JPH0952170A - Container for molten metal - Google Patents

Container for molten metal

Info

Publication number
JPH0952170A
JPH0952170A JP22865795A JP22865795A JPH0952170A JP H0952170 A JPH0952170 A JP H0952170A JP 22865795 A JP22865795 A JP 22865795A JP 22865795 A JP22865795 A JP 22865795A JP H0952170 A JPH0952170 A JP H0952170A
Authority
JP
Japan
Prior art keywords
molten metal
funnel
molten steel
outlet
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22865795A
Other languages
Japanese (ja)
Inventor
Toshiya Komori
俊也 小森
Kiyoshi Shigematsu
清 重松
Tetsuhiro Asada
哲弘 浅田
Katsushi Kaneko
克志 金子
Seiji Aso
誠二 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22865795A priority Critical patent/JPH0952170A/en
Publication of JPH0952170A publication Critical patent/JPH0952170A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the yield of the molten metal by preventing the floating matter on the surface of the molten metal from being included in the vortex generated when the molten metal is discharged and flowing out together with the molten metal in a molten metal container in which the molten metal is discharged from its bottom part. SOLUTION: An outflow port of a molten metal container is of the funnel shape expanded upwardly, and the depth L of the funnel part satisfies the inequality L>=[W/(ρ×30)/(2×π×(1-cos(θ/2)))]<1/2> , where L is the depth of the funnel part, W is the outflow rate of the molten metal (kg/min), ρ is the density of the molten metal (kg/m<3> ), and θ is the internal angle of inclination of the funnel part (degree).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶融金属の容器に関
する。
FIELD OF THE INVENTION The present invention relates to a molten metal container.

【0002】[0002]

【従来の技術】例えば、取鍋内の溶鋼をタンディッシュ
に流出し、さらに溶鋼を注入ノズルを通して鋳型へ注入
する連続鋳造工程において、取鍋内の溶鋼量が減少する
取鍋流出末期には、溶鋼表面に浮遊する取鍋内のスラグ
が、流出口近傍の溶鋼の渦流に巻き込まれ、溶鋼ととも
に取鍋底に設置された流出口から流出してしまう。この
スラグがタンディッシュ内および鋳型内で浮上しきれず
に鋳片に捕捉されると、非金属介在物として鋳片の内部
欠陥となる。この取鍋流出末期に起こるスラグの巻き込
みを防止するため、湯面レベルがスラグの巻き込みを発
生する高さに達する以前に、溶鋼の流出を終了させる方
法がある。しかし、この方法では、溶鋼の歩留りが低下
してしまい実用的ではない。
2. Description of the Related Art For example, in a continuous casting process in which molten steel in a ladle is poured into a tundish, and molten steel is further poured into a mold through an injection nozzle, at the end of the ladle outflow, where the amount of molten steel in the ladle decreases, The slag in the ladle floating on the surface of the molten steel is caught in the swirling flow of the molten steel near the outlet, and flows out together with the molten steel from the outlet installed at the bottom of the ladle. If the slag is not fully floated in the tundish and in the mold and is captured by the slab, it becomes an internal defect of the slab as a non-metallic inclusion. In order to prevent the entrainment of slag that occurs at the end of the ladle outflow, there is a method of ending the outflow of molten steel before the level of the molten metal reaches the level at which entrainment of slag occurs. However, this method is not practical because the yield of molten steel decreases.

【0003】このことから、一般的には下記(1)〜
(4)の方法が用いられている。 (1)整流兼スラグ流出防止具を取鍋内の溶鋼上に浮上
させて、取鍋内溶鋼の残量が多い時期においては、該防
止具が流出口上に形成される渦流近傍に位置して、この
渦流によるスラグの巻き込みを防止し、溶鋼残湯量の少
ない取鍋流出末期においては、流出口を閉塞して完全に
スラグの差し込みと横流れを防ぐ方法(特開昭61−5
6227号公報)。 (2)渦が発生した後に渦流を抑制する方向に回転磁場
を掛ける方法(特開平2−54711号公報)。
From this, in general, the following (1) to
The method (4) is used. (1) The rectifying and slag outflow prevention device is floated above the molten steel in the ladle, and when the amount of the remaining molten steel in the ladle is large, the prevention device is located near the vortex flow formed on the outlet. In order to prevent the slag from being entrained by the vortex, and to completely prevent the slag from being inserted and the cross flow at the end of the ladle outflow with a small amount of molten steel residual hot water (Japanese Patent Laid-Open No. 61-5
6227). (2) A method of applying a rotating magnetic field in a direction of suppressing the vortex after the vortex is generated (JP-A-2-54711).

【0004】(3)取鍋内の溶湯の重量を測定し、この
重量が所定重量まで減少した時に、取鍋を流出口側へ傾
動させ、溶鋼流出口上の残湯深さを確保する方法(特開
昭61−52968号公報)。 (4)スラグ凝固剤を添加してスラグを凝固させた後、
流出口から溶鋼を流出する方法(特開平4−20085
7号公報)。
(3) A method of measuring the weight of the molten metal in the ladle and tilting the ladle to the outlet side when the weight decreases to a predetermined weight to secure a residual molten metal depth on the molten steel outlet. (Japanese Patent Laid-Open No. 61-52968). (4) After adding the slag coagulant to solidify the slag,
Method for outflowing molten steel from the outlet (JP-A-4-20085)
No. 7).

【0005】[0005]

【発明が解決しようとする課題】上記(1)のスラグ流
出防止具を用いる方法では、スラグ流出具を取鍋上の
固いスラグを割って挿入しなければならない。浮遊し
ているスラグ流出具を溶鋼の流れなどの外乱の影響を受
けている状態で、ずれることなく確実に流出口上に設置
させることは困難である。ならびに取鍋を反転させて
内部の滓を排滓する時に、流出防止具が流出口に付着し
たまま脱落しないことが起こることなど、実用化のため
には多くの問題点がある。上記(2)の電磁気力を用い
た渦流の発生防止方法ならびに上記(3)の取鍋を流出
口側へ傾動させる方法では、設備の改造や新設に膨大な
費用が必要となり実用的ではない。特に、(2)の電磁
気力を用いる方法は、取鍋底部の狭い範囲に電磁石を設
置することが困難であり、渦流の回転方向を検知するこ
とも困難である。
In the method (1) using the slag outflow prevention tool, the slag outflow tool must be inserted by breaking the hard slag on the ladle. It is difficult to reliably install the floating slag outflow tool on the outlet without slipping under the influence of disturbance such as the flow of molten steel. In addition, when the ladle is turned upside down and the slag inside is drained, the outflow prevention device may remain attached to the outflow port and not fall off, and there are many problems for practical use. The method (2) of preventing eddy current generation using electromagnetic force and the method (3) of tilting the ladle toward the outlet side are not practical because a huge amount of cost is required for equipment modification and new construction. In particular, in the method (2) using the electromagnetic force, it is difficult to install the electromagnet in a narrow area of the bottom of the ladle, and it is also difficult to detect the rotating direction of the vortex flow.

【0006】上記(4)のスラグを凝固させる方法は、
溶鋼との界面に位置する高温のスラグまで凝固させる実
用的な凝固剤が存在しないため、スラグが発生した渦流
へ巻き込まれることを完全に防止することは困難であ
る。前記問題点に対し本発明では、設備費が安価で操業
的にも簡易な方法により、取鍋の注入末期において湯面
の高さが低くなった場合でも、スラグが渦流によって巻
き込まれることを確実に防止しながら溶鋼を流出し、溶
鋼の歩留りを向上させることを課題とするものである。
The method (4) for solidifying the slag is as follows:
It is difficult to completely prevent the slag from being caught in the vortex flow, because there is no practical coagulant that solidifies the high temperature slag located at the interface with the molten steel. With respect to the above-mentioned problems, the present invention ensures that the slag is caught by the vortex even when the height of the molten metal becomes low at the end of the pouring of the ladle by a method with low equipment cost and simple operation. It is an object to flow molten steel while preventing it and improve the yield of molten steel.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するものであって、その手段は、溶融金属を排出する流
出口を底部に設けた溶融金属容器において、前記流出口
の形状を上方に向かって拡大したロート状とするととも
に、該ロート部の深さ(L)が下記(1)式を満足する
溶融金属容器にある。 L≧〔W/(ρ×30)/(2×π×(1−cos(θ/2)))〕1/2 ・・・(1) ただし、L:ロート部の深さ W:溶融金属の流出流量(kg/min) ρ:溶融金属の密度(kg/m3 ) θ:ロート部傾斜の内角(度)
Means for Solving the Problems The present invention is to solve the above-mentioned problems, and a means for solving the problem is to provide a molten metal container having an outlet for discharging molten metal at the bottom, in which the shape of the outlet is increased. The molten metal container has a funnel shape that expands toward and the depth (L) of the funnel portion satisfies the following expression (1). L ≧ [W / (ρ × 30) / (2 × π × (1-cos (θ / 2)))] 1/2 (1) where L: depth of the funnel portion W: molten metal Outflow rate (kg / min) ρ: Density of molten metal (kg / m 3 ) θ: Interior angle (degree) of funnel inclination

【0008】[0008]

【作用】本発明の作用について図2〜図6を参照して説
明する。本発明者らは上記従来の問題を解決するため、
水モデル実験にて容器からの水の流出末期に発生する渦
を可視化し、流出口近傍の速度分布を調査した。その結
果、図6に示すように、容器Hの流出口1近傍の速度分
布は、流出口1を中心とした半球面状に等しい速度で流
出口1に向かう流れが起こっていることが分かった。す
なわち、容器の流出口1中心からr(m)だけ離れた場
所での流速u(m/s)は、容器からの排出流量をQ
(m3 /s)とすると、 u=Q/(4πr2 /2) ・・・(2) で表される。
The operation of the present invention will be described with reference to FIGS. In order to solve the above conventional problems, the present inventors have
In the water model experiment, we visualized the vortices generated at the end of the water outflow from the container and investigated the velocity distribution near the outlet. As a result, as shown in FIG. 6, it was found that the velocity distribution in the vicinity of the outlet 1 of the container H was such that the flow toward the outlet 1 occurred at the same velocity in a hemispherical shape centered on the outlet 1. . That is, the flow velocity u (m / s) at a place separated from the center of the outlet 1 of the container by r (m) is equal to the discharge flow rate from the container by Q.
When (m 3 / s) to be expressed by u = Q / (4πr 2/ 2) ··· (2).

【0009】さらに、同実験装置を用いて、容器H内の
浮遊物の流出限界を調査するため、浮遊物に相当する物
質として流動パラフィンPを水面に浮遊させ、流動パラ
フィンPの流出過程を可視化し、流動パラフィンPが巻
き込まれ始めた瞬間の容器H内の湯面レベルを測定し
た。実験は排水ノズルにバルブを設置し、バルブの開度
により排水流量を調整して行った。この結果、流動パラ
フィンPは流れによって発生した渦に巻き込まれ、流出
口1へ引き込まれて排出されることが分かった。
Further, in order to investigate the outflow limit of the suspended matter in the container H using the same experimental apparatus, liquid paraffin P was suspended on the water surface as a substance corresponding to the suspended matter, and the outflow process of the liquid paraffin P was visualized. Then, the molten metal level in the container H at the moment when the liquid paraffin P started to be caught was measured. The experiment was carried out by installing a valve on the drain nozzle and adjusting the drain flow rate by the valve opening. As a result, it was found that the liquid paraffin P was caught in the vortex generated by the flow, drawn into the outlet 1, and discharged.

【0010】そこで、図2に各流量において流動パラフ
ィンPが巻き込まれ始めた瞬間の容器H内の湯面レベル
を、(2)式との関係で示した。図2中の実線は、
(2)式において流速uが0.3m/sとなる場合の排
出流量と流出口1からの距離rすなわち湯面高さの関係
を示した計算線である。この結果より、排水流量に無関
係に、半球面上の速度がある一定流速、つまり水モデル
実験では0.3m/sに達した瞬間に流動パラフィンP
の巻き込みが開始されることが分かる。
Therefore, FIG. 2 shows the molten metal level in the container H at the moment when the liquid paraffin P starts to be caught at each flow rate, in relation to the equation (2). The solid line in FIG. 2 is
It is a calculation line showing the relationship between the discharge flow rate and the distance r from the outlet 1, that is, the molten metal height when the flow velocity u is 0.3 m / s in the equation (2). From this result, regardless of the drainage flow rate, the liquid paraffin P is generated at a certain velocity on the hemisphere, that is, at the moment when the velocity reaches 0.3 m / s in the water model experiment.
It can be seen that the involvement of is started.

【0011】そこで、実機において取鍋10からの溶鋼
流出流量と、流出終了後の鍋内に残った溶鋼重量を測定
して流出終了時の溶鋼湯面高さに換算したところ、溶鋼
流出流量10t/minの時に取鍋内の残留溶鋼の湯面
高さが80mmとなった。このことから、溶鋼において
も流出口近傍に半球面状の等速度分布が形成されると考
えると、スラグの巻き込み限界速度は0.5m/sであ
ると推定される。従って、流出口1近傍に発生する渦流
がスラグS面に作用しないようにするには、スラグSに
接する溶鋼の流速を常にスラグSの巻き込み限界流速以
下、すなわち0.5m/s以下にする必要がある。
Therefore, when the molten steel outflow rate from the ladle 10 and the weight of the molten steel remaining in the pan after the outflow were measured in the actual machine and converted into the molten steel level at the end of the outflow, the molten steel outflow rate was 10 t. / Min, the level of molten steel in the ladle became 80 mm. From this, considering that a hemispherical uniform velocity distribution is formed in the vicinity of the outlet even in molten steel, it is estimated that the slag entrainment limit velocity is 0.5 m / s. Therefore, in order to prevent the vortex flow generated near the outlet 1 from acting on the surface of the slag S, the flow velocity of the molten steel in contact with the slag S must always be equal to or less than the entrainment limit velocity of the slag S, that is, 0.5 m / s or less. There is.

【0012】以上のことから、スラグS面が取鍋底10
aに到達するまで、スラグSの流出を防止しながら溶鋼
Tの流出を継続することは、渦流によって形成される半
球面状の速度分布において、図3に示すように、スラグ
Sの巻き込み限界速度の位置が、取鍋底断面10aより
上部へ突出しないように十分に大きなロート状の窪み
を、取鍋底10aの流出口1に設置することで実現でき
る。すなわち、本発明は、取鍋内10の溶鋼Tの流出に
おいて、スラグS面が取鍋底10aに到達するまでスラ
グSが渦流によって巻き込まれることを回避し、スラグ
S面が取鍋底10aに到達するまで溶鋼Tの流出を継続
することを実現したものである。
From the above, the slag S surface is the bottom 10 of the ladle.
Continuing the outflow of the molten steel T while preventing the outflow of the slag S until the temperature reaches a means that, in the hemispherical velocity distribution formed by the vortex flow, as shown in FIG. This can be realized by installing a funnel-shaped recess sufficiently large so that the position does not project above the ladle bottom cross section 10a at the outlet 1 of the ladle bottom 10a. That is, in the present invention, when the molten steel T flows out of the ladle 10, the slag S is prevented from being swirled by the vortex until the slag S surface reaches the ladle bottom 10a, and the slag S surface reaches the ladle bottom 10a. The continuous outflow of molten steel T was realized.

【0013】以下に、スラグSの巻き込み防止のために
必要なロート状窪みRの幾何学的サイズの決定方法を示
す。図4に示したように、取鍋底10aのロート状窪み
Rの幾何学的形状は、ロート尖塔部RT から取鍋底断面
B までの距離r、ロート傾斜部の角度θ、およびロー
ト開口部の直径Dによって表される。流出口1近傍の速
度分布において、半球面上の速度が、実機でのスラグS
の巻き込み限界である0.5m/s以下となる時の半径
rが必要なロート部深さLに相当し、L(m)は、ロー
ト傾斜部の角度θと、溶鋼流出流量W(kg/min)
により(3)式で表される。 L≧〔(W/(60×ρ×0.5) /(2×π×(1−cos(θ/2)))〕1/2 ・・・(3) ここで、ρは溶鋼の密度(kg/m3 )である。
A method of determining the geometric size of the funnel-shaped depression R necessary for preventing the slag S from being caught will be described below. As shown in FIG. 4, the geometric shape of the funnel-shaped depression R of the ladle bottom 10a is such that the distance r from the funnel spire R T to the ladle bottom cross-section R B , the funnel inclination angle θ, and the funnel opening. Is represented by the diameter D of In the velocity distribution near the outlet 1, the velocity on the hemisphere is the slag S in the actual machine.
The radius r when the entrainment limit is 0.5 m / s or less corresponds to the required depth L of the funnel portion, and L (m) is the angle θ of the funnel inclination portion and the molten steel outflow rate W (kg / min)
Is expressed by equation (3). L ≧ [(W / (60 × ρ × 0.5) / (2 × π × (1-cos (θ / 2)))] 1/2 (3) where ρ is the density of molten steel (Kg / m 3 ).

【0014】また、傾斜部の長さxは、(3)式で求め
たLを用い、(4)式で表される。 x=L/(cos(θ/2)) ・・・(4) したがって、ロート開口部の直径Dは、 D=2x(sin(θ/2))=2L(sin(θ/2)) /(cos(θ/2)) ・・・(5) で表される。
Further, the length x of the inclined portion is expressed by the equation (4) using L obtained by the equation (3). x = L / (cos (θ / 2)) (4) Therefore, the diameter D of the funnel opening is: D = 2x (sin (θ / 2)) = 2L (sin (θ / 2)) / (Cos (θ / 2)) is represented by (5).

【0015】(3)式により、液面の浮遊物の巻き込み
が防止できることを確認するため、図4に示す設備によ
り水モデル実験を行った。実験は、排出流量1リットル
/sと3リットル/sの条件について、ロート部Rの内
角を90度に一定にしてロート部Rの深さLを変化させ
て行った。その結果をそれぞれ図5(a),(b)に流
出口1のロート部Rの深さLと、液面の浮遊物が巻き込
まれた瞬間の液面レベルすなわち液面の取鍋底からの距
離との関係で示した。
In order to confirm that the entrainment of suspended solids on the liquid surface can be prevented by the equation (3), a water model experiment was conducted using the equipment shown in FIG. The experiment was performed under the conditions of the discharge flow rates of 1 liter / s and 3 liter / s, while changing the depth L of the funnel R while keeping the inner angle of the funnel R constant at 90 degrees. The results are shown in FIGS. 5 (a) and 5 (b), respectively, and the depth L of the funnel R of the outflow port 1 and the liquid level at the moment when the suspended matter on the liquid level was caught, that is, the distance from the ladle bottom of the liquid level. It showed in relation to.

【0016】水モデル実験の場合、浮遊物である流動パ
ラフィンPの巻き込み限界速度は0.3m/sであるた
め、(3)式の検証はこの式中の溶鋼の場合のスラグの
巻き込み速度を修正した下記(6)式で確認した。 L≧〔(W/(60×ρ×0.3)) /(2×π×(1−cos(θ/2)))〕1/2 ・・・(6) ここで、ρは水の密度(kg/m3 )である。図5
(a),(b)より、いずれの場合もロート部Rの深さ
Lを(6)式を満足するまで大きくすると、浮遊物の巻
き込みを防止して液体の排出が可能となることがわか
る。従って、溶鋼の流出時におけるスラグSの巻き込み
の防止は、(3)式を満足するロート部Rを流出口1に
設置することで達成できる。
In the case of the water model experiment, the entrainment limit speed of the liquid paraffin P which is a suspended matter is 0.3 m / s. Therefore, the verification of the equation (3) is based on the entrainment speed of the slag in the case of the molten steel in this equation. It was confirmed by the corrected formula (6) below. L ≧ [(W / (60 × ρ × 0.3)) / (2 × π × (1-cos (θ / 2)))] 1/2 (6) where ρ is water Density (kg / m 3 ). FIG.
From (a) and (b), it can be seen that in any case, if the depth L of the funnel portion R is increased to satisfy the expression (6), entrainment of suspended matter can be prevented and liquid can be discharged. . Therefore, the prevention of the entrainment of the slag S when the molten steel flows out can be achieved by installing the funnel portion R satisfying the expression (3) at the outflow port 1.

【0017】[0017]

【実施例】本発明の実施例を図1および表1を参照して
以下に説明する。下記に示す条件で実機操業を行った場
合について、溶鋼取鍋10の流出口1の形状と鋳造終了
時(流出口1からスラグSが流出しはじめた時期)の取
鍋内残湯量の関係を調査し、その効果を確認した。 溶鋼取鍋10の容量 300t 流出口1からの流出流量 5t/min,10t/min ロート部内角θ 60度、90度、120度 流出口1形状 円形 以上のごとく設定して、溶鋼Tの排出を行った結果を表
1に示した。
Embodiments of the present invention will be described below with reference to FIG. 1 and Table 1. Regarding the actual operation under the conditions shown below, the relationship between the shape of the outlet 1 of the molten steel ladle 10 and the amount of residual hot water in the ladle at the end of casting (when the slag S started to flow out of the outlet 1) We investigated and confirmed the effect. Capacity of molten steel ladle 10 300t Outflow rate from outlet 1 5t / min, 10t / min Inner angle of the rotor part θ 60 °, 90 °, 120 ° Outlet 1 shape circular Set the above to discharge molten steel T The results obtained are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、20は流出口1から流出される溶鋼
をタンディッシュへ流出するノズルである。表1の実施
例1〜6に示すように、上記(3)式を満足するロート
Rを流出口1に設置することで、流出流量Wやロート部
内角θの条件によらず、溶鋼の残湯量Zは急激に減少し
た。この結果、溶鋼の歩留りが向上し、製造コストの削
減につながった。一方、比較例はいずれも残湯量が多い
ものであった。比較例1〜3は、流出流量が5,000
kg/minと低い場合である。この場合、ロートRの
深さLが不足しているため、鍋内の溶鋼湯面高さが高い
位置から渦によるスラグの巻き込みが発生し、その結果
溶鋼の残湯量が多くなった。また、比較例4〜6の流出
流量が10,000kg/minと大きい場合も同様
に、ロートRの深さLが不足しているため、溶鋼の残湯
量が多くなった。
Reference numeral 20 is a nozzle for discharging the molten steel flowing out of the outlet 1 to the tundish. As shown in Examples 1 to 6 of Table 1, by installing the funnel R satisfying the above formula (3) at the outlet 1, the molten steel residue is retained regardless of the conditions of the outflow rate W and the funnel internal angle θ. The amount Z of hot water decreased sharply. As a result, the yield of molten steel was improved, leading to a reduction in manufacturing costs. On the other hand, all the comparative examples had a large amount of residual hot water. In Comparative Examples 1 to 3, the outflow rate is 5,000.
The case is as low as kg / min. In this case, since the depth L of the funnel R was insufficient, the slag was entrained by the vortex from the position where the molten steel molten metal surface height was high in the pot, and as a result, the amount of molten steel remaining was increased. Similarly, when the outflow rate of Comparative Examples 4 to 6 was as large as 10,000 kg / min, the depth L of the funnel R was insufficient, and the amount of molten steel remaining was increased.

【0020】なお、流出口1の形状は図7〜図9に示す
如く円形に限ることなく、相当径として必要な径Dが確
保されておれば、図7に示すような矩形や図8の楕円な
どの形状においても円と同等の効果を発揮する。さら
に、ロートの傾斜部を図9に示すように鍋底断面に垂
直、すなわちロート部を円柱状としても、必要な径Dま
たは矩形や楕円などの形状の場合は相当径が確保されて
いれば、ロート状と同等の効果を発揮する。
The shape of the outlet 1 is not limited to the circular shape as shown in FIGS. 7 to 9, but if the required diameter D is secured as the equivalent diameter, the rectangular shape as shown in FIG. Even in the shape of an ellipse, it has the same effect as a circle. Furthermore, even if the inclined portion of the funnel is perpendicular to the pan bottom cross section as shown in FIG. 9, that is, even if the funnel portion has a cylindrical shape, in the case of a required diameter D or a shape such as a rectangle or an ellipse, if a considerable diameter is secured, It has the same effect as the funnel shape.

【0021】[0021]

【発明の効果】本発明によって溶鋼排出時に渦流の発生
を大幅に抑制することが可能となり、スラグを巻き込む
ことなく溶鋼のみを排出することができるので、安価で
しかも簡単な設備で溶鋼の歩留りが向上する取鍋内溶鋼
の排出を実現することが可能となった。
EFFECTS OF THE INVENTION According to the present invention, it is possible to significantly suppress the generation of eddy current when discharging molten steel, and it is possible to discharge only molten steel without involving slag. Therefore, the yield of molten steel can be reduced with simple equipment at low cost. It has become possible to improve the discharge of molten steel in the ladle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の溶融金属容器を示す図FIG. 1 is a diagram showing a molten metal container of the present embodiment.

【図2】模型実験において浮遊物の巻き込み開始時の湯
面高さと水の排出流速の関係を示す図
FIG. 2 is a diagram showing the relationship between the level of molten metal at the start of entrainment of suspended matter and the flow velocity of water discharged in a model experiment.

【図3】本実施例の溶融金属容器における流出口近傍の
流体の速度分布を示す図
FIG. 3 is a diagram showing a velocity distribution of a fluid in the vicinity of an outlet in the molten metal container of this embodiment.

【図4】本実施例の溶融金属容器の流出口の幾何学的寸
法を示す図
FIG. 4 is a diagram showing the geometrical dimensions of the outlet of the molten metal container of the present embodiment.

【図5】模型実験においてロート部深さと浮遊物の巻き
込み開始時の液面高さの関係を示す図
FIG. 5 is a diagram showing the relationship between the funnel depth and the liquid level height at the start of entrainment of suspended matter in a model experiment.

【図6】溶融金属容器における流出口近傍の流体の速度
分布を示す図
FIG. 6 is a diagram showing a velocity distribution of a fluid near an outlet in a molten metal container.

【図7】溶融金属容器の開口部の他の実施例を示す図FIG. 7 is a view showing another embodiment of the opening of the molten metal container.

【図8】溶融金属容器の開口部の他の実施例を示す図FIG. 8 is a view showing another embodiment of the opening of the molten metal container.

【図9】溶融金属容器の開口部の他の実施例を示す図FIG. 9 is a view showing another embodiment of the opening of the molten metal container.

【符号の説明】[Explanation of symbols]

1 流出口 10 取鍋の側壁面 10a 取鍋の底面 20 ノズル D ロート開口部の直径 H 溶融金属容器 L 流出口のロート深さ P 流動パラフィン R 流出口のロート傾斜部 RT ロート尖塔部 RB 取鍋底断面 T 溶鋼 S スラグ1 outlet 10 side wall surface 10a ladle bottom 20 nozzles D funnel opening diameter H molten metal container L outlet funnel depth P liquid paraffin R outlet of the funnel inclined portion R T funnel spire portion R B of the ladle Ladle bottom cross section T Molten steel S Slag

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 克志 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 麻生 誠二 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Katsushi Kaneko 1st Nishinosu, Oita-shi, Oita Pref. Nippon Steel Co., Ltd. Oita Steel Works (72) Seiji Aso 1st Nishinosu, Oita, Oita Pref. Oita Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属を排出する流出口を底部に設け
た溶融金属容器において、前記流出口の形状を上方に向
かって拡大したロート状とするとともに、該ロート部の
深さ(L)が下記(1)式を満足することを特徴とする
溶融金属容器。 L≧〔W/(ρ×30)/(2×π×(1−cos(θ/2)))〕1/2 ・・・(1) ただし、L:ロート部の深さ W:溶融金属の流出流量(kg/min) ρ:溶融金属の密度(kg/m3 ) θ:ロート部傾斜の内角(度)
1. A molten metal container having an outlet for discharging molten metal at the bottom, wherein the outlet has a funnel shape that is enlarged upward, and the depth (L) of the funnel portion is A molten metal container characterized by satisfying the following formula (1). L ≧ [W / (ρ × 30) / (2 × π × (1-cos (θ / 2)))] 1/2 (1) where L: depth of the funnel portion W: molten metal Outflow rate (kg / min) ρ: Density of molten metal (kg / m 3 ) θ: Interior angle (degree) of funnel inclination
JP22865795A 1995-08-15 1995-08-15 Container for molten metal Withdrawn JPH0952170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22865795A JPH0952170A (en) 1995-08-15 1995-08-15 Container for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22865795A JPH0952170A (en) 1995-08-15 1995-08-15 Container for molten metal

Publications (1)

Publication Number Publication Date
JPH0952170A true JPH0952170A (en) 1997-02-25

Family

ID=16879774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22865795A Withdrawn JPH0952170A (en) 1995-08-15 1995-08-15 Container for molten metal

Country Status (1)

Country Link
JP (1) JPH0952170A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054860A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Ladle for continuous casting and method for producing cast slab
JP2008221240A (en) * 2007-03-08 2008-09-25 Kurosaki Harima Corp Ladle for molten steel
JP2010125506A (en) * 2008-11-28 2010-06-10 Kurosaki Harima Corp Arrangement structure of upper nozzle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054860A (en) * 2005-08-24 2007-03-08 Jfe Steel Kk Ladle for continuous casting and method for producing cast slab
JP4725244B2 (en) * 2005-08-24 2011-07-13 Jfeスチール株式会社 Ladle for continuous casting and method for producing slab
JP2008221240A (en) * 2007-03-08 2008-09-25 Kurosaki Harima Corp Ladle for molten steel
JP2010125506A (en) * 2008-11-28 2010-06-10 Kurosaki Harima Corp Arrangement structure of upper nozzle

Similar Documents

Publication Publication Date Title
JP4419934B2 (en) Method for continuous casting of molten metal
JP5440610B2 (en) Method for continuous casting of molten metal
JP4670762B2 (en) Method for continuous casting of molten metal
EP0662021B1 (en) Refractory article for preventing vortexing in a metallurgical vessel
CN105965003A (en) Nozzle flow rotating generation device and nozzle flow rotating continuous casting method
JP4556804B2 (en) Molten metal injection tube and injection method
JP4271551B2 (en) Continuous casting equipment for high cleanliness steel by tundish
AU2012312938B2 (en) Double entry channel ladle bottom
JP2007090424A (en) Tundish for continuous casting
JPH0952170A (en) Container for molten metal
EP0587759A1 (en) Tundish turbulence suppressor pad.
CA1052529A (en) Casting method of molten metal
JP4289182B2 (en) Tundish injection tube
JPH07303949A (en) Continuous casting method and nozzle for continuous casting
JP6135462B2 (en) Method for preventing outflow of non-metallic inclusions in molten metal
US20070029708A1 (en) Ladle bottom
JPS5917501Y2 (en) Slag entrainment prevention device for metal container tapping hole
Szekeres Review of strand casting factors affecting steel product cleanliness
US20210323055A1 (en) Method of molten metal casting utilizing an impact pad in the tundish
JP5510061B2 (en) Continuous casting method
JPH0641950U (en) Immersion nozzle for continuous casting
JP2000202602A (en) Method for removing inclusion in tundish for continuos casting
JPS5914035Y2 (en) Tundish for continuous casting
JPS5917482Y2 (en) Device for reducing non-metallic inclusions in continuously cast slabs
JPH11335719A (en) Intermediate vessel for separating non-metallic inclusion and method for separating non-metallic inclusion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105