JPH0953131A - Method for dissolving metallic silicon - Google Patents

Method for dissolving metallic silicon

Info

Publication number
JPH0953131A
JPH0953131A JP23588095A JP23588095A JPH0953131A JP H0953131 A JPH0953131 A JP H0953131A JP 23588095 A JP23588095 A JP 23588095A JP 23588095 A JP23588095 A JP 23588095A JP H0953131 A JPH0953131 A JP H0953131A
Authority
JP
Japan
Prior art keywords
silicon
aluminum
metallic silicon
molten metal
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23588095A
Other languages
Japanese (ja)
Inventor
Miyako Nakada
美矢子 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23588095A priority Critical patent/JPH0953131A/en
Publication of JPH0953131A publication Critical patent/JPH0953131A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently dissolve metallic silicon in molten aluminum, etc., by adding metallic silicon of specific grain size, washed with mineral acid, and a chloride-containing flux at the time of adding silicon to a molten metal such as aluminum. SOLUTION: At the time of, for example, adding silicon to a molten metal of aluminum ground metal of about 99.7% purity, metallic silicon of 2-30mm grain size, washed with hydrochloric acid, is added to the molten metal together with a flux containing at least one chloride (e.g. 50% NaCl, 50% KCl). By this method, metallic silicon can be efficiently dissolved in the molten aluminum and flowability can be improved, and an aluminum-base silicon alloy capable of thin-wall casting can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム等の珪素
系合金の製造を目的とする金属珪素の溶解方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting metallic silicon for the purpose of producing a silicon alloy such as aluminum.

【0002】[0002]

【従来の技術】アルミニウム基珪素合金は、流動性が改
善され、薄肉鋳造が可能なこと、さらに、マグネシウム
や銅等を添加して熱処理することにより、強度等が大幅
に向上する特性を有することから、最も広く使用される
合金である。珪素添加原料は金属珪素が用いられる。金
属珪素の添加方法は、金属珪素を鉄箱に入れ、予熱乾燥
を行い水分を除去した後、フォークリフト等で溶湯に投
入される。金属珪素は、融点が1414℃と高い為、8
50℃前後に高温保持されたアルミニウム溶湯におい
て、45分間以上の時間を経て溶解される。溶融後は、
フラックス等を用いて、金属珪素や他の溶解原料から発
生する酸化物等の不純物を除去し、鋳造に適した溶湯温
度の700℃前後まで降下させ鋳造される。
2. Description of the Related Art Aluminum-based silicon alloys have improved fluidity and are capable of thin-wall casting, and have the property of being significantly improved in strength and the like by adding magnesium or copper and heat-treating them. Is the most widely used alloy. Metallic silicon is used as a raw material for adding silicon. As a method for adding metallic silicon, metallic silicon is put in an iron box, preheated and dried to remove water, and then added to the molten metal by a forklift or the like. Since metallic silicon has a high melting point of 1414 ° C.,
It is melted in an aluminum melt kept at a high temperature of about 50 ° C. for 45 minutes or more. After melting,
Impurities such as oxides generated from metallic silicon and other melting raw materials are removed using a flux or the like, and the temperature is lowered to around 700 ° C., which is a molten metal temperature suitable for casting, and casting is performed.

【0003】[0003]

【発明が解決しようとする課題】金属珪素の製造は、大
量の電力を消費することから、国内には製造工場がなく
全量輸入品に依存している。合金添加用金属珪素の標準
規格は、サイズが10〜100mmが90重量%以上
で、組成は、鉄0.5%以下、アルミニウム0.5%以
下、カルシウム0.3%以下である。生産国や製造会社
によりサイズやカルシウムの偏析等品質にばらつきが大
きく、使用に際して検査が不可欠である。金属珪素に含
まれる微粉末の金属珪素は、比表面積が大きく、投入後
は溶湯表面に浮遊し、急速に酸化する。酸化した金属珪
素は融点が高くなる為、アルミニウム溶湯中では溶融せ
ず、未溶解珪素として溶湯中に残有する。また、金属珪
素溶解時の高温溶湯は、アルミニウムやマグネシウム等
の酸化物を生成させる。未溶解珪素や酸化物は非常に硬
く、鋳造品に混入した場合、ハードスポットとして不良
品の発生原因となる。従って、溶解後においてはフラッ
クス工程を設け、溶湯から分離除去しなければならな
い。他方、金属珪素に含まれる微量のカルシウムは、溶
湯の流動性、押湯性等の鋳造性を阻害し、また偏析性ハ
ードスポットを発生させる有害不純物であり、近年車の
ホイールやピストン等の高品質を求められる鋳物鋳造会
社では、PPMオーダーの社内規格をもうけ管理を行っ
ている。溶解後の高温溶湯は、地金等の冷材を投入して
強制的に冷却するか、又は放熱により、約100℃低い
700℃前後で鋳造される。上述のように、アルミニウ
ム珪素基合金の製造は、長時間高温で保持する為の溶解
設備と溶湯管理および原料管理が必要であり、現在ほと
んどのアルミニウム基珪素合金は、アルミニウム合金地
金製造会社で専門に製造され、自社配合を行っている鋳
物鋳造会社は極めて少ない。
Since the production of metallic silicon consumes a large amount of electric power, there is no manufacturing plant in Japan, and all production depends on imported products. The standard specification of metallic silicon for alloy addition is 90% by weight or more for a size of 10 to 100 mm, and the composition is 0.5% or less of iron, 0.5% or less of aluminum, and 0.3% or less of calcium. Quality varies greatly depending on the country of production and the manufacturer, such as size and segregation of calcium, and inspection is essential before use. The fine powder metal silicon contained in the metal silicon has a large specific surface area, and after being charged, it floats on the surface of the molten metal and is rapidly oxidized. Since oxidized metal silicon has a high melting point, it does not melt in the aluminum melt and remains in the melt as unmelted silicon. Further, the high-temperature molten metal at the time of melting metallic silicon produces oxides such as aluminum and magnesium. Undissolved silicon and oxides are extremely hard, and when mixed in a cast product, they cause a defective product as a hard spot. Therefore, after melting, a flux process must be provided to separate and remove from the molten metal. On the other hand, a trace amount of calcium contained in metallic silicon is a harmful impurity that impedes the castability such as the fluidity and riser property of the molten metal, and causes segregation hard spots. Casting foundry companies that demand quality maintain the internal standards of the PPM order. The high-temperature molten metal after melting is cast at about 700 ° C., which is about 100 ° C. lower by about 100 ° C., by cooling by forcing a cold material such as a metal or forcibly cooling it. As mentioned above, the production of aluminum silicon-based alloys requires melting equipment for holding at high temperature for a long time, molten metal management, and raw material management. Currently, most aluminum-based silicon alloys are manufactured by aluminum alloy ingot manufacturing companies. There are very few foundry casting companies that are professionally manufactured and in-house compounded.

【0004】[0004]

【課題を解決するための手段】アルミニウム等の金属溶
湯への珪素添加において、鉱酸で洗浄された粒径2mm
以上30mm以下の金属珪素と少なくとも1種の塩化物
を含むフラックスとを添加することを特徴とする溶解方
法及びアルミニウム等の金属溶湯への珪素添加におい
て、鉱酸で洗浄された粒径2mm以上30mm以下の金
属珪素に少なくとも1種の塩化物を含むフラックスを被
覆することを特徴とする溶解方法。尚、本発明において
は、塩化物1種を単独で用いても良く、または2種類以
上の塩化物またはその他の化合物との混合物を用いるこ
ともできる。他の化合物としては、Na2CO3、K2
CO3、CaCO3、NaSO4、K2SO4、AlF
3、KBF等と併用することもできる。
Means for Solving the Problems In adding silicon to a molten metal such as aluminum, a particle size of 2 mm washed with mineral acid
In a melting method characterized by adding metallic silicon having a size of 30 mm or less and a flux containing at least one kind of chloride, and in a method of adding silicon to a molten metal such as aluminum, a particle size of 2 mm or more and 30 mm washed with a mineral acid A dissolution method, characterized in that the following metallic silicon is coated with a flux containing at least one chloride. In the present invention, one chloride may be used alone, or a mixture of two or more chlorides or other compounds may be used. Other compounds include Na2CO3, K2
CO3, CaCO3, NaSO4, K2SO4, AlF
3, KBF and the like can also be used together.

【0005】[0005]

【作用】本発明は、2mm以上30mm以下の金属珪素
を鉱酸で洗浄することにより、金属珪素表面に偏折する
カルシウムを除去すると共にアルミニウム溶湯との濡れ
性が改善される。その結果、通常の金属珪素溶解より、
50℃以上低い800℃以下のアルミニウム溶湯温度域
において短時間に溶解する。又、微粉末珪素による未溶
解珪素の発生がないので、溶解時のドロス発生量は極め
て少ない。次に、塩化物フラックスの添加や被覆は、炉
内では金属珪素の酸化防止膜となり、金属珪素の溶解歩
留が向上すると共に、金属珪素内から導入されるカルシ
ウム等の溶湯汚染物質と反応し、溶湯から分離させるの
で、清浄な合金溶湯が得られる。金属珪素の溶解時の熱
吸収は、100℃前後の溶湯温度の低下をもたらす為、
鋳造に適した溶湯温度帯となる。
According to the present invention, by washing metallic silicon having a size of 2 mm or more and 30 mm or less with a mineral acid, calcium that is biased on the surface of metallic silicon is removed and wettability with molten aluminum is improved. As a result,
It melts in a short time in the aluminum melt temperature range of 50 ° C. or higher and 800 ° C. or lower. Further, since undissolved silicon is not generated by fine powder silicon, the amount of dross generated during melting is extremely small. Next, the addition or coating of chloride flux serves as an anti-oxidation film for metallic silicon in the furnace, which improves the melting yield of metallic silicon and also reacts with molten metal contaminants such as calcium introduced from within metallic silicon. Since it is separated from the molten metal, a clean molten alloy can be obtained. The heat absorption during melting of metallic silicon causes a decrease in the melt temperature around 100 ° C.,
The molten metal temperature range is suitable for casting.

【0006】[0006]

【実施例】 フラックスの構成金属珪素の添加歩留介在物の除
去効果ドロスの発生量に関して、1〜4の実施例と1
〜2の比較例で示す。
EXAMPLE Flux Constituent Metal Silicon Addition Yield Inclusion Removal Effect Regarding the amount of dross generated, Examples 1 to 4 and 1
It is shown by the comparative example of ~ 2.

【0007】実施例1 73kgの純度99.7%のアルミニウム地金を溶解
し、800℃に保持した溶湯から、第1回目の分析試料
と、非金属介在物の多少を測定する試料(Kモールドと
呼ぶ)のサンプリングを行った。その後、溶湯面に5.
5Kgの粒度2mm以上30mm以下の金属珪素と、金
属珪素に対して5重量%のフラックス(50%NaC
l、50%KCl)を投入し、フォスホライザーで10
回攪拌した。目視により7分後には、金属珪素の溶融が
確認されたので第1回目と同条件で、第2回目のサンプ
リングを行った。
Example 1 73 kg of an aluminum base metal having a purity of 99.7% was melted, and a first analysis sample and a sample (K mold) for measuring the amount of non-metallic inclusions from a molten metal held at 800 ° C. Called). After that, 5.
5 kg of metal silicon having a particle size of 2 mm or more and 30 mm or less, and 5 wt% flux (50% NaC
l, 50% KCl) and add 10 with a phosphorizer.
Stir twice. After 7 minutes, the melting of metallic silicon was visually confirmed, and therefore the second sampling was performed under the same conditions as the first sampling.

【0008】実施例2 70kgの純度99.7%のアルミニウム地金を溶解
し、800℃に保持した溶湯から、実施例1同様、第1
回目の分析試料と、Kモールドのサンプリングを行っ
た。その後、溶湯面にフラックス(50%NaCl、5
0%KCl)を被覆した5.3Kgの粒度2mm以上3
0mm以下の金属珪素を投入し、フォスホライザーで1
0回攪拌した。目視により7分後には、金属珪素の溶融
が確認されたので第1回目と同条件で、第2回目のサン
プリングを行った。
Example 2 70 kg of an aluminum ingot having a purity of 99.7% was melted, and the molten metal was kept at 800 ° C.
The analysis sample for the second time and the K mold were sampled. After that, flux (50% NaCl, 5
Particle size of 2 kg or more of 5.3 Kg coated with 0% KCl) 3
Charge metal silicon of 0 mm or less and use a phosphorizer to
Stirred 0 times. After 7 minutes, the melting of metallic silicon was visually confirmed, and therefore the second sampling was performed under the same conditions as the first sampling.

【0009】実施例3 78kgの純度99.7%のアルミニウム地金を溶解
し、800℃に保持した溶湯から、実施例1同様、第1
回目の分析試料と、Kモールドのサンプリングを行っ
た。その後、溶湯面に、塩酸で洗浄しフラックス(50
%NaCl、50%KCl)を被覆した5.9Kgの粒
度2mm以上30mm以下の金属珪素を投入し、フォス
ホライザーで10回攪拌した。目視により7分後には、
金属珪素の溶融が確認されたので、第1回目と同条件
で、第2回目のサンプリングを行った。
Example 3 78 kg of an aluminum ingot having a purity of 99.7% was melted, and the molten metal was maintained at 800 ° C.
The analysis sample for the second time and the K mold were sampled. After that, the molten metal surface is washed with hydrochloric acid and flux (50
% NaCl, 50% KCl), 5.9 Kg of metallic silicon having a particle size of 2 mm or more and 30 mm or less was added, and the mixture was stirred 10 times with a phosphorizer. After 7 minutes,
Since the melting of metallic silicon was confirmed, the second sampling was performed under the same conditions as the first sampling.

【0010】実施例4 71kgの純度99.7%のアルミニウム地金と介在物
の添加を目的として、100gのアルミニウム90%、
マンガン10%母合金を溶解し、800℃に保持した溶
湯から、実施例1同様、第1回目の分析試料と、Kモー
ルドのサンプリングを行った。その後、溶湯面に塩酸で
洗浄した5.4Kgの粒度2mm以上30mm以下の金
属珪素と、金属珪素に対して5重量%のフラックス(5
0%NaCl、50%KCl)を投入し、フォスホライ
ザーで10回攪拌した。目視により7分後には、金属珪
素の溶融が確認されたので、第1回目と同条件で、第2
回目のサンプリングを行った。
EXAMPLE 4 100 g of 90% aluminum for the purpose of adding 71 kg of aluminum ingot having a purity of 99.7% and inclusions,
As in Example 1, the first analysis sample and the K mold were sampled from the molten metal in which a 10% manganese master alloy was melted and held at 800 ° C. After that, 5.4 kg of metallic silicon having a particle size of 2 mm or more and 30 mm or less washed with hydrochloric acid on the surface of the molten metal, and 5 wt% flux (5
0% NaCl, 50% KCl) was added, and the mixture was stirred 10 times with a phosphorizer. After 7 minutes, it was confirmed by visual inspection that the metallic silicon had melted.
The second sampling was performed.

【0011】比較例1 72kgの純度99.7%のアルミニウム地金を溶解
し、800℃で保持し、実施例1と同条件で、第1回目
のサンプリングを行った。その後、フラックスは添加せ
ず、5.5kgの0mm以上30mm以下の金属珪素を
投入し、フォスホライザーで10回攪拌した後、7分後
に第1回目と同条件で第2回目のサンプリングを行っ
た。
Comparative Example 1 72 kg of an aluminum ingot having a purity of 99.7% was melted and held at 800 ° C., and the first sampling was performed under the same conditions as in Example 1. Then, without adding flux, 5.5 kg of 0 mm or more and 30 mm or less of metallic silicon was charged, and after stirring 10 times with a phosphorizer, 7 minutes later, the second sampling was performed under the same conditions as the first sampling. It was

【0012】比較例2 74kgの純度99.7%のアルミニウム地金と100
gのアルミニウム90%、マンガン10%母合金を溶解
し、800℃に保持した溶湯から、実施例1と同条件
で、第1回目のサンプリングを行った。その後、5.6
kgの標準サイズの金属珪素を投入し、フォスホライザ
ーで10回攪拌した後、7分後に第1回目と同条件で第
2回目のサンプリングを行った。サンプリングした分析
用テストピースは、発光分光分析機を用い、次の計算式
(1)および(2)で金属ケイ素の歩留りを算出した。 式 中) A:金属珪素添加前の溶湯重量 a:金属珪素添加前の溶湯中の珪素%÷100 b:金属珪素添加後の溶湯中の珪素% c:添加した珪素重量 x:溶融した珪素重量 前記式を用いて、珪素とカルシウムの分折結果と珪素の
歩留およびKモールドで測定した介在物量(K値は、介
在物量を表し、その値が高い程介在物は多い)および目
視によるドロス発生を第1表に示す。 第1表より、塩酸洗浄とフラックスを添加した溶湯が、
最も高い珪素歩留が認められた。金属珪素添加量7%で
のカルシウムの増加は、塩酸洗浄品とフラックスの組合
せでは、30PPM以下で、無処理品の100PPM前
後に対して、約3分の1程度に低下していた。塩酸洗浄
をしないフラックスだけの場合は、40〜70PPMレ
ベルであり、高強度が要求される一部の鋳物には適当で
ないことが判明した。介在物の動向は、実施例4では、
フラックスによる介在物の除去効果が確認されたが、比
較例1では未溶解珪素が、又比較例2では未溶解珪素と
酸化物が確認され、金属珪素投入後の溶湯汚染度は高く
なった。又、目視によるドロスの発生量は、無処理品>
フラックスのみ>鉱酸処理品の順序であった。
Comparative Example 2 74 kg of an aluminum ingot having a purity of 99.7% and 100
The first sampling was performed under the same conditions as in Example 1 from a molten metal in which 90 g of aluminum 90% and manganese 10% mother alloy was melted and held at 800 ° C. Then 5.6
After charging kg of standard size metallic silicon and stirring 10 times with a phosphorizer, 7 minutes later, a second sampling was performed under the same conditions as the first sampling. For the sampled test piece for analysis, the yield of metallic silicon was calculated by the following formulas (1) and (2) using an emission spectrophotometer. In the formula) A: Weight of molten metal before addition of metallic silicon a:% of silicon in molten metal before addition of metallic silicon ÷ 100 b:% of silicon in molten metal after addition of metallic silicon c: Weight of added silicon x: Weight of molten silicon Using the above formula, the results of the fractionation of silicon and calcium, the yield of silicon, and the amount of inclusions measured by K mold (K value represents the amount of inclusions, the higher the value, the more inclusions) and the visual dross. Occurrence is shown in Table 1. From Table 1, it can be seen that the molten metal washed with hydrochloric acid and the flux
The highest silicon yield was observed. The increase in calcium when the amount of metallic silicon added was 7% was 30 PPM or less in the combination of the hydrochloric acid-cleaned product and the flux, which was about one-third lower than around 100 PPM of the untreated product. It was found that the level of 40 to 70 PPM was obtained only with the flux that was not washed with hydrochloric acid, and was not suitable for some castings requiring high strength. The trend of inclusions is that in Example 4,
The effect of removing inclusions by the flux was confirmed, but undissolved silicon was confirmed in Comparative Example 1 and undissolved silicon and oxide were confirmed in Comparative Example 2, and the degree of contamination of the molten metal after the introduction of metallic silicon was high. In addition, the amount of visually generated dross is
Flux only> mineral acid treated product.

【0013】[0013]

【発明の効果】本発明は、溶湯温度850℃前後で約1
時間を要した金属珪素の溶解が、50℃以上低い、70
0℃台の溶湯温度で短時間に溶解できる。塩化物フラッ
クスの添加は、金属珪素の溶解で発生する、酸化物等の
非金属介在物や金属珪素から導入されるカルシウム等の
溶湯汚染物質を溶湯から分離する。鉱酸による洗浄は、
金属珪素に含まれるカルシウムを大幅に低下させる。こ
れにより、清浄で高品質なアルミニウム基珪素合金溶湯
が得られる。又、溶解が坩堝炉や取り鍋等の既存設備で
容易にできる為、従来普及し得なかったアルミニウム基
珪素合金の自社配合を容易ならしめたことから、本発明
の工業的効果は非常に大きい。
According to the present invention, when the molten metal temperature is around 850 ° C., about 1
The time-consuming dissolution of metallic silicon is lower than 50 ° C., 70
It can be melted in a short time at the temperature of molten metal in the range of 0 ° C. Addition of chloride flux separates from the molten metal contaminants such as calcium introduced from metallic silicon and non-metallic inclusions such as oxides generated by dissolution of metallic silicon. Cleaning with mineral acid
It significantly reduces calcium contained in metallic silicon. As a result, a clean and high-quality molten aluminum-based silicon alloy melt can be obtained. Further, since melting can be easily carried out with existing equipment such as a crucible furnace and a ladle, it has been possible to facilitate the in-house blending of an aluminum-based silicon alloy that could not be popularized in the past, so that the industrial effect of the present invention is very large .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム等の金属溶湯への珪素添加
において、鉱酸で洗浄された粒径2mm以上30mm以
下の金属珪素と少なくとも1種の塩化物を含むフラック
スとを添加することを特徴とする溶解方法。
1. When adding silicon to a molten metal such as aluminum, metallic silicon washed with a mineral acid and having a particle diameter of 2 mm or more and 30 mm or less and a flux containing at least one chloride are added. Dissolution method.
【請求項2】 アルミニウム等の金属溶湯への珪素添加
において、鉱酸で洗浄された粒径2mm以上30mm以
下の金属珪素に少なくとも1種の塩化物を含むフラック
スを被覆することを特徴とする溶解方法。
2. A method of adding silicon to a molten metal such as aluminum by coating a flux containing at least one chloride on metallic silicon washed with a mineral acid and having a particle size of 2 mm or more and 30 mm or less. Method.
JP23588095A 1995-08-11 1995-08-11 Method for dissolving metallic silicon Pending JPH0953131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23588095A JPH0953131A (en) 1995-08-11 1995-08-11 Method for dissolving metallic silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23588095A JPH0953131A (en) 1995-08-11 1995-08-11 Method for dissolving metallic silicon

Publications (1)

Publication Number Publication Date
JPH0953131A true JPH0953131A (en) 1997-02-25

Family

ID=16992617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23588095A Pending JPH0953131A (en) 1995-08-11 1995-08-11 Method for dissolving metallic silicon

Country Status (1)

Country Link
JP (1) JPH0953131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510883A (en) * 2000-10-02 2004-04-08 アンヴァンシル Formation of aluminum-silicon alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510883A (en) * 2000-10-02 2004-04-08 アンヴァンシル Formation of aluminum-silicon alloy

Similar Documents

Publication Publication Date Title
AU2010239014B2 (en) High-elongation rate aluminum alloy material for cable and preparation method thereof
JP2012524837A5 (en)
US10988830B2 (en) Scandium master alloy production
JP5243682B2 (en) Formation of aluminum-silicon alloys
US20120017726A1 (en) Use of a tertiary salt flux of nacl, kci and mgcl2 for the purification of aluminium or aluminium alloys, and method thereof
JPH0953131A (en) Method for dissolving metallic silicon
CN108411140A (en) A kind of aluminum refining agent containing rare earth
CN113373328B (en) Aluminum-magnesium-yttrium intermediate alloy prepared by magnesiothermic reduction method and preparation method thereof
JP2007211324A (en) Raw material phosphor bronze alloy for casting half-melted alloy
US2604394A (en) Magnesium base alloys
JPH0849025A (en) Aluminum-manganese master alloy additive for producing aluminum-containing magnesium-base alloy
US3951764A (en) Aluminum-manganese alloy
JPH09104934A (en) Method for melting metallic silicon
US7988763B2 (en) Use of a binary salt flux of NaCl and MgCl2 for the purification of aluminium or aluminium alloys, and method thereof
JP2021050368A (en) Method for removing aluminium phosphide cluster in molten metal of aluminum alloy
CN103820667A (en) Covering agent and aluminium-silicon alloy melt processing method
JPH0611891B2 (en) Method of adding silicon to aluminum
JP3666822B2 (en) Master alloy for adding Zr into Mg alloy
RU2240364C2 (en) Fusing agent for electroslag refining of nonferrous metals
JP3463343B2 (en) Manufacturing method of aluminum
SU1470799A1 (en) Method of producing aluminium-silicon alloys
SU1089159A1 (en) Method for modifying cast hypereutectic silimines
CN105316509B (en) A kind of aluminum refining agent of the erbium of yttrium containing cerium
RU2230809C1 (en) Flux for melt, refining, inoculation of non-ferrous metals amd alloys
JPH08239722A (en) Production of aluminum-base silicon alloy by using metallic silicon powder and flux