JPH0949892A - Control method for grain diameter of uo2 sintered pellet - Google Patents

Control method for grain diameter of uo2 sintered pellet

Info

Publication number
JPH0949892A
JPH0949892A JP7199906A JP19990695A JPH0949892A JP H0949892 A JPH0949892 A JP H0949892A JP 7199906 A JP7199906 A JP 7199906A JP 19990695 A JP19990695 A JP 19990695A JP H0949892 A JPH0949892 A JP H0949892A
Authority
JP
Japan
Prior art keywords
grain
powder
sintered body
scrap
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7199906A
Other languages
Japanese (ja)
Other versions
JP3071671B2 (en
Inventor
Akira Komono
野 彰 薦
Kyoji Okamoto
本 協 司 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Nuclear Fuel Japan Co Ltd
Original Assignee
Japan Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Fuel Co Ltd filed Critical Japan Nuclear Fuel Co Ltd
Priority to JP7199906A priority Critical patent/JP3071671B2/en
Publication of JPH0949892A publication Critical patent/JPH0949892A/en
Application granted granted Critical
Publication of JP3071671B2 publication Critical patent/JP3071671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain surely controlling grain of oxidation recovery powder by putting specific materials in a processing port in hydrogen atmosphere and resintering the scrap of UO2 burnup pellets. SOLUTION: When oxidation begins in UO2 sintered body in air atmosphere, oxygen invades in grain boundary at first and then within the grain. According to this oxidation, the Uo2 in grain boundary changes the phase to U3 O8 and swells to come off. Therefore, to control the grain diameter of U3 O8 powder, the grain diameter of UO2 sintered body is controlled for preprocessing. That is, flakes of Al2 O3 and SiO2 of ca. 5% is put in the processing port in hydrogen environment, and the scrap of UO2 burnup pellets is resintered. In this resintering process, the average diameter of UO2 sintered body is controlled and vapor of Al2 O3 and SiO2 invades from the grain boundary during sintering and so the growth of grain is promoted. By this, the grain size of oxidation recovery powder of the scrap UO2 is surely controlled and sintered density and densification are stabilized to be controllable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、核燃料ペレット製
造に関し、特にUO焼結ペレットの結晶粒径を制御す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of nuclear fuel pellets, and more particularly to a method for controlling the grain size of UO 2 sintered pellets.

【0002】[0002]

【従来の技術】UO燃料の製造において発生するUO
スクラップは、大別して粉末とペレットに区分される
が、これらは回収して再利用に供される。UOスクラ
ップの回収にあたっては、湿式法と乾式法が採用され
る。
UO generated in the production of UO 2 fuel
The two scraps are roughly classified into powder and pellets, which are collected and reused. Wet method and dry method are adopted for the recovery of UO 2 scrap.

【0003】粉末とペレットに適用される湿式法では、
UOスクラップを酸で溶解し、二ウラン酸アンモニウ
ム(NHO・2UOまたはUOとして沈澱さ
せ、UO粉末を得る。一方、主にペレットに適用され
る乾式法では、UOスクラップを酸化雰囲気中で処理
し、U粉末を得る。
In the wet method applied to powders and pellets,
UO 2 scrap is dissolved with acid and precipitated as ammonium diuranate (NH 4 ) 2 O.2UO 3 or UO 4 to obtain UO 2 powder. On the other hand, in the dry method mainly applied to pellets, UO 2 scrap is processed in an oxidizing atmosphere to obtain U 3 O 8 powder.

【0004】湿式法によるUOスクラップの回収には
プラント設備の費用がかかったり、廃液処理等の問題が
あるため、乾式法の採用が好ましい。しかし、乾式法で
得られたU粉末は、これをUO粉末に添加し、
成形、焼結すると、還元雰囲気中でUOに相変化を起
し、密度低下の原因となる。
[0004] Since the recovery of UO 2 scrap by the wet method involves the cost of plant facilities and waste liquid treatment, the dry method is preferable. However, the U 3 O 8 powder obtained by the dry method was added to UO 2 powder,
When molded and sintered, UO 2 undergoes a phase change in a reducing atmosphere, which causes a decrease in density.

【0005】従って、安定した焼結密度を有するUO
粉末を得るには、まず前述したU粉末の粒度を調
整することが必要となる。焼結粒子の大きさを調整する
方法としては、一般には機械的粉砕あるいは造粒が採用
される。しかし、これらの機械的方法では設備投資が必
要であったり、原料である酸化処理前のUOスクラッ
プの特性が直接大きく影響する等の問題がある。
Therefore, UO 2 having a stable sintered density
In order to obtain the powder, it is first necessary to adjust the particle size of the U 3 O 8 powder described above. As a method of adjusting the size of the sintered particles, mechanical pulverization or granulation is generally adopted. However, these mechanical methods have problems that they require equipment investment and that the characteristics of UO 2 scrap before oxidation, which is a raw material, have a great influence directly.

【0006】[0006]

【発明が解決しようとする課題】本発明は、U
末の粒径を制御するために、従来採用されていた機械的
方法に代る、確実で生産性の優れた新規な方法を提供す
ることをその目的としている。また、本発明の目的は、
UOスクラップの酸化回収粉末の粒度を制御する方法
を見い出し、これにより焼結密度およびデンシフィケー
ション値をコントロールすることにある。
DISCLOSURE OF THE INVENTION The present invention provides a reliable and highly productive novel method for controlling the particle size of U 3 O 8 powder, which is an alternative to the mechanical method conventionally used. Its purpose is to provide. The object of the present invention is
It is to find a way to control the particle size of the oxidatively recovered powder of UO 2 scrap and thereby control the sintering density and densification value.

【0007】[0007]

【課題を解決するための手段】本発明者らは、U
粉末の平均粒径を制御するためには、まず出発物質であ
るUO焼結体の平均結晶粒径を調整すれば良いことを
知見した。すなわち、酸化前のUO焼結ペレットの結
晶粒径と製造されたU粉末の粒径との間にはある
一定の相関関係があることを見い出したのである。
The present inventors have found that U 3 O 8
In order to control the average particle size of the powder, it was first found that the average crystal particle size of the starting material UO 2 sintered body should be adjusted. That is, it was found that there is a certain correlation between the crystal grain size of the UO 2 sintered pellet before oxidation and the grain size of the manufactured U 3 O 8 powder.

【0008】本発明は、下記の事項をその特徴としてい
る。原子燃料用UO焼結ペレットのスクラップを回収
して再使用に供するにあたり、酸化雰囲気内で得られる
粉末の粒径を制御するために、前処理として水
素雰囲気中にて処理ボート内に5%程度のAl
よびSiOの小片を入れてUO焼結ペレットのスク
ラップを再焼結する、UO焼結ペレットの結晶粒径の
制御方法。
The present invention is characterized by the following items. In recovering the scrap of UO 2 sintered pellets for nuclear fuel for reuse, in order to control the particle size of the U 3 O 8 powder obtained in an oxidizing atmosphere, a processing boat in a hydrogen atmosphere is used as a pretreatment. A method for controlling the crystal grain size of UO 2 sintered pellets, which comprises re-sintering scraps of UO 2 sintered pellets by putting small pieces of about 5% Al 2 O 3 and SiO 2 inside.

【0009】以下に、本発明を詳細に説明する。まず、
UO焼結体からU粉末を得るための処理工程に
ついて述べる。出発物質であるUO焼結体は、500
〜600℃で1〜2時間、酸化雰囲気中で酸化される。
その酸化のメカニズムは、まず結晶粒界が酸化され、そ
の後、結晶粒内に酸化が進行する。
The present invention will be described in detail below. First,
The processing steps for obtaining the U 3 O 8 powder from the UO 2 sintered body will be described. The starting material, UO 2 sintered body, is 500
It is oxidized in an oxidizing atmosphere at ~ 600 ° C for 1-2 hours.
The mechanism of the oxidation is that the crystal grain boundaries are first oxidized and then the oxidation progresses in the crystal grains.

【0010】図1に示すように、一般的に焼結体は多結
晶体であり、粒界により区分されている。UO焼結体
は、20μm程度の結晶粒により構成されている。空気
雰囲気中で酸化が開始されると、粒界にまず酸素が侵入
し、その後粒内に酸素が侵入して酸化が完了する。粒界
に酸素が侵入し、酸化が始まると粒界のUOがU
に相変化し、体積膨脹して剥がれ落ちる。従って、出
発物質であるUO焼結体の粒径を制御することによ
り、最終物質であるUの粒径を制御することが出
来る。
As shown in FIG. 1, a sintered body is generally a polycrystalline body and is divided by grain boundaries. The UO 2 sintered body is composed of crystal grains of about 20 μm. When the oxidation is started in the air atmosphere, oxygen first enters the grain boundary and then oxygen enters the grain to complete the oxidation. When oxygen enters the grain boundaries and oxidation starts, UO 2 at the grain boundaries becomes U 3 O.
The phase changes to 8 , and the volume expands and peels off. Therefore, by controlling the particle size of the starting material UO 2 sintered body, the particle size of the final material U 3 O 8 can be controlled.

【0011】UO焼結体の結晶粒径は、一般的な原子
燃料の製造パラメータである温度1700〜1800
℃、2〜6時間で焼結した場合、平均で10〜20μm
程度である。従って、結晶粒界に沿って酸化が進行する
と10〜20μmの結晶粒が基本となって、U
末の平均粒径が決定される。
The crystal grain size of the UO 2 sintered body is the temperature 1700 to 1800 which is a manufacturing parameter of general nuclear fuel.
When sintered at 2 ° C for 2 to 6 hours, the average is 10 to 20 μm.
It is a degree. Therefore, when the oxidation progresses along the grain boundaries, the average grain size of the U 3 O 8 powder is determined on the basis of the crystal grains of 10 to 20 μm.

【0012】出発物質であるUO焼結体の平均粒径の
制御は再焼結熱処理により達成される。さらに、再焼結
時にAlおよびSiOの蒸気が雰囲気中に存在
すれば、その蒸気が粒界から侵入し、結晶粒の成長がよ
り促進される。
The control of the average particle size of the starting material UO 2 sintered body is achieved by the re-sintering heat treatment. Furthermore, if vapors of Al 2 O 3 and SiO 2 are present in the atmosphere during re-sintering, the vapors penetrate from grain boundaries and the growth of crystal grains is further promoted.

【0013】Uを添加したUO成形体を水素雰
囲気で焼結すると、UがUOに相変化し、体積
が減少する。これはUが気孔形成剤になり得るこ
とを意味している。気孔形成剤により出来上がった気孔
は、そのサイズにより原子炉内で挙動の違いを表す。す
なわち、サイズの小さい(一般的に、数μm)気孔は消
滅しやすく、その結果、原子炉内燃焼時に収縮する減
少、すなわち、焼きしまり(デンシフィケーション)が
発生する。この現象はペレットから被覆管への熱伝達の
低下や被覆管のつぶれ(コラップス)を誘発するので好
ましくない。粒径を制御されたものは44μm以下の粉
末が少なくなっているので、微細な気孔の発生が抑制さ
れ、品質の向上につながる。
[0013] sintering U 3 O 8 UO 2 moldings was added in a hydrogen atmosphere, U 3 O 8 is phase-changed into UO 2, volume decreases. This means that U 3 O 8 can be a pore-forming agent. The pores created by the pore-forming agent show different behavior in the reactor depending on their size. That is, small-sized pores (generally, a few μm) are likely to disappear, and as a result, a decrease in shrinkage during combustion in a nuclear reactor, that is, densification occurs. This phenomenon is unfavorable because it induces a decrease in heat transfer from the pellets to the cladding and collapse of the cladding (collapse). Since the amount of powder having a controlled particle size is less than 44 μm, the generation of fine pores is suppressed, which leads to an improvement in quality.

【0014】[0014]

【実施例】以下、本発明を実施例により説明する。従来
法により、出発物質として、1790℃で4時間焼結し
たUO焼結体を用意した。この焼結体の平均結晶粒径
は15μmであった。次いで、この焼結体を500℃で
2時間、空気雰囲気中で酸化し、得られたU粉末
を74μm以下のふるいにかけて粉度分布を測定した。
その結果を、図2に示す。
The present invention will be described below with reference to examples. According to the conventional method, a UO 2 sintered body that was sintered at 1790 ° C. for 4 hours was prepared as a starting material. The average crystal grain size of this sintered body was 15 μm. Next, this sintered body was oxidized at 500 ° C. for 2 hours in an air atmosphere, and the obtained U 3 O 8 powder was passed through a sieve of 74 μm or less to measure the fineness distribution.
The result is shown in FIG.

【0015】本発明法により、1790℃で8時間、水
素ガス雰囲気中で、かつ容器内のUO量に対し5%の
AlとSiO片と共に熱処理して、UO焼結
体を得た。この焼結体の平均結晶粒径は30μmであっ
た。次いで、この焼結体を500℃で2時間、空気雰囲
気中で酸化し、得られたU粉末を74μm以下の
ふるいにかけて粒度分布を測定した。その結果を、図3
に示す。
According to the method of the present invention, heat treatment was performed at 1790 ° C. for 8 hours in a hydrogen gas atmosphere together with 5% Al 2 O 3 and SiO 2 pieces with respect to the amount of UO 2 in the container to obtain a UO 2 sintered body. Got The average crystal grain size of this sintered body was 30 μm. Next, this sintered body was oxidized at 500 ° C. for 2 hours in an air atmosphere, and the obtained U 3 O 8 powder was passed through a sieve of 74 μm or less to measure the particle size distribution. The result is shown in FIG.
Shown in

【0016】以下に、図2と図3を比較する。図2から
分るように、粒径の制御をしていないUO焼結体を酸
化した粉末の粒径はバラツキが大きい。これは出発物質
であるUOの結晶粒の分布にバラツキがあり、微細な
結晶粒が多く存在していることを示している。一方、図
3から分るように、本発明法により、焼結体の結晶粒径
を制御すると、微細な結晶粒がなくなり、最終物質であ
るU粉末の粒度分布が均一化する。
Below, FIG. 2 and FIG. 3 are compared. As can be seen from FIG. 2, the particle size of the powder obtained by oxidizing the UO 2 sintered body whose particle size is not controlled varies greatly. This indicates that the distribution of the crystal grains of UO 2 which is the starting material varies and that many fine crystal grains are present. On the other hand, as can be seen from FIG. 3, when the crystal grain size of the sintered body is controlled by the method of the present invention, fine crystal grains disappear, and the grain size distribution of the final substance, U 3 O 8 powder, becomes uniform.

【発明の効果】本発明により、微細な結晶粒粉末が少な
くなり、かつ密度コントロールも安定的であり、核燃料
ペレットの品質向上に有益である。更に、粒度制御のた
めの粉砕機等への投資も不要となり、その経済効果も大
きい。
Industrial Applicability According to the present invention, the amount of fine crystal grain powder is reduced and the density control is stable, which is useful for improving the quality of nuclear fuel pellets. Further, there is no need to invest in a crusher or the like for controlling the particle size, which has a large economic effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】UO焼結体における酸化のメカニズムを示し
た説明図である。
FIG. 1 is an explanatory diagram showing a mechanism of oxidation in a UO 2 sintered body.

【図2】従来法により製造した粉末の粒度分布を示した
グラフである。
FIG. 2 is a graph showing a particle size distribution of a powder manufactured by a conventional method.

【図3】本発明法により製造した粉末の粒度分布を示し
たグラフである。
FIG. 3 is a graph showing the particle size distribution of the powder produced by the method of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原子燃料用UO焼結ペレットのスクラッ
プを回収して再使用に供するにあたり、酸化雰囲気内で
得られるU粉末の粒径を制御するために、前処理
として水素雰囲気中で処理ボート内にAlとSi
の小片を入れてUO焼結ペレットのスクラップを
再焼結することを特徴とする、UO焼結ペレットの結
晶粒径の制御方法。
1. A hydrogen atmosphere as a pretreatment for controlling the particle size of U 3 O 8 powder obtained in an oxidizing atmosphere when scrap of UO 2 sintered pellets for nuclear fuel is collected and reused. Al 2 O 3 and Si in the processing boat in
Put a small piece of O 2, characterized in that re-sintering scrap UO 2 sintered pellets, method of controlling the crystal grain size of UO 2 sintered pellets.
【請求項2】AlとSiOの小片の量がUO
の全量に対し5%であることを特徴とする、請求項1に
記載のUO焼結ペレットの結晶粒径の制御方法。
2. The amount of small pieces of Al 2 O 3 and SiO 2 is UO 2
Wherein the of based on the total amount is 5%, the control method of the crystal grain size of UO 2 sintered pellet according to claim 1.
JP7199906A 1995-08-04 1995-08-04 Method of controlling grain size of UO2 sintered pellet Expired - Fee Related JP3071671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7199906A JP3071671B2 (en) 1995-08-04 1995-08-04 Method of controlling grain size of UO2 sintered pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7199906A JP3071671B2 (en) 1995-08-04 1995-08-04 Method of controlling grain size of UO2 sintered pellet

Publications (2)

Publication Number Publication Date
JPH0949892A true JPH0949892A (en) 1997-02-18
JP3071671B2 JP3071671B2 (en) 2000-07-31

Family

ID=16415579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7199906A Expired - Fee Related JP3071671B2 (en) 1995-08-04 1995-08-04 Method of controlling grain size of UO2 sintered pellet

Country Status (1)

Country Link
JP (1) JP3071671B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794071B1 (en) * 2006-12-05 2008-01-10 한국원자력연구원 Method of producing nuclear fuel pellet
KR100832567B1 (en) * 2006-12-05 2008-05-27 한국원자력연구원 Method of producing large-grained nuclear fuel pellet
US9190179B2 (en) 2010-10-20 2015-11-17 Korea Atomic Energy Research Institute Method of controlling solubility of additives at and near grain boundaries, and method of manufacturing sintered nuclear fuel pellet having large grain size using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794071B1 (en) * 2006-12-05 2008-01-10 한국원자력연구원 Method of producing nuclear fuel pellet
KR100832567B1 (en) * 2006-12-05 2008-05-27 한국원자력연구원 Method of producing large-grained nuclear fuel pellet
US9190179B2 (en) 2010-10-20 2015-11-17 Korea Atomic Energy Research Institute Method of controlling solubility of additives at and near grain boundaries, and method of manufacturing sintered nuclear fuel pellet having large grain size using the same

Also Published As

Publication number Publication date
JP3071671B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
KR100293482B1 (en) Method of Manufacturing Nuclear Fuel Sintered
JP3106113B2 (en) Recycling method for pellet scrap of oxide nuclear fuel
KR101913879B1 (en) Method for preparing a powder of an alloy based on uranium and molybdenum
JP2018505394A (en) Method for producing pellets of at least one metal oxide
KR20000059597A (en) Method for manufacturing uranium dioxide nuclear fuel fabrication including recovery of scrap
JPH0949892A (en) Control method for grain diameter of uo2 sintered pellet
US5514306A (en) Process to reclaim UO2 scrap powder
US3427132A (en) Tantalum nitride powder and method for its preparation
US20040201002A1 (en) Method for sulphurizing a uo2 powder and method for making nuclear fuel pellets based on uo2 or mixed oxide (u,pu)o2 oxide with added sulphur
JPH0729774B2 (en) UO ▲ 2 ▼ Method to control the crystal grain size of pellets
KR940006544B1 (en) Uo2 pellet fabrication process
CA1190721A (en) Process for producing u.sub.3o.sub.8 powder
JP2000314791A (en) Manufacture of nuclear fuel sintered body
EP0411299A1 (en) Process for passivating uranium oxides to control oxidation
JPH0545484A (en) Uranium dioxide powder for atomic fuel and manufacture thereof
US3228748A (en) Process for the preparation of a uranium compound in powder form
JPH039296A (en) Production of nuclear fuel pellet
KR100424331B1 (en) Property control technique of the mixed oxide fuel pellet by the addition method of M3O8 scrap powder and the sintering process
JPH0761820A (en) Production of nuclear fuel pellet
JPH0940426A (en) Production of uranium dioxide powder
JPH0755975A (en) Producing nuclear fuel pellet
Mernache et al. Improvement of UO 2 powder properties prepared from recycled aged fuel pellets
RU2243601C2 (en) Method for producing uranium and gadolinium containing fuel pellets
WO2022075880A1 (en) Method for producing uranium-gadolinium nuclear fuel
JP3403960B2 (en) Method for producing nuclear fuel pellets

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees