JPH0950721A - Manufacture of superconducting cable - Google Patents

Manufacture of superconducting cable

Info

Publication number
JPH0950721A
JPH0950721A JP7202551A JP20255195A JPH0950721A JP H0950721 A JPH0950721 A JP H0950721A JP 7202551 A JP7202551 A JP 7202551A JP 20255195 A JP20255195 A JP 20255195A JP H0950721 A JPH0950721 A JP H0950721A
Authority
JP
Japan
Prior art keywords
alloy
superconducting wire
diameter
reinforcing
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7202551A
Other languages
Japanese (ja)
Other versions
JP3664776B2 (en
Inventor
Shoji Iwasaki
庄治 岩崎
Kenji Goto
謙次 後藤
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP20255195A priority Critical patent/JP3664776B2/en
Publication of JPH0950721A publication Critical patent/JPH0950721A/en
Application granted granted Critical
Publication of JP3664776B2 publication Critical patent/JP3664776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a superconducting cable which permits great degrees of freedom in selecting materials that can be used as a material for forming reinforcing and stabilizing layers and moreover enables cost reduction. SOLUTION: A manufacturing method wherein a reinforcing layer 4 is equipped on the circumference of a core part 2 comprizing an alloy grouped superconductor or a core part 2 equipped with a material capable of becoming a superconductor by heat treatment, and furthermore a stabilizing layer 5 is equipped on the circumference thereof. A plurality of columnar bodies 43 comprizing a reinforcing material chosen among a Cu-Nb alloy, a Cu-Al alloy, and a Cu-Ag alloy are provided juxtaposedly on the circumference of the core part 2 along the direction of the length of the core part 2, and diameter reduction processing is conducted after a covering tube 44 comprizing a stabilizing material is put outside the columnar bodies 43.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医療用MRI用マ
グネット、核融合炉用トロイダルマグネット、粒子加速
機用マグネット、超電導発電機用マグネット、磁気浮上
列車用マグネット等に利用される高強度の超電導線の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength superconducting magnet used for a medical MRI magnet, a fusion reactor toroidal magnet, a particle accelerator magnet, a superconducting generator magnet, a magnetic levitation train magnet, and the like. A method of manufacturing a wire.

【0002】[0002]

【従来の技術】一般に、超電導線は、超電導体からなる
芯部の外周に、安定化材などからなる付属部を設けた構
造となっている。このような超電導線の一種に内部補強
安定型Nb3Sn系超電導線が知られている。図5は、
内部補強安定化型Nb3Sn系超電導線の例を示すもの
である。この内部補強安定化型Nb3Sn系超電導線1
は、Cu−Sn合金からなる基地の内部に無数の極細の
Nb3Sn超電導フィラメントが配列されてなる芯部2
の外周に、拡散防止層3を介してCu−Nbなどからな
る補強層4が設けられ、さらにこの外周にCuや、Al
などからなる安定化層5が設けられたものである。この
ような構造の内部補強安定化型Nb3Sn系超電導線1
は、補強層を有してない構造の超電導線と比べて外部か
らの補強が必要がないため、コンパクトな超電導マグネ
ットの作製に好適に用いられていた。
2. Description of the Related Art Generally, a superconducting wire has a structure in which an appendage made of a stabilizing material is provided on the outer periphery of a core made of a superconductor. As a kind of such superconducting wire, an internally reinforced stable Nb 3 Sn-based superconducting wire is known. FIG.
It shows an example of an Nb 3 Sn based superconducting wire of internal reinforcing and stabilizing type. This internal reinforcing and stabilizing Nb 3 Sn based superconducting wire 1
Is a core portion 2 in which a myriad of extremely fine Nb 3 Sn superconducting filaments are arranged inside a base made of Cu-Sn alloy.
A reinforcing layer 4 made of Cu-Nb or the like is provided on the outer periphery of the diffusion prevention layer 3 and Cu or Al is further provided on the outer periphery thereof.
A stabilizing layer 5 made of, for example, is provided. Internally reinforced and stabilized Nb 3 Sn-based superconducting wire 1 having such a structure
In comparison with a superconducting wire having a structure not having a reinforcing layer, is not required to be reinforced from the outside, and thus has been suitably used for producing a compact superconducting magnet.

【0003】次に、このような内部補強安定化型Nb3
Sn系超電導線1の一般的な製造方法を図6を用いて説
明する。まず、図6(A)に示すようなNbからなるロ
ッド状の芯材10の外周にCu−Sn合金からなる管体
11を被せ、全体を縮径して図6(B)に示すような複
合体14を得る。次いで、図6(C)に示すように前記
複合体14を複数本集合してCu−Sn合金の管体15
に挿入し、さらに縮径し、図6(D)に示す一次素線1
6を得る。次いで、この一次素線16を図6(E)に示
すように複数本集合してCu−Sn合金からなる管体1
7に挿入し、更に縮径して図6(F)に示すような二次
素線18を作製する。
Next, such internal reinforcement stabilizing type Nb 3
A general method for manufacturing the Sn-based superconducting wire 1 will be described with reference to FIG. First, a rod-shaped core material 10 made of Nb as shown in FIG. 6 (A) is covered with a tube body 11 made of Cu—Sn alloy, and the whole is reduced in diameter as shown in FIG. 6 (B). The complex 14 is obtained. Next, as shown in FIG. 6 (C), a plurality of the composite bodies 14 are assembled to form a Cu—Sn alloy tube body 15.
6 and then further reduced in diameter, and the primary strand 1 shown in FIG.
Get 6. Next, as shown in FIG. 6 (E), a plurality of primary wires 16 are assembled into a tubular body 1 made of a Cu—Sn alloy.
7 and further reduce the diameter to produce a secondary wire 18 as shown in FIG. 6 (F).

【0004】次いで、前記二次素線18を複数本集合し
て、図6(G)に示すようにCuのパイプ20に挿入し
た後、このパイプ20の外方に拡散防止層3となるべき
TaあるいはNbからなる拡散防止管22を被せ、つい
で該拡散防止管22の外方に補強層4となるべきCu−
Nbなどからなるパイプ状の補強管23を被せ、ついで
該補強管23の外方に安定化層5となるべきCuなどか
らなる被覆管24を被せ、さらに全体を最終的に得るべ
き直径まで縮径した後、拡散熱処理を行うことにより、
二次素線18の内部のNbの極細フィラメントとSnを
反応させてNb3Sn超電導フィラメントを生成させ
て、図5に示すような内部補強安定化型Nb3Sn系超
電導線1を製造することができる。
Next, a plurality of the secondary wires 18 are assembled and inserted into a Cu pipe 20 as shown in FIG. 6 (G), and then the diffusion prevention layer 3 should be formed outside the pipe 20. The diffusion preventive tube 22 made of Ta or Nb is covered, and then Cu- which is to be the reinforcing layer 4 is provided outside the diffusion preventive tube 22.
A pipe-shaped reinforcing pipe 23 made of Nb or the like is covered, and then a covering pipe 24 made of Cu or the like to be the stabilizing layer 5 is covered on the outside of the reinforcing pipe 23, and the whole is further reduced to a diameter to finally obtain it. After diameter, by performing diffusion heat treatment,
To produce an Nb 3 Sn superconducting filament by reacting an Nb ultrafine filament inside the secondary wire 18 with Sn to produce an internal reinforcing and stabilizing Nb 3 Sn superconducting wire 1 as shown in FIG. You can

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の超
電導線の製造方法あっては、補強層4を形成する材料と
してパイプ状に加工した補強管23を使用する必要があ
るため、補強層4形成用材料として機械特性が良好な金
属でも、切削性や加工性が悪いものはパイプ状にするこ
とが困難であるため、補強層4形成用材料として用いる
ことができる材料の選択の自由度が小さかった。また、
切削性や加工性が良好な金属でも、パイプ加工して補強
管23を作製するにはコストがかかり、その結果として
超電導線もコスト高となってしまうという問題があっ
た。
However, in the conventional method for manufacturing the superconducting wire, since it is necessary to use the pipe-shaped reinforcing pipe 23 as the material for forming the reinforcing layer 4, it is necessary to form the reinforcing layer 4. Even if the metal has good mechanical characteristics, it is difficult to make a pipe having poor machinability and workability into a pipe, so that the degree of freedom in selecting a material that can be used as the material for forming the reinforcing layer 4 was small. . Also,
Even if the metal has good machinability and workability, there is a problem in that it takes a high cost to manufacture the reinforcing tube 23 by processing the pipe, and as a result, the cost of the superconducting wire also increases.

【0006】本発明は、上記事情に鑑みてなされたもの
で、補強層形成用材料として用いることができる材料の
選択の自由度が大きく、しかもコストダウンが可能な超
電導線の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and provides a method of manufacturing a superconducting wire which has a high degree of freedom in selecting a material that can be used as a reinforcing layer forming material and which can reduce the cost. Especially.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明にあ
っては、合金系超電導体からなる芯部または熱処理によ
って超電導体となる材料を具備する芯部の外周に、補強
層を設け、さらにこの外周に安定化層を設ける超電導線
の製造方法において、芯部の外周に、該芯部の長手方向
に沿ってCu−Nb合金、Cu−Al合金、Cu−Ag
合金のうちから選ばれる補強材からなる柱状体を複数本
添設し、該柱状体の外方に安定化材からなる被覆管を被
せた後に縮径加工を施す工程を具備する超電導線の製造
方法を前記課題の解決手段とした。また、請求項2記載
の発明にあっては、請求項1記載の超電導線の製造方法
において、芯部とこれの外周に添設する複数本の柱状体
との間に拡散防止層を形成する工程を具備する超電導線
の製造方法を前記課題の解決手段とした。
According to a first aspect of the present invention, a reinforcing layer is provided on the outer periphery of a core portion made of an alloy-based superconductor or a core portion made of a material that becomes a superconductor by heat treatment. Further, in the method for manufacturing a superconducting wire in which a stabilizing layer is provided on the outer periphery, in the outer periphery of the core portion, a Cu-Nb alloy, a Cu-Al alloy, and a Cu-Ag alloy are provided along the longitudinal direction of the core portion.
Manufacture of a superconducting wire comprising a step of additionally providing a plurality of columnar bodies made of a reinforcing material selected from alloys, covering the outer side of the columnar bodies with a covering tube made of a stabilizing material, and then performing a diameter reduction process. The method was used as a means for solving the above problems. Further, in the invention according to claim 2, in the method for producing a superconducting wire according to claim 1, a diffusion prevention layer is formed between the core part and a plurality of columnar bodies attached to the outer periphery of the core part. A method of manufacturing a superconducting wire including steps is used as a means for solving the above problems.

【0008】[0008]

【発明の実施の形態】図1から図2は、内部補強安定化
型Nb3Sn系超電導線の製造方法に本発明を適用した
例を示すもので、超電導線を製造するには、まず、図1
(A)に示すようにNbロッドからなる芯材30にCu
−Sn合金の管体31を被せ、スウェージング加工、引
抜加工などの縮径加工によって所望の直径まで縮径して
図1(B)に示す複合体34を作製する。前記芯材30
としては、NbまたはNbにTiを添加してなるものを
用いるのが望ましく、Tiが添加されていると無添加の
場合と比べて高磁界における臨界電流特性が向上する。
なお、管体31は図面に示すような単管状のものに限る
ものではなく、柱状体に複数の透孔が形成された形状の
ものなどを用い、複数の透孔の各々に芯材30を挿入し
て複合材を形成することもできる。
1 and 2 show an example in which the present invention is applied to a method of manufacturing an Nb 3 Sn superconducting wire of internal reinforcing and stabilizing type. To manufacture a superconducting wire, first, Figure 1
As shown in (A), Cu is added to the core material 30 made of Nb rod.
A —Sn alloy tube 31 is covered, and the diameter is reduced to a desired diameter by a diameter reduction process such as swaging or drawing to produce a composite 34 shown in FIG. The core material 30
It is preferable to use Nb or Nb to which Ti is added. When Ti is added, the critical current characteristics in a high magnetic field are improved as compared with the case where Ti is not added.
The tubular body 31 is not limited to a single tubular body as shown in the drawing, but a tubular body having a shape in which a plurality of through holes are formed is used, and the core material 30 is provided in each of the plurality of through holes. It can also be inserted to form a composite.

【0009】次いで、前記複合体34を複数本集合して
Cu−Sn合金の管体35に図1(C)に示すように収
納して縮径し、図1(D)に示す一次素線36を作製
し、次いで、この一次素線36を図1(E)に示すよう
に複数本集合してCu−Sn合金からなる管体37に挿
入し、更に縮径加工を施して図1(F)に示すような二
次素線(二次集合線)38を作製する。この二次素線3
8の内部構造は、Cu−Sn合金からなる基地の内部に
Nbからなる極細のフィラメントが多数分散された構造
となっている。なお、前記二次素線38を更に複数本集
合してCu−Sn合金管に挿入し、縮径する処理を必要
に応じて複数回行って複合体を作製しても良い。なお、
前記二次素線38形成用として用いたCu−Sn合金の
Sn濃度が低い場合には、その外周にSnのメッキ層を
形成して以下の工程に用いても良い。
Next, a plurality of the composites 34 are assembled and housed in a Cu--Sn alloy tube 35 as shown in FIG. 1C to reduce the diameter, and the primary strand shown in FIG. As shown in FIG. 1 (E), a plurality of primary wires 36 are assembled and inserted into a tubular body 37 made of a Cu—Sn alloy. A secondary strand (secondary assembly line) 38 as shown in F) is produced. This secondary strand 3
The internal structure of No. 8 has a structure in which a large number of ultrafine filaments made of Nb are dispersed inside a matrix made of Cu—Sn alloy. A plurality of secondary wires 38 may be collected, inserted into a Cu-Sn alloy tube, and subjected to a diameter reducing treatment a plurality of times to prepare a composite. In addition,
When the Sn concentration of the Cu—Sn alloy used for forming the secondary strand 38 is low, a Sn plating layer may be formed on the outer periphery of the Cu—Sn alloy and used in the following steps.

【0010】次いで、前記二次素線38を複数本集合し
て、図1(G)に示すようにCuパイプ40に挿入した
後、このCuパイプ40の外周に拡散防止層となるべき
TaあるいはNbからなる拡散防止管42を被せる。な
お、ここでは二次素線38を複数本集合してCuパイプ
40に挿入した後、拡散防止管42を被せているが、目
的とする超電導線に応じて二次素線(二次集合線)38
の外周に直接拡散防止管42を被せて以下の工程に用い
てもよい。次いで図2に示すようにこの拡散防止管42
の外周に該拡散防止管42の長手方向に沿って補強層と
なるべき補強材からなる柱状体43を複数本添設し、次
いで該柱状体43の外方に安定化層となるべき安定化材
からなる被覆管44を被せ、更に全体を最終的に得るべ
き直径まで縮径して素線を形成する。
Next, a plurality of the secondary wires 38 are assembled and inserted into a Cu pipe 40 as shown in FIG. 1 (G), and Ta or Ta which is to be a diffusion prevention layer is formed on the outer periphery of the Cu pipe 40. A diffusion prevention tube 42 made of Nb is covered. Although a plurality of secondary strands 38 are assembled and inserted into the Cu pipe 40 here, the diffusion barrier 42 is covered, but the secondary strands (secondary strands) may be selected depending on the target superconducting wire. ) 38
Alternatively, the diffusion prevention tube 42 may be directly covered on the outer circumference of, and used in the following steps. Then, as shown in FIG.
A plurality of columnar bodies 43 made of a reinforcing material to be a reinforcing layer are additionally provided along the longitudinal direction of the diffusion prevention tube 42 on the outer periphery of the column, and then a stabilizing layer to be a stabilizing layer is provided outside the columnar bodies 43. A covering tube 44 made of a material is covered, and then the whole is reduced in diameter to a diameter to finally obtain a strand.

【0011】前記柱状体43をなす補強材としては、C
u−Nb合金、Cu−Al合金、Cu−Ag合金などの
うちから選択される金属が用いられる。柱状体43とし
てCu−Nb合金を用いた場合、柱状体43はCuの金
属マトリックスの内部にNbフィラメントが多数分散配
列された構造を有している。この柱状体43は、Cuと
Nbの両元素が互いにほとんど固溶しないという性質を
有することを利用して製造されたもので、Cu−Nb合
金をその溶湯から鋳造した際に、Cuマトリックス中に
Nb樹枝状晶が生成された鋳塊を得ることができ、この
鋳塊を冷間線引加工することでNb樹枝状晶を引き延ば
してフィラメント状に加工することができ、これにより
Cuのマトリックスの内部にNbフィラメントが分散配
列された構造が得られる。このNbフィラメントは、C
uのマトリックス中に分散配列されるが、このNbフィ
ラメントがCuのマトリックスを強化するので、柱状体
43はCuからなるものより耐力が向上する。更に、N
bはCuにほとんど固溶しないので、柱状体43の導電
率が低下することもなく、柱状体43の導電率は充分に
高いものとなる。また、前記被覆管44をなす安定化材
としては、Cu、Alなどのうちから選択される金属が
用いられる。
The reinforcing material forming the columnar body 43 is C
A metal selected from u-Nb alloy, Cu-Al alloy, Cu-Ag alloy and the like is used. When a Cu—Nb alloy is used as the columnar body 43, the columnar body 43 has a structure in which a large number of Nb filaments are dispersed and arranged inside a Cu metal matrix. The columnar body 43 is manufactured by utilizing the property that both elements of Cu and Nb hardly form a solid solution with each other. When the Cu—Nb alloy is cast from the molten metal, it is contained in the Cu matrix. An ingot in which Nb dendrites are formed can be obtained, and the Nb dendrites can be stretched and processed into a filament by cold drawing the ingot, thereby forming a Cu matrix. A structure in which Nb filaments are dispersed and arranged inside is obtained. This Nb filament is C
Although they are dispersed and arranged in the matrix of u, the Nb filaments reinforce the matrix of Cu, so that the columnar body 43 has a higher yield strength than that made of Cu. Furthermore, N
Since b hardly forms a solid solution in Cu, the conductivity of the columnar body 43 does not decrease, and the conductivity of the columnar body 43 is sufficiently high. Further, as the stabilizing material forming the covering tube 44, a metal selected from Cu, Al, etc. is used.

【0012】次いで、前記素線を500〜700℃で数
十時間〜数百時間加熱する拡散熱処理を行うことによ
り、図5に示したものとほぼ同様の内部補強安定化型N
3Sn系超電導線1を製造することができる。前述の
ような拡散熱処理を行うと、Cu−Sn合金からなる基
地の内部に極細のNb3Sn超電導フィラメントが配列
された構造のNb3Sn超電導体が得られる。
Then, the above-mentioned strand is subjected to a diffusion heat treatment by heating it at 500 to 700 ° C. for several tens to several hundreds of hours, whereby an internal reinforcement stabilizing type N which is almost the same as that shown in FIG.
The b 3 Sn based superconducting wire 1 can be manufactured. Doing diffusion heat treatment as described above, Nb 3 Sn superconductor Nb 3 Sn superconducting filaments ultrafine inside of the base consisting of the Cu-Sn alloy are arranged structure.

【0013】このようにして製造された内部補強安定化
型Nb3Sn系超電導線1は、Cu−Sn合金からなる
基地の内部に無数のNb3Sn超電導フィラメントが配
列されてなる芯部2と、この芯部2の外周に設けられた
拡散防止層3と、該拡散防止層3の外周に設けられた補
強層4と、さらにこの補強層4の外周に設けられた安定
化層5とから構成されている。このような構成の内部補
強安定化型Nb3Sn系超電導線1は、芯部2の外周上
に補強層4が形成されているので、機械的強度が優れ、
また、芯部2の外周に拡散防止層3が形成されているの
で、最外層の安定化層5までSnが拡散することがな
く、Snの拡散による安定化層5の汚染は防止される。
The internal reinforcing and stabilizing type Nb 3 Sn superconducting wire 1 produced in this way is composed of a core portion 2 in which a myriad of Nb 3 Sn superconducting filaments are arranged inside a base made of Cu-Sn alloy. From the diffusion preventing layer 3 provided on the outer periphery of the core portion 2, the reinforcing layer 4 provided on the outer periphery of the diffusion preventing layer 3, and the stabilizing layer 5 further provided on the outer periphery of the reinforcing layer 4. It is configured. Since the reinforcing layer 4 is formed on the outer periphery of the core 2, the internal reinforcing and stabilizing Nb 3 Sn-based superconducting wire 1 having such a structure has excellent mechanical strength,
Further, since the diffusion preventing layer 3 is formed on the outer periphery of the core portion 2, Sn does not diffuse to the stabilizing layer 5 which is the outermost layer, and the stabilizing layer 5 is prevented from being contaminated by the diffusion of Sn.

【0014】この例の内部補強安定化型Nb3Sn系超
電導線の製造方法にあっては、熱処理によってNb3
n超電導体となる材料を具備する芯部2の外周に、該芯
部2の長手方向に沿って補強材からなる柱状体43を複
数本添設し、該柱状体43の外方に安定化材からなる被
覆管44を被せた後に縮径加工を施す工程を具備するこ
とにより、補強層4形成材料としてパイプ状に加工した
補強管を使用する必要がないので、補強層4形成用材料
として機械特性が良好な金属で柱状にできるものあれ
ば、切削性や加工性が悪いものでも使用できるため、補
強層4形成用材料として用いることができる材料の選択
の自由度が大きくなる。また、補強層4形成材料として
は柱状体を使用すればよいので、パイプ状に加工する工
程がなくなるため、Nb3Sn系超電導線のコストダウ
ンが可能である。なお、前記の例においては、Nb3
n系超電導線の製造方法に本発明の超電導線の製造方法
を適用した例について説明したが、本発明の製造方法を
Nb3Snの他、Nb3Ga、Nb3Ge、Nb3Al、V
3Ga、Nb−Tiなどの超電導線の製造方法に適用し
てもよいのは勿論である。
In the method of manufacturing the Nb 3 Sn superconducting wire of the internal reinforcement stabilizing type of this example, Nb 3 S is formed by heat treatment.
n A plurality of columnar bodies 43 made of a reinforcing material are provided along the longitudinal direction of the core portion 2 provided on the outer periphery of the core portion 2 having a material to be a superconductor, and stabilized outside the columnar bodies 43. By including a step of performing a diameter reduction process after covering the covering pipe 44 made of a material, it is not necessary to use a pipe-shaped reinforcing pipe as the reinforcing layer 4 forming material. As long as the metal has good mechanical properties and can be formed into a columnar shape, it can be used even if it has poor machinability and workability, so that the degree of freedom in selecting a material that can be used as the material for forming the reinforcing layer 4 increases. Further, since a columnar body may be used as the material for forming the reinforcing layer 4, there is no need to process the material into a pipe shape, so that the cost of the Nb 3 Sn-based superconducting wire can be reduced. In the above example, Nb 3 S
Although an example in which the method for manufacturing a superconducting wire of the present invention is applied to the method for manufacturing an n-based superconducting wire has been described, the manufacturing method of the present invention is applied to Nb 3 Sn, Nb 3 Ga, Nb 3 Ge, Nb 3 Al, V
Needless to say, it may be applied to a method of manufacturing a superconducting wire such as 3 Ga or Nb-Ti.

【0015】[0015]

【実施例】以下、本発明を、実施例および比較例によ
り、具体的に説明するが、本発明はこれらの実施例のみ
に限定されるものではない。 (実施例1)直径14mmのNb−1.2wt%Tiロ
ッドをCu−13wt%Sn合金からなる外径25m
m、内径15mmの管体に挿入し、縮径して直径1.0
0mmの複合体を得た。次にこの複合体を91本集合
し、Cu−8wt%Sn合金からなる外径12mm、内
径11mmの管体に挿入し、縮径加工を行って直径1.1
4mmの一次素線を得た。次いで、この一次素線を91
本集合し、Cu−8wt%Sn合金からなる外径13m
m、内径12mmの管体に挿入し、縮径加工を行って直
径11mmの二次集合線を作製した。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples. (Example 1) An Nb-1.2 wt% Ti rod having a diameter of 14 mm and an outer diameter of 25 m made of a Cu-13 wt% Sn alloy
m, insert into a tube with an inner diameter of 15 mm, reduce the diameter to 1.0
A 0 mm composite was obtained. Next, 91 of the composites were collected and inserted into a tube body made of Cu-8 wt% Sn alloy and having an outer diameter of 12 mm and an inner diameter of 11 mm, and the diameter was reduced to 1.1.
A 4 mm primary strand was obtained. Then, the primary strand is
Main assembly, outer diameter 13m made of Cu-8wt% Sn alloy
A secondary assembly line having a diameter of 11 mm was produced by inserting the tube into a tube having an inner diameter of 12 mm and an inner diameter of 12 mm and performing a diameter reduction process.

【0016】次いで、このようにして得られた二次集合
線の外方にTaからなる拡散防止管を被せ、ついでこの
拡散防止管の外周に拡散防止管の長手方向に沿って径
2.45mmのCu−20wt%Nbからなる柱状体を
18本添設し、さらにこれら柱状体の外方に外径19m
m、内径18mmのCuからなる被覆管を被せた後、全
体を径0.8mmまで縮径した後、675℃で10日間
加熱する拡散熱処理を行うことにより、Cu−Nb/
(Nb,Ti)3Sn超電導線を得た。このようにして
得られた超電導線の芯部は、Cu−Sn合金からなる基
地の内部に径3.4μmの(Nb,Ti)3Sn超電導
フィラメントが8,281本配列された構造であった。
Next, a diffusion prevention tube made of Ta is covered on the outside of the secondary assembly line obtained in this manner, and then the outer circumference of the diffusion prevention tube is 2.45 mm along the longitudinal direction of the diffusion prevention tube. 18 columnar bodies made of Cu-20 wt% Nb are additionally provided, and the outer diameter is 19 m outside the columnar bodies.
m, an inner diameter of 18 mm was covered with Cu, and the entire diameter was reduced to 0.8 mm, and then diffusion heat treatment was performed by heating at 675 ° C. for 10 days.
A (Nb, Ti) 3 Sn superconducting wire was obtained. The core portion of the superconducting wire thus obtained had a structure in which 8,281 (Nb, Ti) 3 Sn superconducting filaments having a diameter of 3.4 μm were arranged inside a base made of a Cu—Sn alloy. .

【0017】(実施例2)直径14mmのNbロッドを
Cu−6wt%Sn合金からなる外径25mm、内径1
5mmの管体に挿入し、縮径して直径1.0mmの複合
体を得た。次にこの複合体を91本集合し、Cu−6w
t%Sn合金からなる外径12mm、内径11mmの管
体に挿入し、縮径加工を行って直径1.7mmの一次素
線を得た。次いで、この一次素線を33本集合し、 C
u−6wt%Sn合金からなる外径13mm、内径12
mmの管体に挿入し、縮径加工を行って直径11mmの
二次集合線を作製した。
(Example 2) An Nb rod having a diameter of 14 mm was made of a Cu-6 wt% Sn alloy and had an outer diameter of 25 mm and an inner diameter of 1
The composite was inserted into a 5 mm tube and reduced in diameter to obtain a composite having a diameter of 1.0 mm. Next, 91 of these composites were collected, and Cu-6w
It was inserted into a tube body having an outer diameter of 12 mm and an inner diameter of 11 mm made of a t% Sn alloy and subjected to a diameter reduction process to obtain a primary wire having a diameter of 1.7 mm. Then, gather 33 of these primary strands, and
Outer diameter 13 mm, inner diameter 12 made of u-6 wt% Sn alloy
It was inserted into a tubular body having a diameter of 10 mm and subjected to a diameter reduction process to produce a secondary assembly line having a diameter of 11 mm.

【0018】次いで、このようにして得られた二次集合
線の外方にTaからなる拡散防止管を被せ、ついでこの
拡散防止管の外周に該拡散防止管の長手方向に沿って
径2.4mmのCu−15wt%Nbからなる柱状体を
18本添設し、さらにこれら柱状体の外方に外径19m
m、内径18mmのCuからなる被覆管を被せた後、全
体を径0.5mmまで縮径したのち、前記実施例1と同
様にして拡散熱処理を行うことにより、Cu−Nb/N
3Sn超電導線を得た。ここで得られた超電導線の芯
部は、Cu−Sn合金からなる基地の内部に径1.6μ
mのNb3Sn超電導フィラメントが3,025本配列
された構造であった。
Then, a diffusion prevention tube made of Ta is covered on the outside of the secondary assembly line obtained in this way, and then the outer circumference of the diffusion prevention tube is extended along the longitudinal direction of the diffusion prevention tube.
Eighteen columnar bodies made of Cu-15 wt% Nb having a diameter of 2.4 mm are additionally provided, and an outer diameter of 19 m is provided outside these columnar bodies.
After covering with a coating tube made of Cu having an inner diameter of 18 mm and an inner diameter of 18 mm, the entire diameter was reduced to 0.5 mm, and then diffusion heat treatment was performed in the same manner as in Example 1 to obtain Cu-Nb / N.
A b 3 Sn superconducting wire was obtained. The core portion of the superconducting wire obtained here has a diameter of 1.6 μ inside the base made of Cu—Sn alloy.
It had a structure in which 3,025 Nb 3 Sn superconducting filaments of m were arranged.

【0019】(比較例1)前記実施例1と同様にして二
次集合線を作製した。次いで、この二次集合線の外方に
Taからなる拡散防止管を被せ、ついでこの拡散防止管
の外方に外径17mm、内径12mmのCu−20wt
%Nbからなる補強管を被せ、さらにこの補強管の外方
に外径19mm、内径18mmのCuからなる被覆管を
被せた後、全体を径0.8mmまで縮径した後、前記実
施例1と同様にして拡散熱処理を行うことにより、Cu
−Nb/(Nb,Ti)3Sn系超電導線を得た。この
ようにして得られた超電導線の芯部は、Cu−Sn合金
からなる基地の内部に径3.4μmの(Nb,Ti)3
Sn超電導フィラメントが8,281本配列された構造
のものであった。
(Comparative Example 1) A secondary assembly line was produced in the same manner as in Example 1. Then, a diffusion preventive tube made of Ta is covered on the outside of the secondary assembly line, and then Cu-20 wt having an outer diameter of 17 mm and an inner diameter of 12 mm is provided on the outer side of the diffusion preventive tube.
% Nb, and the outer surface of the reinforcing tube was covered with a coating tube made of Cu having an outer diameter of 19 mm and an inner diameter of 18 mm, and the entire diameter was reduced to 0.8 mm. By performing diffusion heat treatment in the same manner as
-Nb / was obtained (Nb, Ti) a 3 Sn based superconducting wire. The core portion of the superconducting wire thus obtained has a diameter of 3.4 μm (Nb, Ti) 3 inside a matrix made of Cu—Sn alloy.
The structure was such that 8,281 Sn superconducting filaments were arranged.

【0020】(比較例2)前記実施例1と同様にして二
次集合線を作製した。次いで、この二次集合線の外方に
Taからなる拡散防止管を被せ、さらにこの拡散防止管
の外方に内径12mmのCuからなる被覆管を被せ、全
体を径0.8mmまで縮径した後、前記実施例1と同様
にして拡散熱処理を行うことにより、Cu/(Nb,T
i)3Sn超電導線を得た。このようにして得られた超
電導線の芯部は、Cu−Sn合金からなる基地の内部に
径3.4μmの(Nb,Ti)3Sn超電導フィラメン
トが8,281本配列された構造のものであった。
(Comparative Example 2) A secondary assembly line was produced in the same manner as in Example 1. Then, a diffusion prevention tube made of Ta was covered on the outside of the secondary assembly line, and a coating tube made of Cu having an inner diameter of 12 mm was further covered on the outside of the diffusion prevention tube to reduce the entire diameter to 0.8 mm. Thereafter, a diffusion heat treatment is performed in the same manner as in Example 1 above, so that Cu / (Nb, T
i) 3 Sn superconducting wire was obtained. The core portion of the superconducting wire thus obtained has a structure in which 8,281 (Nb, Ti) 3 Sn superconducting filaments having a diameter of 3.4 μm are arranged inside a matrix made of Cu—Sn alloy. there were.

【0021】(比較例3)前記実施例2と同様にして二
次集合線を作製した。次いで、この二次集合線の外方に
Taからなる拡散防止管を被せ、ついでこの拡散防止管
の外方に外径17mm、内径12mmのCu−15wt
%Nbからなる補強管を被せ、さらにこの補強管の外方
に外径19mm、内径18mmのCuからなる被覆管を
被せた後、全体を径0.5mmまで縮径した後、前記実
施例1と同様にして拡散熱処理を行うことにより、Cu
−Nb/Nb3Sn超電導線を得た。このようにして得
られた超電導線の芯部は、Cu−Sn合金からなる基地
の内部に径1.6μmの(Nb,Ti)3Sn超電導フ
ィラメントが3,025本配列された構造のものであっ
た。
(Comparative Example 3) A secondary assembly line was prepared in the same manner as in Example 2. Next, a diffusion prevention tube made of Ta is covered on the outside of the secondary assembly line, and then Cu-15 wt having an outer diameter of 17 mm and an inner diameter of 12 mm is provided on the outer side of the diffusion prevention tube.
% Nb, a reinforcing tube was covered, and further, a covering tube made of Cu having an outer diameter of 19 mm and an inner diameter of 18 mm was covered on the outer side of the reinforcing tube, and then the whole was reduced to a diameter of 0.5 mm. By performing diffusion heat treatment in the same manner as
It was obtained -Nb / Nb 3 Sn superconducting wire. The core portion of the superconducting wire thus obtained has a structure in which 3,025 (Nb, Ti) 3 Sn superconducting filaments having a diameter of 1.6 μm are arranged inside a matrix made of a Cu—Sn alloy. there were.

【0022】(比較例4)前記実施例2と同様にして二
次集合線を作製した。次いで、この二次集合線の外方に
Taからなる拡散防止管を被せ、ついでこの拡散防止管
の外方に内径12mmのCuからなる被覆管を被せた
後、全体を径0.5mmまで縮径した後、前記実施例1
と同様にして拡散熱処理を行うことにより、Cu/Nb
3Sn超電導線を得た。このようにして得られた超電導
線の芯部は、Cu−Sn合金からなる基地の内部に径
1.6μmのNb3Sn超電導フィラメントが3,02
5本配列された構造のものであった。
(Comparative Example 4) A secondary assembly line was prepared in the same manner as in Example 2. Then, a diffusion prevention tube made of Ta is covered on the outside of the secondary assembly line, and a cladding tube made of Cu having an inner diameter of 12 mm is covered on the outside of the diffusion prevention tube, and then the whole is reduced to a diameter of 0.5 mm. After calibrating, said Example 1
By performing diffusion heat treatment in the same manner as described above, Cu / Nb
3 Sn superconducting wire was obtained. The core portion of the superconducting wire obtained in this manner has 3,02 Nb 3 Sn superconducting filaments with a diameter of 1.6 μm inside the matrix made of Cu—Sn alloy.
It had a structure in which 5 pieces were arranged.

【0023】次に、前述のようにして製造された実施例
1〜2、比較例1〜4の超電導線について超電導特性を
調べるため、8〜23Tの磁界中における臨界電流密度
の測定を行った。図3にその結果を示す。また、実施例
1〜2、比較例1〜4の超電導線について機械特性を調
べるため、各超電導線について室温、液体窒素温度(7
7K)、液体ヘリウム温度(4.2K)における0.2
%耐力を測定した。図4にその結果を示す。
Next, in order to examine the superconducting properties of the superconducting wires of Examples 1 and 2 and Comparative Examples 1 to 4 manufactured as described above, the critical current density was measured in a magnetic field of 8 to 23T. . FIG. 3 shows the result. Further, in order to examine the mechanical properties of the superconducting wires of Examples 1 and 2 and Comparative Examples 1 to 4, room temperature and liquid nitrogen temperature (7
7K), 0.2 at liquid helium temperature (4.2K)
The% yield strength was measured. FIG. 4 shows the result.

【0024】図3〜図4に示した結果から明らかなよう
に実施例1〜2で得られた超電導線は、従来の製造方法
により製造された比較例1ならびに3の超電導線と同じ
程度の超電導特性を有し、さらに比較例1ならびに3の
超電導線と同じ程度の機械特性を有していることがわか
る。また、実施例1〜2の製造方法は、補強層形成材料
としてパイプ状に加工した補強管を用いる必要がないの
で、超電導線の製造が容易である。従って、実施例1〜
2の製造方法によれば、機械特性ならびに超電導特性を
損なうことなく、超電導線を容易に製造できることが判
った。
As is clear from the results shown in FIGS. 3 to 4, the superconducting wires obtained in Examples 1 and 2 have the same degree as the superconducting wires of Comparative Examples 1 and 3 manufactured by the conventional manufacturing method. It can be seen that it has superconducting properties and further has mechanical properties comparable to those of the superconducting wires of Comparative Examples 1 and 3. Further, in the manufacturing methods of Examples 1 and 2, since it is not necessary to use a reinforcing pipe processed into a pipe shape as the reinforcing layer forming material, the superconducting wire can be easily manufactured. Therefore, Examples 1 to 1
According to the manufacturing method of No. 2, it was found that the superconducting wire can be easily manufactured without impairing the mechanical characteristics and the superconducting characteristics.

【0025】[0025]

【発明の効果】以上説明したように本発明の超電導線の
製造方法は、合金系超電導体からなる芯部または熱処理
によって超電導体となる材料を具備する芯部の外周に、
該芯部の長手方向に沿ってCu−Nb合金、Cu−Al
合金、Cu−Ag合金のうちから選ばれる補強材からな
る柱状体を複数本添設し、該柱状体の外方に安定化材か
らなる被覆管を被せた後に縮径加工を施す工程を具備す
る方法であるので、補強層形成材料としてパイプ状に加
工した補強管を使用する必要がなくなり、補強層形成用
材料として機械特性が良好な金属で柱状にできるものあ
れば、切削性や加工性が悪いものでも使用できる。ま
た、補強層形成材料としては柱状体を使用すればよいの
で、パイプ状に加工する工程がなくなる。従って、本発
明によれば、補強層形成用材料として用いることができ
る材料の選択の自由度が大きく、しかもコストダウンが
可能な超電導線の製造方法を提供することができるとい
う利点がある。
As described above, the method of manufacturing a superconducting wire according to the present invention is characterized in that the core part made of an alloy-based superconductor or the core part provided with a material to be a superconductor by heat treatment has
Cu-Nb alloy, Cu-Al along the longitudinal direction of the core
Alloy, Cu-Ag alloy, a plurality of columnar bodies made of a reinforcing material are additionally provided, and a coating pipe made of a stabilizing material is covered on the outside of the columnar bodies, and then a diameter reducing process is performed. It is not necessary to use a reinforcing pipe that has been processed into a pipe shape as the reinforcing layer forming material, as long as the material for forming the reinforcing layer can be formed into a columnar shape with a metal having good mechanical properties, machinability and workability can be improved. It can be used even if it is bad. Further, since a columnar body may be used as the reinforcing layer forming material, the step of processing into a pipe shape is eliminated. Therefore, according to the present invention, there is an advantage that it is possible to provide a method for manufacturing a superconducting wire, which has a high degree of freedom in selecting a material that can be used as a material for forming a reinforcing layer and can reduce the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 (A)〜(G)は、本発明の超電導線の製造
方法の一例を工程順に示した断面図である。
1A to 1G are cross-sectional views showing an example of a method for manufacturing a superconducting wire of the present invention in the order of steps.

【図2】 本発明の超電導線の製造方法の一例を示した
断面図である。
FIG. 2 is a cross-sectional view showing an example of a method for manufacturing a superconducting wire of the present invention.

【図3】 各化合物系超電導線における磁界と臨界電流
密度との関係を示したグラフである。
FIG. 3 is a graph showing the relationship between the magnetic field and the critical current density in each compound-based superconducting wire.

【図4】 各化合物系超電導線の温度と0.2%耐力と
の関係を示したグラフである。
FIG. 4 is a graph showing the relationship between the temperature and 0.2% proof stress of each compound-based superconducting wire.

【図5】 内部補強安定化型Nb3Sn系超電導線の例
を示す拡大断面図である。
FIG. 5 is an enlarged cross-sectional view showing an example of an internal reinforcement stabilizing Nb 3 Sn based superconducting wire.

【図6】 (A)〜(G)は、従来の内部補強安定化型
Nb3Sn系超電導線の製造方法を工程順に示した断面
図である。
6A to 6G are cross-sectional views showing, in the order of steps, a method for manufacturing a conventional internal reinforcement stabilizing Nb 3 Sn based superconducting wire.

【符号の説明】[Explanation of symbols]

1・・・超電導線、2・・・芯部、3・・・拡散防止層、4・・・補
強層、5・・・安定化層、42・・・拡散防止管、43・・・柱
状体、44・・・被覆管。
1 ... Superconducting wire, 2 ... Core part, 3 ... Diffusion prevention layer, 4 ... Reinforcing layer, 5 ... Stabilizing layer, 42 ... Diffusion prevention tube, 43 ... Column Body, 44 ... cladding tube.

フロントページの続き (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 株式会 社フジクラ内Front page continuation (72) Inventor Takashi Saito 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合金系超電導体からなる芯部または熱処
理によって超電導体となる材料を具備する芯部の外周
に、補強層を設け、さらにこの外周に安定化層を設ける
超電導線の製造方法において、芯部の外周に、該芯部の
長手方向に沿ってCu−Nb合金、Cu−Al合金、C
u−Ag合金のうちから選ばれる補強材からなる柱状体
を複数本添設し、該柱状体の外方に安定化材からなる被
覆管を被せた後に縮径加工を施す工程を具備することを
特徴とする超電導線の製造方法。
1. A method of manufacturing a superconducting wire, wherein a reinforcing layer is provided on an outer periphery of a core portion made of an alloy-based superconductor or a core portion provided with a material to be a superconductor by heat treatment, and a stabilizing layer is further provided on the outer periphery. , Cu-Nb alloy, Cu-Al alloy, C on the outer periphery of the core along the longitudinal direction of the core.
A step of providing a plurality of columnar bodies made of a reinforcing material selected from among u-Ag alloys, covering the outer side of the columnar bodies with a coating tube made of a stabilizing material, and then performing a diameter reduction process. And a method for manufacturing a superconducting wire.
【請求項2】 請求項1記載の超電導線の製造方法にお
いて、芯部とこれの外周に添設する複数本の柱状体との
間に拡散防止層を形成する工程を具備することを特徴と
する超電導線の製造方法。
2. The method of manufacturing a superconducting wire according to claim 1, further comprising the step of forming a diffusion prevention layer between the core portion and a plurality of columnar bodies attached to the outer periphery of the core portion. Manufacturing method of superconducting wire.
JP20255195A 1995-08-08 1995-08-08 Superconducting wire manufacturing method Expired - Fee Related JP3664776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20255195A JP3664776B2 (en) 1995-08-08 1995-08-08 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20255195A JP3664776B2 (en) 1995-08-08 1995-08-08 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPH0950721A true JPH0950721A (en) 1997-02-18
JP3664776B2 JP3664776B2 (en) 2005-06-29

Family

ID=16459381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20255195A Expired - Fee Related JP3664776B2 (en) 1995-08-08 1995-08-08 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JP3664776B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777182B1 (en) * 2006-08-14 2007-11-16 한국전기연구원 High temperature superconducting power cable
EP2333793A1 (en) * 2009-12-09 2011-06-15 Bruker BioSpin AG Superconductors with improved mechanical strength
CN106057356A (en) * 2016-06-14 2016-10-26 西部超导材料科技股份有限公司 Preparation method of CuNb reinforced Nb3Sn low-temperature superconducting wire fabricated by bronze process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777182B1 (en) * 2006-08-14 2007-11-16 한국전기연구원 High temperature superconducting power cable
EP2333793A1 (en) * 2009-12-09 2011-06-15 Bruker BioSpin AG Superconductors with improved mechanical strength
CN106057356A (en) * 2016-06-14 2016-10-26 西部超导材料科技股份有限公司 Preparation method of CuNb reinforced Nb3Sn low-temperature superconducting wire fabricated by bronze process

Also Published As

Publication number Publication date
JP3664776B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US4414428A (en) Expanded metal containing wires and filaments
KR20060100421A (en) Method for producing (nb, ti)3sn wire by use of ti source rods
KR20190037365A (en) Diffusion barrier for metallic superconducting wire
JPS61194155A (en) Production of nb3sn superconductive wire
US5127149A (en) Method of production for multifilament niobium-tin superconductors
JPS6215967B2 (en)
JPH0950721A (en) Manufacture of superconducting cable
JP4762782B2 (en) Reinforcing material, compound superconducting wire, and method for producing compound superconducting wire
US4153986A (en) Method for producing composite superconductors
JP3063025B2 (en) Nb3Sn superconducting wire and method of manufacturing the same
JP3701349B2 (en) Superconducting wire manufacturing method and superconducting wire
US4215465A (en) Method of making V3 Ga superconductors
JPH11238418A (en) Compound superconductive wire
JPH09282953A (en) Niobium 3 aluminum superconductive wire rod and manufacture thereof
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JPH0982149A (en) Nb3sn superconducting wire excellent in strength and workability
JP2517594B2 (en) Method for producing fiber-dispersed superconducting wire
JP2749136B2 (en) Aluminum stabilized superconducting wire
JPH09153310A (en) High-strength superconducting wire
JP2742422B2 (en) Method of manufacturing compound superconducting wire
JPH06309968A (en) Manufacture of nb3sn superconducting wire for ac
JPH0791623B2 (en) Nb3Sn superconducting wire manufacturing method
JPS62211359A (en) Manufacture of nb3sn superconductor element wire
JPH06223653A (en) Manufacture of nb 3 sn compound superconducting wire
JPH09120722A (en) Manufacture of metal superconductive wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees