Google Patents

Heat transfer tube having internal groove

Info

Publication number
JPH0953893A
JPH0953893A JP7207111A JP20711195A JPH0953893A JP H0953893 A JPH0953893 A JP H0953893A JP 7207111 A JP7207111 A JP 7207111A JP 20711195 A JP20711195 A JP 20711195A JP H0953893 A JPH0953893 A JP H0953893A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
fins
fin
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7207111A
Other languages
Japanese (ja)
Other versions
JP2922824B2 (en
Inventor
Seizou Masukawa
清慥 桝川
Haruo Kono
晴夫 幸野
俊▲緑▼ ▲すくも▼田
Toshitsuka Sukumoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP20711195A priority Critical patent/JP2922824B2/en
Priority to US08/680,215 priority patent/US5791405A/en
Priority to KR1019960028156A priority patent/KR100260112B1/en
Priority to DE19628280A priority patent/DE19628280C3/en
Priority to CN96113213A priority patent/CN1150645A/en
Publication of JPH0953893A publication Critical patent/JPH0953893A/en
Priority to US09/063,722 priority patent/US5934128A/en
Application granted granted Critical
Publication of JP2922824B2 publication Critical patent/JP2922824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat transfer efficiency of a heat transfer tube having internal grooves. SOLUTION: In a heat transfer tube having internal grooves in which a large number of fins inclined in the axial direction of a metallic tube are formed on the inner circumferential surface of the metallic tube, the fins 2 are formed so that the positive and negative signs of the angles α, β, α', β' of inclination relative to the axis are opposite to each other for the prescribed interval in the axial direction. The absolute value of the angle of inclination of the fins 2 is 10-20 deg. relative to the axis. The fins 2 are of zigzag shape continuously in the circumferential direction of the inner circumferential surface of the metallic tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調装置や冷却装
置の熱交換器等に用いられる内面溝付伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved heat transfer tube used for a heat exchanger of an air conditioner or a cooling device.

【0002】[0002]

【従来の技術】この種の内面溝付伝熱管は、空調装置や
冷却装置の熱交換器等において蒸発管または凝縮管とし
て主に使用されるもので、最近では内面の全面に亙って
螺旋状のフィンを形成した伝熱管が広く市販されてい
る。
2. Description of the Related Art A heat transfer tube with an inner groove of this kind is mainly used as an evaporation tube or a condensation tube in a heat exchanger of an air conditioner or a cooling device, and recently, it has a spiral shape over the entire inner surface. A heat transfer tube having a fin shape is widely available on the market.

【0003】現在主流となっている伝熱管は、引き抜き
または押し出し加工により得られたシームレス(継ぎ目
のない)管の内部に、外周面に螺旋溝が形成されたフロ
ーティングプラグを通すことにより、金属管の内周面の
全面に亙ってフィンを転造する方法により製造されてお
り、一般に使用されている外径10mm程度の伝熱管で
は、フィンの高さは0.15〜0.20mm、フィンの
ピッチ(隣接するフィンの頂点間の距離)は0.45〜
0.55mm、フィン間に形成された溝の底幅は0.2
0〜0.30mm程度とされている。
The heat transfer tube, which is currently the mainstream, is a metal tube obtained by passing a floating plug having a spiral groove formed on the outer peripheral surface inside a seamless (seamless) tube obtained by drawing or extruding. The fins are manufactured by a method of rolling the fins over the entire inner peripheral surface of the, and in a commonly used heat transfer tube having an outer diameter of about 10 mm, the fin height is 0.15 to 0.20 mm. Pitch (distance between vertices of adjacent fins) is 0.45
0.55 mm, the bottom width of the groove formed between the fins is 0.2
It is set to about 0 to 0.30 mm.

【0004】このような螺旋状フィンを形成した内面溝
付伝熱管では、伝熱管の内部下側に溜まる熱媒液体が、
管内を流れる蒸気流に吹き流されて螺旋状フィンに沿っ
て巻き上げられ、管内周面の全面に広がる。この作用に
より、管内周面の全面がほぼ均一に濡れるから、熱媒液
体を気化するための蒸発管として使用した場合には、沸
騰の生じる領域の面積を増して沸騰効率を高めることが
できる。また、熱媒気体を液化するための凝縮管として
使用した場合には、フィン先端が液面から露出すること
により金属面と熱媒気体との接触効率を高め、凝縮効率
を高めることができる。
[0004] In such a heat transfer tube with an inner surface groove formed with a spiral fin, the heat transfer liquid accumulated in the lower portion inside the heat transfer tube is
It is blown by the steam flow flowing in the pipe, is wound up along the spiral fins, and spreads over the entire inner peripheral surface of the pipe. By this action, the entire inner peripheral surface of the pipe is almost uniformly wetted. Therefore, when the pipe is used as an evaporating pipe for evaporating the heating medium liquid, the area of the region where boiling occurs can be increased to increase the boiling efficiency. When used as a condensing tube for liquefying the heat transfer medium gas, the fin tips are exposed from the liquid surface, so that the contact efficiency between the metal surface and the heat transfer medium gas can be increased and the condensation efficiency can be increased.

【0005】[0005]

【発明が解決しようとする課題】ところで、螺旋状フィ
ンによる伝熱効率の向上効果は、さらに改善できる余地
を残していることが判明している。そこで、本発明者ら
は、伝熱管の溝の展開形状を様々に変化させて多種類の
内面溝付伝熱管を作成し、これらの性能を比較する実験
を行い、その結果、前記軸線に対するフィンの傾斜角度
の正負を前記軸線方向の一定間隔毎に逆になるように形
成した場合に、他の溝形状に比して高い熱交換性能が得
られることを見い出した。また、フィンを周方向へ連続
してまたは多数に分割してジグザグ形状をなすように形
成した場合、あるいはフィンを周方向へ多数に分割して
隣接し合うフィンを互いに同方向へ傾斜させた場合に
は、さらに熱交換性能を向上できることを見いだした。
However, it has been found that the effect of improving the heat transfer efficiency by the spiral fins leaves room for further improvement. Therefore, the inventors of the present invention created various types of heat transfer tubes with inner groove by changing the developed shape of the groove of the heat transfer tube variously, and conducted an experiment to compare their performances. It has been found that, when the positive and negative inclination angles are reversed at regular intervals in the axial direction, higher heat exchange performance can be obtained compared to other groove shapes. Also, when the fins are formed continuously or in a plurality in the circumferential direction so as to form a zigzag shape, or when the fins are divided in a large number in the circumferential direction and adjacent fins are inclined in the same direction. Found that the heat exchange performance can be further improved.

【0006】[0006]

【課題を解決するための手段】本発明は上記知見に基づ
いてなされたもので、本発明の内面溝付伝熱管は、金属
管の内周面に、金属管の軸線方向に対して傾斜したフィ
ンが多数形成され、前記フィンは、前記軸線に対する傾
斜角度の正負が前記軸線方向の一定間隔毎に逆になるよ
うに形成されていることを特徴としている。
The present invention has been made on the basis of the above findings, and the heat transfer tube with an inner groove of the present invention is inclined to the inner peripheral surface of the metal tube with respect to the axial direction of the metal tube. A large number of fins are formed, and the fins are formed such that the positive and negative inclination angles with respect to the axis line are reversed at regular intervals in the axial direction.

【0007】[0007]

【発明の実施の形態】図1は、本発明に係る内面溝付伝
熱管の第1の実施形態の展開図である。この内面溝付伝
熱管1は、金属管の内周面に、周方向へジグザグ形状に
延びるフィン2が多数形成されたものであり、これらフ
ィン2は、軸線に対する各傾斜角度α、βの正負が、前
記軸線方向の一定間隔L毎に逆(α→α’→α→α’
…、β→β’→β→β’…)になるように形成されてい
る。隣接するフィン2同士の間は一定幅の溝部4とされ
ており、フィン2の向きが変わる境界部には、内周面の
周方向へ向けて略全周に亙って延びる一定幅の突条6が
形成されている。
FIG. 1 is a development view of a first embodiment of a heat transfer tube with an inner surface groove according to the present invention. This heat transfer tube with inner groove 1 has a large number of fins 2 extending in a zigzag shape in the circumferential direction on the inner peripheral surface of a metal tube. The fins 2 have positive and negative inclination angles α and β with respect to the axis. Is reversed at every constant interval L in the axial direction (α → α ′ → α → α ′
,, β → β ′ → β → β ′ ...). A groove portion 4 having a constant width is formed between the adjacent fins 2, and a protrusion having a constant width extending over substantially the entire circumference in the circumferential direction of the inner peripheral surface is provided at the boundary portion where the direction of the fin 2 changes. Article 6 is formed.

【0008】この内面溝付伝熱管1の内周面の一部に
は、軸線方向へ延びる一定幅のフィン無し部分8が全長
に亙って形成され、図3に示すように、このフィン無し
部分8の中心に沿って全長に亙って溶接線10が形成さ
れている。そして、これらフィン無し部分8および溶接
線10によりフィン2が分断されている。溶接線10は
内面溝付伝熱管1の内周側に向けて突出する突条であっ
てもよいが、内面溝付伝熱管1の内径に拡径プラグを挿
入して拡管する際に、拡管プラグが溶接線10に当たら
ないように、フィン2よりも突出量が小さいことが好ま
しい。
A finless portion 8 of a constant width extending in the axial direction is formed over the entire length on a part of the inner peripheral surface of the inner surface grooved heat transfer tube 1. As shown in FIG. A weld line 10 is formed along the center of the portion 8 over the entire length. The fin 2 is divided by the finless portion 8 and the welding line 10. The welding line 10 may be a ridge protruding toward the inner peripheral side of the heat transfer tube 1 with an inner groove, but when expanding the pipe by inserting a diameter expansion plug into the inner diameter of the heat transfer tube 1 with an inner groove It is preferable that the protrusion amount is smaller than that of the fin 2 so that the plug does not hit the welding line 10.

【0009】この実施形態の伝熱管1の内周面は、図1
に示すように、周方向90゜毎に4つの領域R1〜R4
にほぼ4等分され、いずれか1つの領域(この場合R
1)から数えて奇数番の領域R1,R3と、偶数番の領
域R2,R4とでは、フィン2と軸線とのなす傾斜角度
(αとβ;α’とβ’)が、互いに正負が逆になるよう
に形成されている。傾斜角度(α,β,α’,β’)の
絶対値は、いずれも10〜25゜であることが好まし
い。傾斜角度の絶対値が25゜を越えるとフィン2が流
れに対して垂直に近くなり、流れを遮って圧力損失が大
きくなるため好ましくない。また、傾斜角度の絶対値が
10゜未満であると、フィン2が流れに対して平行に近
くなり、フィン2による乱流発生効果が低下する。
The inner peripheral surface of the heat transfer tube 1 of this embodiment is shown in FIG.
As shown in FIG. 4, four regions R1 to R4 are provided at every 90 ° circumferential direction.
Is divided into four equal parts, and one of the areas (in this case R
In the odd-numbered regions R1 and R3 and the even-numbered regions R2 and R4 counted from 1), the inclination angles (α and β; α ′ and β ′) formed by the fin 2 and the axis line are opposite to each other. Is formed. The absolute values of the inclination angles (α, β, α ', β') are all preferably 10 to 25 °. If the absolute value of the inclination angle exceeds 25 °, the fins 2 become nearly perpendicular to the flow, blocking the flow and increasing the pressure loss, which is not preferable. If the absolute value of the inclination angle is less than 10 °, the fins 2 become nearly parallel to the flow and the effect of turbulent flow generation by the fins 2 decreases.

【0010】傾斜角度αとβの絶対値、並びに傾斜角度
α’とβ’の絶対値はそれぞれ相互に等しくてもよい
が、前記範囲内でありさえすれば異なっていてもよい。
同様に、傾斜角度αとα’の絶対値、並びに傾斜角度β
とβ’の絶対値はそれぞれ相互に等しくてもよいが、前
記範囲内でありさえすれば、異なっていてもよい。ま
た、図1の実施形態では、同じ領域内でフィン2が互い
に平行にされているが、これらは必ずしも平行でなくて
もよく、前記角度範囲内でありさえすれば、フィン1本
毎に傾斜角度を異ならせてもよい。
The absolute values of the inclination angles α and β and the absolute values of the inclination angles α ′ and β ′ may be equal to each other, but may be different as long as they are within the above range.
Similarly, the absolute values of the inclination angles α and α'and the inclination angle β
The absolute values of β and β ′ may be equal to each other, but may be different as long as they are within the above range. Further, in the embodiment of FIG. 1, the fins 2 are made parallel to each other in the same region, but they do not necessarily have to be parallel, and as long as they are within the angle range, the The angles may be different.

【0011】フィン2の角度反転の間隔Lは限定される
ものではないが、好ましくは100〜500mm、さら
に好ましくは200〜400mmとされる。100〜5
00mmの範囲であれば、フィン2による熱媒の攪拌効
果を十分に発揮させつつ、フィン2による熱媒の偏りを
是正する効果を得ることができ、両者のバランスが良好
である。
The interval L for reversing the angle of the fin 2 is not limited, but is preferably 100 to 500 mm, more preferably 200 to 400 mm. 100-5
Within the range of 00 mm, the effect of correcting the unevenness of the heat medium by the fins 2 can be obtained while sufficiently exerting the stirring effect of the heat medium by the fins 2, and the balance between the two is good.

【0012】突条6は、図2に示すように、その断面が
緩やかな凸曲面状をなし、その最大突出量はフィン2よ
りも小さくされている。このような突条6を形成するこ
とにより、フィン2の反転境界部における内面溝付伝熱
管1の平均肉厚を他の部分とほぼ同じにし、フィン2の
境界部分での耐変形強度の低下を防ぐことができる。
As shown in FIG. 2, the protrusion 6 has a gentle convex curved surface in cross section, and its maximum protrusion amount is smaller than that of the fin 2. By forming such a ridge 6, the average wall thickness of the heat transfer tube with internal groove 1 at the reversal boundary portion of the fin 2 is made substantially the same as the other portions, and the deformation resistance strength at the boundary portion of the fin 2 is reduced. Can be prevented.

【0013】但し、フィン2の境界部分には必ずしも図
2のように突条6を形成しなくてもよく、例えば図5に
示すようにフィン2同士を一定長ずつ重複させて一定幅
の交差部12を形成してもよいし、図6に示すようにフ
ィン2の端部を突き合わせて突き合わせ部14を形成し
てもよいし、図7に示すようにフィン2同士を連続させ
てもよい。これらの場合にも、フィン2の境界部分での
耐変形強度の低下を防ぐことが可能である。
However, the protrusions 6 do not necessarily have to be formed at the boundary portions of the fins 2 as shown in FIG. 2, and for example, as shown in FIG. The portion 12 may be formed, the end portions of the fins 2 may be abutted to each other to form the abutting portion 14 as shown in FIG. 6, or the fins 2 may be continuous to each other as shown in FIG. 7. . Also in these cases, it is possible to prevent the deterioration of the deformation resistance strength at the boundary portion of the fin 2.

【0014】フィン2の断面形状は、図4に示すよう
に、同じ領域内のフィン2のピッチPが好ましくは0.
3〜0.45mm、さらに好ましくは0.33〜0.3
8mmとされ、フィン2の金属管内周面からの高さHは
好ましくは0.15〜0.30mm、さらに好ましくは
0.22〜0.26mmとされる。このように従来より
も背の高いフィン形状を採用した場合には、乱流発生効
果が良好であり、特殊なフィン配置による効果と相まっ
て、伝熱管1の熱交換効率がいっそう向上できる。ま
た、このように細く高いフィン2によれば、金属管1の
内面が熱媒液体で覆われた際にも、フィン2の先端部に
おける排液性が良好になるから、凝縮管として使用した
場合にフィン2の先端金属面が熱媒気体と直接接触しや
すく、良好な凝縮性能を得ることができる。
As shown in FIG. 4, the cross-sectional shape of the fins 2 is such that the pitch P of the fins 2 in the same region is preferably 0.
3 to 0.45 mm, more preferably 0.33 to 0.3
The height H of the fin 2 from the inner peripheral surface of the metal tube is preferably 0.15 to 0.30 mm, more preferably 0.22 to 0.26 mm. In this way, when the fin shape which is taller than the conventional one is adopted, the turbulent flow generation effect is good, and the heat exchange efficiency of the heat transfer tube 1 can be further improved in combination with the effect of the special fin arrangement. In addition, since the fin 2 having such a thin shape has a good drainage property at the tip of the fin 2 even when the inner surface of the metal tube 1 is covered with the heat medium liquid, it is used as a condenser tube. In this case, the tip metal surfaces of the fins 2 are likely to come into direct contact with the heating medium gas, and good condensing performance can be obtained.

【0015】フィン2の両側面のなす角度γ(頂角)は
好ましくは10〜25゜、さらに好ましくは15〜20
゜とされる。このようにフィン2の頂角が小さい場合に
は、フィン2の側面が管内周面からほぼ垂直に起立する
ため、少なくともフィン2の熱媒流の上流側から見てV
字状の谷となる部分以外では、伝熱管1内を流れる熱媒
気体の風圧によって熱媒液体がフィン2上へ吹き上げら
れることが少ない。このため、フィン2により熱媒液体
の流れを規制して乱流を引き起こす効果が増すだけでな
く、この伝熱管1を凝縮管として使用した場合には、個
々のフィン2の先端部が露出する傾向が高くなり、熱媒
気体と金属面との接触面積を増して、高い凝縮効率を得
ることができる。また、図示の例ではフィン2の頂点が
断面半円状にされているが、本発明は断面台形状として
も、断面三角形状としてもよい。
The angle γ (vertical angle) formed by both side surfaces of the fin 2 is preferably 10 to 25 °, more preferably 15 to 20.
さ れ る. When the apex angle of the fins 2 is small as described above, the side surfaces of the fins 2 stand upright almost vertically from the inner peripheral surface of the pipe, and therefore at least V is viewed from the upstream side of the heat transfer medium of the fins 2.
The heat medium liquid is rarely blown up onto the fins 2 by the wind pressure of the heat medium gas flowing in the heat transfer tube 1 except for the portion which becomes the V-shaped valley. For this reason, not only the effect of restricting the flow of the heat medium liquid by the fins 2 to cause turbulent flow is increased, but also when the heat transfer pipe 1 is used as a condensing pipe, the tips of the individual fins 2 are exposed. The tendency becomes higher, the contact area between the heat medium gas and the metal surface is increased, and high condensation efficiency can be obtained. In the illustrated example, the apexes of the fins 2 are semicircular in cross section, but the present invention may have a trapezoidal cross section or a triangular cross section.

【0016】伝熱管1の外径、肉厚、長さ等の寸法は限
定されず、従来から使用されているいかなる寸法の伝熱
管にも本発明は適用可能である。伝熱管1の材質として
は一般に銅または銅合金が使用されるが、本発明はそれ
に限定されることなく、アルミニウムを始めとする各種
金属も使用可能である。なお、この実施形態では伝熱管
1の断面形状が円形であるが、本発明は断面円形に限ら
ず、必要に応じて断面楕円形や偏平管状等としてもよ
い。さらに、熱媒を封入して、ヒートパイプの本体とし
て使用することも有効である。
The dimensions of the outer diameter, wall thickness, length, etc. of the heat transfer tube 1 are not limited, and the present invention can be applied to any heat transfer tube of any size that has been conventionally used. Copper or a copper alloy is generally used as the material of the heat transfer tube 1, but the present invention is not limited thereto, and various metals such as aluminum can also be used. Although the heat transfer tube 1 has a circular cross section in this embodiment, the present invention is not limited to the circular cross section, and may have an elliptical cross section, a flat tubular shape, or the like as necessary. Furthermore, it is also effective to enclose a heat medium and use it as the body of the heat pipe.

【0017】このような内面溝付伝熱管を製造するに
は、以下のような方法が採用できる。まず、帯状の金属
板条材を用意し、この板条材を、フィン2および溝部4
とそれぞれ相補形状をなす断面を有する圧延ロールおよ
び受けロールの間に通して圧延することにより、板条材
の表面にフィン2および溝部4を同時に形成する。前記
圧延ロールとしては、フィン2と溝部4を形成するため
の螺旋溝付き圧延ロールを交互に螺旋の向きを逆にして
重ねた積層ロールを使用することもでき、その場合に
は、積層する各ロールを交換することにより、各部の形
状を任意に設定することが可能となる。
In order to manufacture such a heat transfer tube with an inner groove, the following method can be adopted. First, a strip-shaped metal plate material is prepared, and this plate material is used for the fins 2 and the groove portions 4.
The fins 2 and the groove portions 4 are simultaneously formed on the surface of the strip material by rolling by passing between a rolling roll and a receiving roll each having a cross section having a complementary shape. As the rolling roll, it is also possible to use a laminated roll in which rolling rolls with spiral grooves for forming the fins 2 and the groove portions 4 are alternately stacked with the spiral directions reversed, and in that case, each of the laminated rolls is laminated. By exchanging the rolls, the shape of each part can be set arbitrarily.

【0018】次に、フィン2および溝部4が転写された
金属板条材を、その溝形成面を内面側に向けた状態で電
縫装置にセットし、多段階に成形ロールの間を通して図
3に示すように板条材を幅方向に丸め、最後に突き合わ
せたフィン無し部分8を溶接し円管形に成形し、内面溝
付伝熱管とする。この時、フィン無し部分8の中心に溶
接線10が形成される。電縫装置は通常使用されている
ものでよく、電縫条件も通常の加工と同じでよい。その
後、伝熱管の外周面において溶接部を整形したうえ、伝
熱管をロール状に巻きとるか所定の長さで切断する。
Next, the metal sheet material on which the fins 2 and the groove portions 4 have been transferred is set in an electric sewing machine with the groove forming surface facing the inner surface side, and is passed between the forming rolls in multiple stages as shown in FIG. As shown in (4), the strip material is rolled in the width direction, and the finless portions 8 which are finally butted are welded to each other to form a circular tube shape to obtain an inner grooved heat transfer tube. At this time, the welding line 10 is formed at the center of the finless portion 8. The electric sewing machine may be one that is normally used, and the electric sewing conditions may be the same as in normal processing. Then, after shaping the welded portion on the outer peripheral surface of the heat transfer tube, the heat transfer tube is wound into a roll or cut into a predetermined length.

【0019】上記構成からなる内面溝付伝熱管1によれ
ば、内面溝付伝熱管1内を流れる熱媒がフィン2に沿っ
て進行方向を傾けられ、その過程で熱媒の攪拌が生じて
内面溝付伝熱管1と熱媒との熱交換が促進されるうえ、
この攪拌過程で内面溝付伝熱管1内面の一定部位に熱媒
が集中しても、この熱媒がフィン2の傾斜角度が逆転し
ている次の領域で再びフィン2により進行方向を傾けら
れ、その過程で熱媒攪拌が行われる。このように、熱媒
の流れの向きを強制的に変更して攪拌する作用が一定距
離L毎に繰り返されるため、熱交換効率を向上すること
が可能である。
According to the heat transfer tube with inner groove 1 having the above-mentioned structure, the heat medium flowing in the heat transfer tube with inner groove 1 is inclined in the traveling direction along the fins 2, and the heat medium is agitated in the process. In addition to facilitating heat exchange between the heat transfer tube 1 with inner groove and the heat medium,
Even if the heat medium is concentrated on a certain portion of the inner surface of the heat transfer tube with inner groove 1 in this stirring process, the heat medium is inclined again by the fin 2 in the next region where the inclination angle of the fin 2 is reversed. In the process, heat medium agitation is performed. In this way, the action of forcibly changing the direction of the flow of the heat medium and stirring is repeated for each constant distance L, so that the heat exchange efficiency can be improved.

【0020】特に、この実施形態では、内面溝付伝熱管
1の内面に形成されているフィン2が、熱媒流の上流側
に開く2対のV字を構成するように配置されているの
で、熱媒は各V字の突き合わせ部分で衝突して合流し、
これら突き合わせ部分を乗り越えて流れる。この過程に
おいて、熱媒は攪拌されて不規則な乱流が発生するた
め、前記効果と相まって攪拌効果がいっそう高く、熱媒
の流れの中に温度勾配が生じることが防止でき、熱媒と
金属面との熱交換を促進して伝熱効率を高めることが可
能である。
In particular, in this embodiment, since the fins 2 formed on the inner surface of the heat transfer tube 1 with the inner surface groove are arranged so as to form two pairs of V-shapes that open to the upstream side of the heat transfer medium flow. , The heat medium collides and joins at the V-shaped butting parts,
It flows over these butted parts. In this process, the heat medium is agitated to generate irregular turbulent flow, so that the stirring effect is further enhanced in combination with the above effect, and it is possible to prevent a temperature gradient from occurring in the flow of the heat medium, and the heat medium and the metal. It is possible to enhance heat transfer efficiency by promoting heat exchange with the surface.

【0021】[第2実施形態]図8は、本発明に係る内
面溝付伝熱管の第2実施形態を示す内面の展開図であ
る。この実施形態では、フィン2がジグザグ状に屈折せ
ず、単純な螺旋状をなしている点が第1実施形態と異な
り、他の構成は前記実施形態と同様でよい。このような
内面溝付伝熱管1によれば、管内を流れる熱媒が一定距
離L毎に反転する螺旋状のフィン2によって交互に逆方
向へ回転させられるので、単純な螺旋状フィンを形成し
た伝熱管とは異なり、熱媒が特定箇所をまとまって流れ
ることが無く、高い攪拌効果が得られる。したがって、
熱交換効率を向上することが可能である。
[Second Embodiment] FIG. 8 is a development view of the inner surface of a second embodiment of the heat transfer tube with inner groove according to the present invention. This embodiment differs from the first embodiment in that the fin 2 does not bend in a zigzag shape and has a simple spiral shape, and other configurations may be the same as those in the above-described embodiment. According to the heat transfer tube 1 with such an inner groove, since the heat medium flowing in the tube is alternately rotated in the opposite direction by the spiral fins 2 which are inverted at regular intervals L, a simple spiral fin is formed. Unlike the heat transfer tube, the heat medium does not flow in a specific place in a lump, and a high stirring effect can be obtained. Therefore,
It is possible to improve the heat exchange efficiency.

【0022】[第3実施形態]図9は、本発明に係る内
面溝付伝熱管の第3実施形態を示す内面展開図であり、
この実施形態ではフィン2をV字状に形成した点が第1
実施形態と異なる。すなわち、この実施形態では、管内
周面が周方向へ2つの領域R1,R2に区画され、これ
ら領域R1,R2のそれぞれにおいて軸線とフィン2と
のなす角度α,βが互いに正負が逆にされている。ま
た、各領域R1,R2における傾斜角度α,βは管軸線
方向の一定間隔L毎に正負が逆(α→α’→α…,β→
β’→β…)になるように形成されている。他の構成は
第1実施形態と同様でよい。
[Third Embodiment] FIG. 9 is a developed view of the inner surface of a third embodiment of the heat transfer tube with an inner groove according to the present invention.
In this embodiment, the first point is that the fin 2 is formed in a V shape.
Different from the embodiment. That is, in this embodiment, the inner peripheral surface of the pipe is divided into two regions R1 and R2 in the circumferential direction, and the angles α and β formed by the axis and the fins 2 in each of these regions R1 and R2 are opposite to each other. ing. Further, the inclination angles α and β in the respective regions R1 and R2 are opposite in positive and negative (α → α ′ → α ..., β → at every constant interval L in the tube axis direction).
It is formed so that β '→ β ...). Other configurations may be the same as in the first embodiment.

【0023】このような内面溝付伝熱管1によれば、管
内部を流れる熱媒が、V字状をなすフィン2の谷部に向
けて集中する傾向を有し、熱媒流は各V字の谷部で衝突
して合流するが、次にフィン2の向きが逆転するため、
熱媒流はフィン2により左右にかき分けられて、再び周
方向の反対側に位置する谷部へ集められる。このような
サイクルを一定距離L毎に繰り返すことにより、熱媒と
内面溝付伝熱管1との熱交換効率が高められ、高い伝熱
性能が得られる。
According to the heat transfer tube 1 with such an inner groove, the heat medium flowing inside the tube tends to concentrate toward the valleys of the V-shaped fins 2, and the heat medium flow is V-shaped. They collide and join at the valley of the letter, but the direction of the fin 2 is reversed next time,
The heat medium flow is divided into the right and left by the fins 2 and is collected again in the valley located on the opposite side in the circumferential direction. By repeating such a cycle for every constant distance L, the heat exchange efficiency between the heat medium and the inner grooved heat transfer tube 1 is enhanced, and high heat transfer performance is obtained.

【0024】[第4実施形態]図10は、本発明に係る
内面溝付伝熱管の第4実施形態を示す内面展開図であ
り、この実施形態では、フィン2の展開形状を、管内周
面の周方向へ5回屈折する「VVV」形状にした点が第
1実施形態と異なる。すなわち、この実施形態では、管
内周面が周方向へ6つの領域R1〜R6に区画され、こ
れら領域R1〜R6のそれぞれにおいて軸線とフィン2
とのなす角度α,βが互いに正負が逆にされている。ま
た、各領域R1,R2における傾斜角度α,βは管軸線
方向の一定間隔L毎に正負が逆(α→α’→α…,β→
β’→β…)になるように形成されている。他の構成は
第1実施形態と同様でよい。このような内面溝付伝熱管
1によっても、第1実施形態と同様の効果を得ることが
できる。
[Fourth Embodiment] FIG. 10 is an inner surface developed view showing a fourth embodiment of the heat transfer tube with inner groove according to the present invention. In this embodiment, the developed shape of the fins 2 is changed to the inner peripheral surface of the tube. This is different from the first embodiment in that it has a “VVV” shape in which the light is refracted 5 times in the circumferential direction. That is, in this embodiment, the inner peripheral surface of the pipe is divided into six regions R1 to R6 in the circumferential direction, and the axis and the fin 2 are formed in each of these regions R1 to R6.
The angles α and β formed by and are opposite to each other. Further, the inclination angles α and β in the respective regions R1 and R2 are opposite in positive and negative (α → α ′ → α ..., β → at every constant interval L in the tube axis direction).
It is formed so that β '→ β ...). Other configurations may be the same as in the first embodiment. The same effect as that of the first embodiment can be obtained also by such a heat transfer tube 1 with an inner surface groove.

【0025】なお、領域の分割数はあまり多くなるとフ
ィン2による流液抵抗が大きくなりすぎるので、伝熱管
1の外径が10mm程度以下の場合には2〜6程度が好
ましい。また、領域の分割数は偶数のみに限定されず、
奇数でも効果にはあまり影響がない。
If the number of divided regions is too large, the flow resistance due to the fins 2 becomes too large. Therefore, when the outer diameter of the heat transfer tube 1 is about 10 mm or less, about 2 to 6 is preferable. Also, the number of divisions of the area is not limited to an even number,
Even an odd number has little effect on the effect.

【0026】[第5実施形態]図11は、本発明に係る
内面溝付伝熱管の第5実施形態を示す内面展開図であ
り、この実施形態では、図9に示したV字状フィン2の
中央部に、間隙20を形成したことを新たな特徴として
いる。すなわち、この内面溝付伝熱管1では、管内面の
周方向に2本の傾斜したフィン2が、互いに間隔を開け
て千鳥状に配列されている。傾斜角度やその他の構成に
関しては、第1実施形態と同様でよい。
[Fifth Embodiment] FIG. 11 is an inner surface development view showing a fifth embodiment of the heat transfer tube with inner groove according to the present invention. In this embodiment, the V-shaped fin 2 shown in FIG. 9 is used. A new feature is that a gap 20 is formed in the central portion of the. That is, in this heat transfer tube 1 with groove on the inner surface, two fins 2 which are inclined in the circumferential direction of the inner surface of the tube are arranged in a zigzag pattern at intervals. The inclination angle and other configurations may be the same as in the first embodiment.

【0027】間隙20の幅Cは限定されるものではない
が、一般的な外径10mm程度の伝熱管の場合、好まし
くは0.05〜0.5mmとされる。この値は後の実施
形態でも共通である。このような範囲であると、優れた
熱交換性能を得ながら、熱媒の流液抵抗を低減する効果
が顕著となる。間隙20の深さは、溝部4と同じ深さで
あるほうが流液抵抗を低減する効果に優れるが、場合に
よっては、溝部4よりも浅くてもよい。例えば、なだら
かな凹部としてもよい。
The width C of the gap 20 is not limited, but in the case of a general heat transfer tube having an outer diameter of about 10 mm, it is preferably 0.05 to 0.5 mm. This value is also common to later embodiments. Within such a range, the effect of reducing the liquid flow resistance of the heating medium becomes remarkable while obtaining excellent heat exchange performance. When the depth of the gap 20 is the same as that of the groove portion 4, the effect of reducing the flow resistance is more excellent, but in some cases, it may be shallower than the groove portion 4. For example, it may be a gentle recess.

【0028】このような構成からなる第5実施形態によ
れば、各フィン2の側面により集められた熱媒体はV字
の突き合わせ部分で衝突して合流し、さらに間隙20を
通り抜け、その過程で熱媒が攪拌される。したがって、
フィン2による熱媒攪拌効果を殆ど損なうことなく、伝
熱管1内を流れる熱媒の圧力損失を小さく抑えることが
できる。このように、伝熱効率の向上と、圧力損失の低
下という相反する2つの効果を両立させることができる
点が、本実施形態の重要な効果である。勿論、この実施
形態においても、管軸線方向の一定間隔L毎にフィン2
の傾斜角度が反転するから、熱媒の流れを交互に拡散お
よび集中させる作用が得られる。
According to the fifth embodiment having such a configuration, the heat medium collected by the side surface of each fin 2 collides at the V-shaped abutting portions and merges, and further passes through the gap 20. In the process. The heating medium is agitated. Therefore,
It is possible to suppress the pressure loss of the heat medium flowing in the heat transfer tube 1 to be small without substantially impairing the heat medium stirring effect of the fins 2. As described above, the fact that two contradictory effects of improving the heat transfer efficiency and reducing the pressure loss can be achieved at the same time is an important effect of the present embodiment. Of course, also in this embodiment, the fins 2 are provided at regular intervals L in the tube axis direction.
Since the inclination angle of is reversed, the effect of alternately diffusing and concentrating the flow of the heat medium is obtained.

【0029】[第6実施形態]図12は、本発明に係る
内面溝付伝熱管の第6実施形態を示す内面展開図であ
り、この実施形態では、図1に示したW字状フィン2の
各屈折点に、間隙20を形成したことを新たな特徴とし
ている。このような実施形態によれば、図1の実施形態
の効果を損なうことなく、間隙20によって熱媒の流体
抵抗を減らし、伝熱管1内を流れる熱媒の圧力損失を小
さく抑えることができる。
[Sixth Embodiment] FIG. 12 is an inner surface development view showing a sixth embodiment of the heat transfer tube with inner groove according to the present invention. In this embodiment, the W-shaped fin 2 shown in FIG. 1 is used. A new feature is that the gap 20 is formed at each of the refraction points. According to such an embodiment, the fluid resistance of the heat medium can be reduced by the gap 20 and the pressure loss of the heat medium flowing in the heat transfer tube 1 can be suppressed to be small without impairing the effects of the embodiment of FIG.

【0030】[第7実施形態]図13は、本発明に係る
内面溝付伝熱管の第7実施形態を示す内面展開図であ
り、この実施形態では、図8に示した螺旋状フィン2の
長手方向一定間隔毎に間隙20を形成したことを新たな
特徴としている。この場合にも、図8の実施形態の効果
を得ながら、間隙20によって熱媒を適宜逃すことによ
り、伝熱管1内を流れる熱媒の圧力損失を小さく抑える
効果が得られる。
[Seventh Embodiment] FIG. 13 is an inner surface development view showing a seventh embodiment of the heat transfer tube with inner groove according to the present invention. In this embodiment, the spiral fin 2 shown in FIG. A new feature is that the gaps 20 are formed at regular intervals in the longitudinal direction. Also in this case, the effect of the embodiment of FIG. 8 can be obtained, and the effect of suppressing the pressure loss of the heat medium flowing in the heat transfer tube 1 can be obtained by appropriately releasing the heat medium through the gap 20.

【0031】[第8実施形態]図14は、本発明に係る
内面溝付伝熱管の第8実施形態を示す内面展開図であ
り、この実施形態では、図10に示した「VVV」字型
フィン2の屈折点の一つ置きに、間隙20を形成したこ
とを新たな特徴としている。この場合にも、図10の実
施形態の効果を得ながら、間隙20によって熱媒を適宜
逃すことにより、伝熱管1内を流れる熱媒の圧力損失を
小さく抑える効果が得られる。
[Eighth Embodiment] FIG. 14 is an inner surface development view showing an eighth embodiment of the heat transfer tube with inner groove according to the present invention. In this embodiment, the "VVV" shape shown in FIG. 10 is formed. A new feature is that a gap 20 is formed at every other refraction point of the fin 2. Also in this case, the effect of the embodiment of FIG. 10 can be obtained, and the effect of suppressing the pressure loss of the heat medium flowing in the heat transfer tube 1 can be obtained by appropriately releasing the heat medium through the gap 20.

【0032】[第9実施形態]図15は、本発明の第9
実施形態を示す内面展開図であり、この実施形態では各
領域でのフィン2の傾斜方向が反転する間隔を、各領域
毎に異ならせたことを新たな特徴としている。すなわ
ち、反転境界に形成される突条6A,6Bの位置が管軸
方向へ相互にずらされている。この場合にも、境界部の
形状は図2、図5、図6および図7に示す構造などいず
れでもよい。
[Ninth Embodiment] FIG. 15 shows a ninth embodiment of the present invention.
It is an inner surface development view showing an embodiment, and in this embodiment, a new feature is that the interval in which the inclination direction of the fin 2 is reversed in each region is made different for each region. That is, the positions of the ridges 6A and 6B formed at the inversion boundary are displaced from each other in the tube axis direction. Also in this case, the shape of the boundary portion may be any of the structures shown in FIGS. 2, 5, 6 and 7.

【0033】なお、本発明に係る内面溝付伝熱管は、上
記各実施形態に限定されるものではなく、その他にも種
々の構成が可能である。例えば、伝熱管の外径が大きい
場合には、伝熱管の内周面を7つ以上の領域に区画する
ことも可能であるし、必要であれば各フィン2を展開時
直線状ではなく、展開時円弧状に形成することも可能で
ある。さらに、偶数または奇数領域のフィンのみを管軸
線方向へ反ピッチずらす等の変更を加えてもよいし、各
フィン2の適当な箇所に凹部や切り込みを別途形成して
もよい。
The inner surface grooved heat transfer tube according to the present invention is not limited to the above-mentioned embodiments, but various other structures are possible. For example, when the outer diameter of the heat transfer tube is large, it is possible to partition the inner peripheral surface of the heat transfer tube into seven or more regions, and if necessary, each fin 2 is not linear when deployed, It is also possible to form an arc shape when unfolding. Further, only the fins in the even or odd areas may be changed such that the fins are displaced by an anti-pitch in the tube axis direction, or recesses or notches may be separately formed at appropriate positions of each fin 2.

【0034】[0034]

【実施例】次に、実施例を挙げて本発明の効果を実証す
る。フィンの平面形状のみが異なる5通りの伝熱管A1
〜A5をそれぞれ形成し、これら伝熱管について、伝熱
効率を比較した。各伝熱管のフィン平面形状は以下の通
りである。 A1:フィン角度が反転しない単純螺旋型 A2:フィン角度が軸線方向300mm毎に反転する螺
旋型(図8) A3:V字状フィンが軸線方向300mm毎に反転する
V字型(図9) A4:W字状フィンが軸線方向300mm毎に反転する
W字型(図1) A5:VVV字状フィンが軸線方向300mm毎に反転す
るVVV字型(図10)
EXAMPLES Next, the effects of the present invention will be demonstrated with reference to examples. Five types of heat transfer tubes A1 that differ only in the planar shape of the fins
-A5 were formed, and the heat transfer efficiency of these heat transfer tubes was compared. The fin plane shape of each heat transfer tube is as follows. A1: A simple spiral type in which the fin angle is not reversed A2: A spiral type in which the fin angle is reversed every 300 mm in the axial direction (Fig. 8) A3: A V shape in which the V-shaped fin is reversed every 300 mm in the axial direction (Fig. 9) A4 : W-shaped fin in which the W-shaped fin reverses every 300 mm in the axial direction (Fig. 1) A5: VVV-shaped fin in which the VVV-shaped fin reverses every 300 mm in the axial direction (Fig. 10)

【0035】伝熱管の軸線に対するフィンの傾斜角度は
15゜または−15゜とし、フィン2の寸法は従来品よ
りも細くて高い以下のような寸法にした(図4参照)。 フィンのピッチP:0.36mm フィンの高さH:0.24mm フィンの両側面角度γ:17゜ フィン間の溝幅:0.22mm また、内面溝付伝熱管1の外径は8.0mm、平均肉厚
は0.35mm、材質は銅とした。
The inclination angle of the fin with respect to the axis of the heat transfer tube was 15 ° or -15 °, and the size of the fin 2 was thinner and higher than the conventional product (see FIG. 4). Fin pitch P: 0.36 mm Fin height H: 0.24 mm Fin angle on both side surfaces γ: 17 ° Groove width between fins: 0.22 mm Further, the outer diameter of the heat transfer tube 1 with inner groove is 8.0 mm. The average thickness was 0.35 mm, and the material was copper.

【0036】次に、得られた各伝熱管A1〜A5につい
て、図16および図17に示す装置を用いて伝熱性能
(蒸発性能、凝縮性能)を測定した。測定に際しては、
図中「測定部」に各伝熱管をセットし、下記の評価方法
により蒸発性能および凝縮性能を測定した。評価条件は
以下の通りである。
Next, the heat transfer performance (evaporation performance, condensation performance) of each of the obtained heat transfer tubes A1 to A5 was measured using the apparatus shown in FIGS. When measuring
Each heat transfer tube was set in the "measurement section" in the figure, and the evaporation performance and the condensation performance were measured by the following evaluation methods. The evaluation conditions are as follows.

【0037】[評価方法] 対向流二重管方式 水流速:1.5m/s 伝熱管の全長:3.5m 蒸発時飽和温度:5℃ 過熱度3deg 蒸発時飽和温度:45℃ 過冷度5deg 熱媒:フロン「R−22」(商品名)[Evaluation method] Counterflow double tube system Water velocity: 1.5 m / s Total length of heat transfer tube: 3.5 m Saturation temperature during evaporation: 5 ° C Superheat degree 3 deg Saturation temperature during evaporation: 45 ° C Supercooling degree 5 deg Heat medium: Freon "R-22" (trade name)

【0038】上記実験により得られた蒸発性能、凝縮性
能、および圧力損失を、A1型の伝熱管に対する比で表
した結果を図18および図19に示す。これらのグラフ
から明らかなように、単純螺旋型フィンを形成したA1
に比して、軸線方向一定間隔毎にフィンの傾斜角度を反
転させたA2〜A5は、圧力損失は僅かに大きいもの
の、それを補ってあまりあるほどに蒸発性能および凝縮
性能が向上した。また、フィン角度を反転させたものの
中でも、A3,A4,A5の伝熱管は特に優れた凝縮性
能を示した。
18 and 19 show the results of the evaporation performance, the condensation performance, and the pressure loss obtained by the above experiment expressed as a ratio with respect to the A1 type heat transfer tube. As is clear from these graphs, A1 with simple spiral fins formed
In contrast, in A2 to A5 in which the fin inclination angle was reversed at regular intervals in the axial direction, although the pressure loss was slightly large, the evaporation performance and the condensation performance were improved to some extent by supplementing it. Among the tubes with the fin angles reversed, the A3, A4, and A5 heat transfer tubes exhibited particularly excellent condensation performance.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係る内面
溝付伝熱管によれば、伝熱管内を流れる熱媒がフィンに
沿って進行方向を傾斜され、その過程で熱媒の攪拌が生
じて内面溝付伝熱管と熱媒との熱交換が促進されるう
え、この攪拌過程で内面溝付伝熱管内面の一定部位に熱
媒が集中しても、この熱媒流がフィンの傾斜角度が逆転
している次の領域で再びフィンにより進行方向を変更さ
れ、その過程で再度熱媒の攪拌が行われる。このよう
に、熱媒の流れの向きを強制的に変更して攪拌する作用
が一定距離毎に繰り返されるため、熱交換効率を向上す
ることが可能である。
As described above, according to the heat transfer tube with the inner groove according to the present invention, the heat medium flowing in the heat transfer tube is inclined in the traveling direction along the fins, and the heat medium is agitated in the process. Heat transfer between the inner grooved heat transfer tube and the heat medium is promoted, and even if the heat medium is concentrated on a certain part of the inner surface of the inner grooved heat transfer tube during this stirring process, this heat medium flow causes the inclination of the fins. In the next region where the angle is reversed, the traveling direction is changed again by the fins, and the heating medium is stirred again in the process. In this way, the action of forcibly changing the direction of the flow of the heat medium and stirring is repeated at regular intervals, so it is possible to improve heat exchange efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る内面溝付伝熱管の第1実施形態の
内面展開図である。
FIG. 1 is a development view of an inner surface of a first embodiment of a heat transfer tube with an inner groove according to the present invention.

【図2】同実施形態のフィン反転境界部を拡大した斜視
図である。
FIG. 2 is an enlarged perspective view of a fin inversion boundary portion of the same embodiment.

【図3】同実施形態の電縫工程を示す平面図である。FIG. 3 is a plan view showing an electric sewing process of the same embodiment.

【図4】同実施形態のフィンの断面拡大図である。FIG. 4 is an enlarged cross-sectional view of the fin of the same embodiment.

【図5】同実施形態のフィン反転境界部の変形例を拡大
した斜視図である。
FIG. 5 is an enlarged perspective view of a modified example of the fin inversion boundary portion of the same embodiment.

【図6】同実施形態のフィン反転境界部の変形例を拡大
した斜視図である。
FIG. 6 is an enlarged perspective view of a modified example of the fin inversion boundary portion of the same embodiment.

【図7】同実施形態のフィン反転境界部の変形例を拡大
した斜視図である。
FIG. 7 is an enlarged perspective view of a modified example of the fin inversion boundary portion of the same embodiment.

【図8】本発明に係る内面溝付伝熱管の第2実施形態の
内面展開図である。
FIG. 8 is an inner surface development view of the second embodiment of the heat transfer tube with the inner groove according to the present invention.

【図9】本発明に係る内面溝付伝熱管の第3実施形態の
内面展開図である。
FIG. 9 is an inner surface development view of the third embodiment of the heat transfer tube with inner groove according to the present invention.

【図10】本発明に係る内面溝付伝熱管の第4実施形態
の内面展開図である。
FIG. 10 is a development view of the inner surface of the fourth embodiment of the heat transfer tube with the inner groove according to the present invention.

【図11】本発明に係る内面溝付伝熱管の第5実施形態
の内面展開図である。
FIG. 11 is a development view of an inner surface of a fifth embodiment of the heat transfer tube with an inner groove according to the present invention.

【図12】本発明に係る内面溝付伝熱管の第6実施形態
の内面展開図である。
FIG. 12 is an inner surface development view of the sixth embodiment of the heat transfer tube with an inner groove according to the present invention.

【図13】本発明に係る内面溝付伝熱管の第7実施形態
の内面展開図である。
FIG. 13 is an inner surface development view of the seventh embodiment of the heat transfer tube with inner groove according to the present invention.

【図14】本発明に係る内面溝付伝熱管の第8実施形態
の内面展開図である。
FIG. 14 is an inner surface development view of the eighth embodiment of the heat transfer tube with an inner groove according to the present invention.

【図15】本発明に係る内面溝付伝熱管の第9実施形態
の内面展開図である。
FIG. 15 is an inner surface development view of the ninth embodiment of the heat transfer tube with the inner groove according to the present invention.

【図16】蒸発性能の測定装置を示す概略図である。FIG. 16 is a schematic view showing an apparatus for measuring evaporation performance.

【図17】凝縮性能の測定装置を示す概略図である。FIG. 17 is a schematic diagram showing a measuring device for condensation performance.

【図18】蒸発性能および蒸発時の圧力損失を示すグラ
フである。
FIG. 18 is a graph showing evaporation performance and pressure loss during evaporation.

【図19】凝縮性能および凝縮時の圧力損失を示すグラ
フである。
FIG. 19 is a graph showing condensation performance and pressure loss during condensation.

【符号の説明】[Explanation of symbols]

1 内面溝付伝熱管 2 フィン 4 溝部 6 突条 8 フィン無し部分 10 溶接線 12 交差部 14 突き合わせ部 20 間隙 α,β,α’,β’ フィンの管軸線に対する傾斜角度 L 反転間隔 R1〜R6 周方向に区切られた領域 1 Heat Transfer Tube with Inner Surface Groove 2 Fin 4 Groove 6 Protruding Strip 8 Finless Part 10 Weld Line 12 Intersection 14 Intersection 20 Gap α, β, α ', β'Inclination Angle of Fin to Pipe Axis L Inversion Intervals R1 to R6 Area divided in the circumferential direction

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 金属管の内周面に、この金属管の軸線方
向に対して傾斜したフィンが多数形成された内面溝付伝
熱管であって、前記フィンは、前記軸線に対する傾斜角
度の正負が前記軸線方向の一定間隔毎に逆になるように
形成されていることを特徴とする内面溝付伝熱管。
1. A heat transfer tube with an inner surface groove, wherein a large number of fins inclined with respect to the axial direction of the metal tube are formed on the inner peripheral surface of the metal tube, wherein the fins have positive and negative inclination angles with respect to the axis. Is formed so as to be reversed at regular intervals in the axial direction.
【請求項2】 前記フィンの傾斜角度の絶対値は、前記
軸線に対して10〜25゜とされていることを特徴とす
る請求項1記載の内面溝付伝熱管。
2. The heat transfer tube with an inner surface groove according to claim 1, wherein the absolute value of the inclination angle of the fin is 10 to 25 ° with respect to the axis.
【請求項3】 前記フィンはそれぞれ、前記金属管の内
周面の周方向に連続したジグザグ形状をなしていること
を特徴とする請求項1または2記載の内面溝付伝熱管。
3. The heat transfer tube with internal groove according to claim 1, wherein each of the fins has a zigzag shape continuous in the circumferential direction of the inner peripheral surface of the metal tube.
【請求項4】 前記フィンはそれぞれ、前記金属管の内
周面の周方向に複数に分割され、周方向に隣接しあうフ
ィンは、前記伝熱管軸線に対する角度が正負逆にされて
いることを特徴とする請求項1または2記載の内面溝付
伝熱管。
4. The fins are each divided into a plurality of pieces in the circumferential direction of the inner circumferential surface of the metal tube, and the fins adjacent to each other in the circumferential direction have positive and negative opposite angles with respect to the heat transfer tube axis. The heat transfer tube with an inner surface groove according to claim 1 or 2.
【請求項5】 前記フィンはそれぞれ、前記金属管内周
面の周方向に複数に分割され、周方向に隣接しあうフィ
ンは、前記伝熱管軸線に対する角度が互いに等しいこと
を特徴とする請求項1または2記載の内面溝付伝熱管。
5. The fins are each divided into a plurality of pieces in the circumferential direction of the inner peripheral surface of the metal tube, and the fins adjacent to each other in the circumferential direction have the same angle with respect to the heat transfer tube axis. Alternatively, the heat transfer tube with the inner groove described in 2.
【請求項6】 前記周方向に隣接する前記フィンの端部
同士の間には間隙が形成されていることを特徴とする請
求項4または5記載の内面溝付伝熱管。
6. The heat transfer tube with internal groove according to claim 4, wherein a gap is formed between the end portions of the fins that are adjacent to each other in the circumferential direction.
【請求項7】 前記フィンのピッチは0.3〜0.45
mm、前記フィンの金属管内周面からの高さは0.15
〜0.30mm、前記フィンの両側面のなす角度は10
〜25゜とされていることを特徴とする請求項1〜6の
いずれかに記載の内面溝付伝熱管。
7. The fin pitch is 0.3 to 0.45.
mm, the height of the fin from the inner peripheral surface of the metal tube is 0.15
~ 0.30 mm, the angle between both sides of the fin is 10
The heat transfer tube with an inner groove according to any one of claims 1 to 6, wherein the heat transfer tube has an angle of -25 °.
【請求項8】 前記フィンは、前記金属管の内周面の周
方向へ2〜6のいずれかの本数に分割されていることを
特徴とする請求項4〜6のいずれかに記載の内面溝付伝
熱管。
8. The inner surface according to claim 4, wherein the fins are divided into any number of 2 to 6 in a circumferential direction of an inner peripheral surface of the metal tube. Groove heat transfer tube.
JP20711195A 1995-07-14 1995-08-14 Heat transfer tube with internal groove Expired - Lifetime JP2922824B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20711195A JP2922824B2 (en) 1995-08-14 1995-08-14 Heat transfer tube with internal groove
US08/680,215 US5791405A (en) 1995-07-14 1996-07-11 Heat transfer tube having grooved inner surface
KR1019960028156A KR100260112B1 (en) 1995-07-14 1996-07-12 Heat transferring pipe having internal groone
DE19628280A DE19628280C3 (en) 1995-07-14 1996-07-12 Heat transfer tube with a grooved inner surface
CN96113213A CN1150645A (en) 1995-07-14 1996-07-13 Heat-transfer pipe with internal groove
US09/063,722 US5934128A (en) 1995-07-14 1998-04-21 Heat transfer tube having grooved inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20711195A JP2922824B2 (en) 1995-08-14 1995-08-14 Heat transfer tube with internal groove

Publications (2)

Publication Number Publication Date
JPH0953893A true JPH0953893A (en) 1997-02-25
JP2922824B2 JP2922824B2 (en) 1999-07-26

Family

ID=16534385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20711195A Expired - Lifetime JP2922824B2 (en) 1995-07-14 1995-08-14 Heat transfer tube with internal groove

Country Status (1)

Country Link
JP (1) JP2922824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248523A (en) * 2000-03-01 2001-09-14 Denso Corp Inlet filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248523A (en) * 2000-03-01 2001-09-14 Denso Corp Inlet filter

Also Published As

Publication number Publication date
JP2922824B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US5791405A (en) Heat transfer tube having grooved inner surface
JP4065785B2 (en) Improved heat transfer tube with grooved inner surface
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JP3751393B2 (en) Tube inner surface grooved heat transfer tube
JPH10267460A (en) Heat transfer pipe of absorbing device
JP2842810B2 (en) Heat transfer tube with internal groove
JP2922824B2 (en) Heat transfer tube with internal groove
JPH09101093A (en) Heat transfer pipe with inner surface groove
JP2580353B2 (en) ERW heat transfer tube and its manufacturing method
JP3145277B2 (en) Heat transfer tube with internal groove
WO2000031486A1 (en) Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes
JPH085278A (en) Heat transfer tube with inner surface grooves
JP3592149B2 (en) Internal grooved tube
JP3286171B2 (en) Heat transfer tube with internal groove
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2001153580A (en) Heat transfer pipe
JPH02161290A (en) Inner face processed heat transfer tube
JP3199636B2 (en) Heat transfer tube with internal groove
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH1163878A (en) Internal surface grooved heat transfer pipe
JP2000310495A (en) Heat transfer pipe with inner surface grooves
JPH10300379A (en) Heat exchanger tube having groove in internal surface
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JPH08145584A (en) Heat transfer tube with groove on inner surface thereof
JPH11108579A (en) Pipe with grooved inner face

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990330