JPH0949795A - Method and device for directly analyzing molten metal - Google Patents
Method and device for directly analyzing molten metalInfo
- Publication number
- JPH0949795A JPH0949795A JP7203622A JP20362295A JPH0949795A JP H0949795 A JPH0949795 A JP H0949795A JP 7203622 A JP7203622 A JP 7203622A JP 20362295 A JP20362295 A JP 20362295A JP H0949795 A JPH0949795 A JP H0949795A
- Authority
- JP
- Japan
- Prior art keywords
- light
- molten metal
- irradiation
- probe
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原子吸光分析法を
用いて溶融金属を直接分析し即時に成分濃度を求める技
術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for directly analyzing a molten metal by using atomic absorption spectrometry and immediately determining the component concentration.
【0002】[0002]
【従来の技術】溶融金属の直接分析法として、溶融金属
に高密度のパルスエネルギを投入し、含有元素を励起し
発光させてスペクトル解析を行う直接発光分光分析や、
溶融金属から微粒子を生成させこれを分析機器に搬送し
て分析する微粒子生成直接分析等が提案されている。2. Description of the Related Art As a direct analysis method for molten metal, direct emission spectroscopic analysis is carried out in which a high-density pulse energy is applied to the molten metal to excite the contained element to cause it to emit light for spectral analysis.
A fine particle generation direct analysis method has been proposed in which fine particles are generated from a molten metal, and the fine particles are conveyed to an analyzer and analyzed.
【0003】しかし、これらの分析法では、感度や長時
間安定性に問題があり、実用化されていない。However, these analytical methods have problems in sensitivity and long-term stability and have not been put to practical use.
【0004】一方、金属の分析法として上記の発光法に
対して、励起された原子が元素固有の波長の光を吸収す
ることを利用した原子吸光法がある。この方法では、金
属を溶解した水溶液を試料とし、これを所定温度の加熱
帯に一定量送り込みながら原子化し、この原子化帯に分
析対象元素固有の波長を持つ光を照射して、その元素に
よる吸光度から分析値を求める。特定波長の光のみを用
いることから、限られた狭い波長範囲の光について測定
すればよく、外乱要因が少なく本質的に高い精度で測定
が行える方法である。On the other hand, as a method for analyzing metals, there is an atomic absorption method which utilizes the fact that excited atoms absorb light having a wavelength peculiar to the element, as opposed to the above-mentioned light emission method. In this method, an aqueous solution in which a metal is dissolved is used as a sample, which is atomized while being sent to a heating zone of a predetermined temperature by a certain amount, and the atomization zone is irradiated with light having a wavelength peculiar to the element to be analyzed, Obtain the analytical value from the absorbance. Since only light of a specific wavelength is used, it is only necessary to measure light in a limited narrow wavelength range, which is a method with essentially no disturbance factors and which can perform measurement with essentially high accuracy.
【0005】従来、この本質的に高精度分析法である原
子吸光法を溶融金属の直接分析に適用する提案が行われ
ている。例えば、特開昭63−186131号公報に
は、溶融金属にプローブを挿入し、プローブの上部に測
定セルを設け、この測定セルに向かってプローブの下部
から不活性な搬送ガスを送り、溶融金属表面近傍の金属
蒸気をこの搬送ガスで測定セルに送り、ここで加熱手段
により1200℃以上に加熱して搬送中に冷却した元素
を再び蒸気化し、原子吸光度を測定する方式の装置が開
示されている。Conventionally, proposals have been made to apply the atomic absorption method, which is an essentially high-precision analysis method, to direct analysis of molten metal. For example, in Japanese Patent Laid-Open No. 63-186131, a probe is inserted into a molten metal, a measuring cell is provided above the probe, and an inert carrier gas is sent from the lower part of the probe toward the measuring cell to melt the molten metal. Disclosed is an apparatus of a system in which metal vapor in the vicinity of the surface is sent to a measurement cell by this carrier gas, where elements heated by heating means to 1200 ° C. or higher and vaporized again during transportation are vaporized to measure atomic absorption. There is.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
方式ではプローブの他に不活性ガスの吹き込みや加熱手
段を設ける等、装置が複雑なため、高温且粉塵等が充満
する過酷な環境では装置の設置や取外し或いは維持に困
難を伴うという問題があった。However, in the above-mentioned method, since the apparatus is complicated, such as injecting an inert gas and heating means in addition to the probe, the apparatus cannot be used in a harsh environment where high temperature and dust are filled. There is a problem that it is difficult to install, remove or maintain.
【0007】この発明はこれらの問題を解決するために
行われたもので、構造が簡単且つ取扱が容易で過酷な環
境においても安定性のある装置を用いて溶融金属を直接
分析する技術を提供しようとするものである。The present invention has been made to solve these problems, and provides a technique for directly analyzing molten metal using a device having a simple structure, easy handling, and stable even in a harsh environment. Is what you are trying to do.
【0008】[0008]
【課題を解決するための手段】上記目的は、原子吸光分
析法を用いて溶融金属中の元素を直接分析する方法であ
って、溶融金属表面近傍の蒸気帯に照射光を照射し、前
記蒸気帯を通過した光を原子吸光分析法により処理して
溶融金属中の成分濃度を求めることを特徴とする溶融金
属の直接分析方法により達成される。The above object is a method for directly analyzing an element in a molten metal by using atomic absorption spectrometry, which comprises irradiating a vapor band near the surface of the molten metal with irradiation light to obtain the vapor. This is achieved by a method for direct analysis of molten metal, characterized in that the light passing through the band is processed by atomic absorption spectrometry to determine the concentration of components in the molten metal.
【0009】溶融金属表面の近傍は金属からの蒸気で満
たされており、この蒸気の成分は溶融金属の成分と平衡
関係にあるので、蒸気帯の成分濃度を測定することによ
って溶融金属中の成分濃度を求めることができる。しか
も、溶融金属表面の近傍であれば、成分は固化されてお
らず加熱器は不要でり、又、加熱器まで蒸気を搬送する
必要もない。The vicinity of the surface of the molten metal is filled with vapor from the metal, and the components of this vapor are in equilibrium with the components of the molten metal. Therefore, by measuring the concentration of the components in the vapor zone, the components in the molten metal can be measured. The concentration can be determined. In addition, if it is near the surface of the molten metal, the components are not solidified and a heater is unnecessary, and it is not necessary to convey steam to the heater.
【0010】蒸気帯に照射光を通過させる経路には、照
射点と受光点とを一本の直線で結ぶ一直線経路の他に、
照射光を溶融金属表面に向けて照射し一旦溶融金属表面
で反射させ、再び蒸気帯を通過してから受光する反射経
路とがある。溶融金属表面の面積が限定される場合に
は、反射経路を利用すると蒸気帯を二回通過するので吸
光度を増やすのに好都合であり、又、装置も簡素にして
小型化される。In addition to the straight line path connecting the irradiation point and the light receiving point with one straight line,
There is a reflection path in which the irradiation light is irradiated toward the surface of the molten metal, is once reflected by the surface of the molten metal, passes through the vapor band again, and then is received. When the area of the molten metal surface is limited, the use of the reflection path makes it convenient to increase the absorbance because it passes through the vapor zone twice, and the apparatus is simple and compact.
【0011】原子吸光分析のデータ処理として好ましい
方法を以下に説明する。照射光には、分析対象元素の線
スペクトルの波長の他に分析試料の主構成元素の線スペ
クトルの波長を必ず含ませる。これは、後述するが、溶
融金属の温度等測定条件の変動に対処するためである。A preferred method for data processing of atomic absorption spectrometry will be described below. In addition to the wavelength of the line spectrum of the element to be analyzed, the irradiation light always contains the wavelength of the line spectrum of the main constituent element of the analysis sample. This is to cope with fluctuations in measurement conditions such as the temperature of the molten metal, which will be described later.
【0012】蒸気帯を通過し受光された光については、
分光測定を行い分析対象元素、主構成元素について、各
々の前記線スペクトルの中心位置とバックグラウンド位
置について照射光の強度と蒸気帯を通過した光の光強度
の差を求める。そして、線スペクトルの中心位置におけ
る光強度の差とバックグラウンド位置における光強度の
差の比の対数を求めることにより分析対象元素と分析試
料の主構成元素の吸光度をそれぞれ計算し、各々線スペ
クトルの中心線位置の光強度とバックグラウンド位置の
光強度との差を求め、これらの光強度の差の比の対数に
より分析対象元素、主構成元素についての吸光度を求め
る。これは、受光光には照射光以外の光(バックグラウ
ンド光と称す)、例えば溶融金属から発する光や太陽光
等の外乱光のノイズが含まれていおり、これを除くため
である。特に、この発明では溶融金属表面の近くで採光
するため、金属から放射される光の量は無視できない。For light received through the vapor band,
A spectroscopic measurement is performed to obtain the difference between the intensity of the irradiation light and the intensity of the light passing through the vapor band at the center position and background position of each of the line spectra for the element to be analyzed and the main constituent element. Then, by calculating the logarithm of the ratio of the difference in light intensity at the center position of the line spectrum and the difference in light intensity at the background position, the absorbance of each of the analysis target element and the main constituent element of the analytical sample is calculated, and each of the line spectra The difference between the light intensity at the center line position and the light intensity at the background position is obtained, and the absorbance for the element to be analyzed and the main constituent element is obtained by the logarithm of the ratio of the difference in these light intensities. This is because the received light includes noise other than irradiation light (referred to as background light), for example, noise of ambient light such as light emitted from molten metal or sunlight, and is excluded. In particular, since the present invention collects light near the surface of the molten metal, the amount of light emitted from the metal cannot be ignored.
【0013】ノイズの除去について、図4を用いて説明
する。グラフは分解能の充分に高い分光器で分光し測定
された線スペクトルで、太い実線は蒸気帯を通過して測
定された線スペクトルであり、細い線は照射光に含まれ
ている線スペクトルで蒸気による吸光が起きていない状
態のものである。The removal of noise will be described with reference to FIG. The graph is the line spectrum measured by a spectroscope with sufficiently high resolution, the thick solid line is the line spectrum measured through the vapor band, and the thin line is the line spectrum contained in the irradiation light. It is in a state in which the absorption of light has not occurred.
【0014】線スペクトルの中心位置は波長λであり測
定元素に対応し、裾野の位置λb がバックグラウンド位
置である。中心位置の強度は照射光ではI0 であるが、
蒸気帯を通過した測定光では測定元素による吸光を受け
たためIに低下している。バックグラウンド位置の強度
は測定の対象としない光の強度であり、照射光ではI 0b
であるが、測定光ではIb である。The center position of the line spectrum is the wavelength λ and
Corresponding to constant elements, the foot position λbIs background
It is a place. The intensity of the central position is I with irradiation light.0In Although,
The measurement light passing through the vapor band is not absorbed by the measurement element.
It has fallen to I. Background position intensity
Is the intensity of the light that is not the object of measurement. 0b
However, with the measuring light IbIt is.
【0015】即ち、測定光について分光測定を行い、ス
ペクトルの中心位置とバックグラウンド位置の両方の光
強度を測定し、(1)式によってバックグラウンド光の
影響が除かれた吸光度を求める。That is, the measurement light is subjected to spectroscopic measurement, the light intensities at both the center position and the background position of the spectrum are measured, and the absorbance excluding the influence of the background light is obtained by the equation (1).
【0016】[0016]
【数1】 [Equation 1]
【0017】こうして求められた吸光度を用いて、次に
分析対象元素による吸光度と主構成元素の吸光度との比
(以下、単に吸光度比と称す)を求める。そして、求め
られた吸光度比を検量線に基づいて成分濃度に換算す
る。Using the absorbance thus obtained, the ratio between the absorbance of the element to be analyzed and the absorbance of the main constituent elements (hereinafter simply referred to as the absorbance ratio) is then determined. Then, the calculated absorbance ratio is converted into the component concentration based on the calibration curve.
【0018】この発明では、悪環境下で測定が行われ
る。前述した外乱光以外に粉塵にも曝され、粉塵は照射
光量や受光量を変える。又、溶融金属表面の位置も変動
するし、蒸気帯の温度も制御されていない。測定される
受光量はこれらの外乱要因の影響を受けている。In the present invention, the measurement is performed in a bad environment. In addition to the ambient light described above, the dust is also exposed, and the dust changes the irradiation light amount and the received light amount. Moreover, the position of the molten metal surface also fluctuates, and the temperature of the vapor zone is not controlled. The measured amount of received light is affected by these disturbance factors.
【0019】比を用いるのはこれら外乱要因に対処する
ためである。二つの元素について吸光度を測定すると、
外乱要因の影響を同じに受けた測定値が得られるが、こ
れらの測定値の比をとることにより、外乱要因の影響を
相殺することができる。The reason for using the ratio is to deal with these disturbance factors. When measuring the absorbance for two elements,
Although the measured values are obtained under the same influence of the disturbance factors, the influence of the disturbance factors can be canceled by taking the ratio of these measured values.
【0020】以上に述べてきた分析法を実施するための
装置について説明する。装置は、光源、光源からの照射
光を導く照射光路、この照射光路の先端面と間隔を開け
てその先端面が設置された受光路、この受光路の他端に
接続された分光器、分光された光を測定する測光器及び
測光結果を演算する演算装置を備えている。An apparatus for carrying out the above-described analysis method will be described. The device consists of a light source, an irradiation optical path for guiding the irradiation light from the light source, a light receiving path in which the front end surface of the irradiation optical path is spaced apart, and a spectroscope connected to the other end of the light receiving path. A photometer for measuring the emitted light and a calculation device for calculating the photometric result are provided.
【0021】光源は、分析対象元素や主構成元素の線ス
ペクトルの波長を含む照射光の光源であり、複合ホロー
カソードランプを用いることができる。The light source is a light source of irradiation light containing the wavelength of the line spectrum of the element to be analyzed and the main constituent element, and a composite hollow cathode lamp can be used.
【0022】照射路は照射光を金属表面近傍の蒸気帯に
導く光路で、受光路は蒸気帯を透過した光を受光して分
光器まで導く光路である。プリズムや反射鏡、レンズ等
を使用して光路を形成することもできるが、光ファイバ
を用いると機器の構成が簡単になるので好ましい。The irradiation path is an optical path for guiding the irradiation light to the vapor band near the metal surface, and the light receiving path is an optical path for receiving the light transmitted through the vapor band and guiding it to the spectroscope. Although the optical path can be formed by using a prism, a reflecting mirror, a lens, or the like, the use of an optical fiber is preferable because the configuration of the device is simplified.
【0023】照射光路と受光路の先端は、照射光が蒸気
帯を介して受光されるように、一定の位置関係を保つ必
要がある。このため、照射光路と受光路の先端はプロー
ブ内に設け、このプローブ内にその表面を露出した溶融
金属を下端に開口部から導入する。更に、プローブの上
部に不活性ガス導入口を設けてプローブ内を不活性雰囲
気として露出した表面の化学的変化を防ぐ。It is necessary to maintain a fixed positional relationship between the irradiation light path and the tip of the light reception path so that the irradiation light is received through the vapor band. Therefore, the tips of the irradiation light path and the light receiving path are provided in the probe, and the molten metal whose surface is exposed is introduced into the probe through the opening at the lower end. Further, an inert gas introducing port is provided above the probe to prevent the chemical change of the exposed surface as an inert atmosphere in the probe.
【0024】照射光路の先端面と受光路の先端面とを互
いに向き合わせると、照射光は蒸気帯を通過して直接受
光される。When the front end surface of the irradiation light path and the front end surface of the light reception path are opposed to each other, the irradiation light passes through the vapor band and is directly received.
【0025】又、照射光路と受光路に光ファイバを用
い、その先端面をプローブ中心線上の開口部の上方且つ
プローブ内下方の一点に向けて配置すると、溶融金属表
面をこの点の位置にあわせたとき、照射光は蒸気帯を通
過してこの一点で反射し反射光は再度蒸気帯を通過して
受光路に進入する。この構造では、プローブはより簡単
な形状で細身になり、悪環境でも容易に取り扱うことが
でき、その耐久性も高まる。If optical fibers are used for the irradiation light path and the light receiving path, and the tip surfaces thereof are arranged so as to point to a point above the opening on the probe center line and below the inside of the probe, the molten metal surface is aligned with this point. At this time, the irradiation light passes through the vapor band and is reflected at this one point, and the reflected light passes through the vapor band again and enters the light receiving path. With this structure, the probe has a simpler shape and is slender, can be easily handled even in a bad environment, and is durable.
【0026】[0026]
【実施例】精錬中の高クローム鋼、炭素鋼及び溶融亜鉛
めっき浴について直接分析を行った。EXAMPLE A direct analysis was performed on high chromium steel, carbon steel and hot dip galvanizing baths during refining.
【0027】実施例1.精錬中の高クローム鋼につい
て、クロムの直接分析を行った。Embodiment 1 FIG. Direct analysis of chromium was performed on high chromium steel during refining.
【0028】用いた分析装置を図1に示す。図で、1は
照射光路、2は受光路で各々光ファイバで構成され、そ
の先端は共にプローブ3内に配置され先端面は互いに向
き合っている。照射光路1は他端が光源4に接続され、
受光路2は他端が分光器5に接続されている。The analyzer used is shown in FIG. In the figure, 1 is an irradiation optical path, and 2 is a light receiving path, each of which is composed of an optical fiber, and the tips thereof are both arranged in the probe 3 and the tip surfaces face each other. The other end of the irradiation light path 1 is connected to the light source 4,
The other end of the light receiving path 2 is connected to the spectroscope 5.
【0029】プローブ3の下端に開口部31を有し、プ
ローブ3の上方にはガス導入口32が設けられている。An opening 31 is provided at the lower end of the probe 3, and a gas inlet 32 is provided above the probe 3.
【0030】分光器5は測光器6に接続され、測光器6
は演算器7に接続されている。まず、ガス導入口32か
らArガスを導入しプローブ3内を不活性雰囲気とし、
表面を露出させた溶融金属に上からプローブ3を挿入す
ることによって、開口部31から溶融金属を導入した。
ついで、溶融金属表面が開口部31の上方且つ照射光路
1の先端及び受光路2の先端より下方に位置する深さ
に、プローブ3を固定した。ガス導入口32からのAr
ガス導入は常時行い、ガス排出口33から排出すること
によって照射路1及び受光路2の先端面の汚染を防ぐと
ともに、蒸発成分の酸化を防いだ。The spectroscope 5 is connected to the photometer 6, and the photometer 6
Is connected to the computing unit 7. First, Ar gas is introduced from the gas introduction port 32 to create an inert atmosphere in the probe 3,
The molten metal was introduced from the opening 31 by inserting the probe 3 into the molten metal whose surface was exposed from above.
Then, the probe 3 was fixed to a depth where the surface of the molten metal was located above the opening 31 and below the tip of the irradiation light path 1 and the tip of the light receiving path 2. Ar from the gas inlet 32
The gas was always introduced, and the gas was discharged from the gas outlet 33 to prevent the contamination of the tip surfaces of the irradiation path 1 and the light receiving path 2 and the oxidation of the vaporized component.
【0031】光源4には、Fe−Cr複合ホローカソー
ドランプ(ランプ電流30mA)を使用した。As the light source 4, an Fe-Cr composite hollow cathode lamp (lamp current 30 mA) was used.
【0032】分光器5にはパッセンルンゲ型分光器を用
い、測光器6には光電子倍増管を用いた。線スペクトル
の中心位置は各々380nm(Fe)、268nm(C
r)、バックグラウンド位置は382nm(Fe)、27
0nm(Cr)である。A Passengerunge type spectroscope was used for the spectroscope 5, and a photomultiplier tube was used for the photometer 6. The center positions of the line spectra are 380 nm (Fe) and 268 nm (C, respectively).
r), the background position is 382 nm (Fe), 27
It is 0 nm (Cr).
【0033】演算器7に上記の位置の光強度を送り、前
記(1)式により各々の吸光度を算出させ、更にFeと
Crの吸光度の比から検量線により分析値に換算させ
た。The light intensity at the above-mentioned position was sent to the arithmetic unit 7, the respective absorbances were calculated by the equation (1), and further converted into analytical values by the calibration curve from the ratio of the absorbances of Fe and Cr.
【0034】測定はCr濃度の異なる溶鋼について連続
的に行ったが、本法による直接分析値を化学分析値と比
較するため、測定途中で試料を汲み取った。汲み取り時
点の直接分析値と汲み取った試料の化学分析値との比較
を図5に示す。The measurement was carried out continuously for molten steels having different Cr concentrations, but in order to compare the direct analysis value by this method with the chemical analysis value, a sample was drawn during the measurement. A comparison between the direct analysis value at the time of drawing and the chemical analysis value of the drawn sample is shown in FIG.
【0035】図は、縦軸に直接分析値を横軸に化学分析
値を同間隔で目盛り、同一時点の分析値を白丸で表示し
たもので、直接分析値と化学分析値とはよく一致してい
る。In the figure, the vertical axis represents the direct analytical value, the horizontal axis represents the chemical analytical value at the same interval, and the analytical value at the same time point is represented by a white circle. The direct analytical value and the chemical analytical value are in good agreement. ing.
【0036】実施例2.精錬中の炭素鋼について、Mn
の直接分析を行った。Example 2. For carbon steel during refining, Mn
A direct analysis of
【0037】図2に示す反射経路方式のプローブを使用
した。照射光路1と受光路2の先端は下方を向きプロー
ブ中央の一点に向けて、光ファイバが配置されている。
この一点に溶融金属表面の位置を合わせて照射を行い、
照射光は反射経路を通過するようにした。The reflection path type probe shown in FIG. 2 was used. An optical fiber is arranged so that the tip ends of the irradiation optical path 1 and the light receiving path 2 face downward and point toward one point in the center of the probe.
Irradiate by aligning the position of the molten metal surface with this one point,
The irradiation light was made to pass through the reflection path.
【0038】なお、図では、照射光路1と受光路2の光
ファイバの先端面と反射点との距離が等しいが、必ずし
も等しくする必要はない。例えば、照射光路1の光ファ
イバの先端面を遠く離し、照射面積を増やすこともでき
る。In the figure, the distances between the tip end surfaces of the optical fibers of the irradiation light path 1 and the light reception path 2 and the reflection points are equal, but they need not be equal. For example, it is possible to increase the irradiation area by far apart the tip end surface of the optical fiber of the irradiation optical path 1.
【0039】プローブ内の雰囲気調整、分光法及び測光
法は実施例1.と同じである。分析値への換算は、Fe
及びMnの線スペクトルの中心位置即ち380nm(F
e)、252nm(Mn)及びバックグラウンド位置即ち
382nm(Fe)、150nm(Mn)の光強度から前記
(1)式により各々の吸光度を算出し、両者の比を検量
線により分析値に換算させた。The atmosphere adjustment in the probe, the spectroscopic method and the photometric method are described in Example 1. Is the same as The conversion to analytical value is Fe
And the center position of Mn line spectrum, that is, 380 nm (F
e), each absorbance is calculated from the light intensity at 252 nm (Mn) and the background position, that is, 382 nm (Fe), 150 nm (Mn) by the formula (1), and the ratio of the two is converted into an analytical value by the calibration curve. It was
【0040】実施例1.と同様に、直接分析値と化学分
析値との比較を図6に示す。直接分析値と化学分析値と
はよく一致している。Example 1. Similarly to, the comparison between the direct analysis value and the chemical analysis value is shown in FIG. The direct analysis value and the chemical analysis value are in good agreement.
【0041】実施例3.溶融亜鉛めっき浴についてPb
の直接分析を行った。Example 3. Hot dip galvanizing bath Pb
A direct analysis of
【0042】線スペクトルの中心位置が283nm(P
b)、214nm(Zn)、バックグラウンド位置は28
1nm(Fe)、212nm(Mn)である。その他は実施
例2と同様である。The center position of the line spectrum is 283 nm (P
b), 214 nm (Zn), background position is 28
It is 1 nm (Fe) and 212 nm (Mn). Others are the same as the second embodiment.
【0043】直接分析値と化学分析値との比較を図7に
示す。直接分析値と化学分析値とはよく一致している。A comparison between the direct analysis value and the chemical analysis value is shown in FIG. The direct analysis value and the chemical analysis value are in good agreement.
【0044】なお、以上の測定で、炉内には、柔軟性の
ある光ファイバと不活性ガス導入管の付いたプローブを
取り付ければよく、プローブの形状も簡素で、過酷な環
境下にあっても取扱いが容易であった。In the above measurement, a flexible optical fiber and a probe with an inert gas introducing pipe may be attached to the furnace, and the shape of the probe is simple. Was also easy to handle.
【0045】更に、実施例1.で用いたプローブでは、
照射光路1及び受光路2の先端部を水平になるまで湾曲
させているが、このためプローブの短径化が制限され
る。ミラーを併用することによってこの先端の湾曲を省
き或いは曲率半径を小さくすることができる。図3はミ
ラーを利用した例で、光学ファイバの先端近くにミラー
11及び12を設置したものである。Furthermore, in the first embodiment. In the probe used in
Although the tip ends of the irradiation light path 1 and the light reception path 2 are curved until they become horizontal, this limits the shortening of the probe diameter. By using a mirror together, the curvature of the tip can be omitted or the radius of curvature can be reduced. FIG. 3 shows an example using a mirror, in which mirrors 11 and 12 are installed near the tip of an optical fiber.
【0046】[0046]
【発明の効果】以上述べてきたように、この発明によれ
ば、溶融金属の表面直上の蒸気帯による原子吸光を測定
することにより溶融金属中の成分濃度を求めているの
で、簡素な装置で、高温で粉塵や振動のある悪環境下で
も安定して溶融金属の直接分析を行うことができる。さ
らに、測定スペクトルの中心線位置及びバックグラウン
ド位置の光強度を求めてバックグラウンド光を除去する
とともに、分析対象元素の吸光度と主構成元素の吸光度
の比から分析値を求めることによって成分濃度以外の変
動の影響を削減するので精度の良い分析結果が得られ
る。As described above, according to the present invention, since the component concentration in the molten metal is obtained by measuring the atomic absorption by the vapor band just above the surface of the molten metal, a simple apparatus can be used. The stable direct analysis of molten metal can be performed even in a bad environment with dust and vibration at high temperature. Furthermore, the background light is removed by obtaining the light intensity at the center line position and the background position of the measurement spectrum, and the analysis value is obtained from the ratio of the absorbance of the element to be analyzed and the absorbance of the main constituent element Since the influence of fluctuations is reduced, accurate analysis results can be obtained.
【図1】発明の実施例に用いた装置の概要を示す図であ
る。FIG. 1 is a diagram showing an outline of an apparatus used in an embodiment of the invention.
【図2】発明の実施例で反射経路に用いた光ファイバの
配置を示すプローブの概念図である。FIG. 2 is a conceptual diagram of a probe showing an arrangement of optical fibers used for a reflection path in an embodiment of the invention.
【図3】光ファイバの別の配置及び先端の構造を示す概
念図である。FIG. 3 is a conceptual diagram showing another arrangement of the optical fiber and the structure of the tip.
【図4】線スペクトルの位置を説明するための光強度グ
ラフである。FIG. 4 is a light intensity graph for explaining the position of a line spectrum.
【図5】実施例で得られたCrの直接分析値と化学分析
値との関係を示す図である。FIG. 5 is a diagram showing a relationship between a direct analysis value of Cr and a chemical analysis value obtained in Examples.
【図6】実施例で得られたMnの直接分析値と化学分析
値との関係を示す図である。FIG. 6 is a diagram showing a relationship between a direct analysis value and a chemical analysis value of Mn obtained in Examples.
【図7】実施例で得られたPbの直接分析値と化学分析
値との関係を示す図である。FIG. 7 is a diagram showing a relationship between a direct analysis value of Pb and a chemical analysis value obtained in Examples.
1 照射光路 2 受光路 3 プローブ 4 光源 5 分光器 6 測光器 7 演算器 31 開口部 32 ガス導入口 1 irradiation optical path 2 light receiving path 3 probe 4 light source 5 spectroscope 6 photometer 7 arithmetic unit 31 opening 32 gas inlet
フロントページの続き (72)発明者 望月 正 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 坂下 明子 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 岩田 嘉人 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Front Page Continuation (72) Inventor Tadashi Mochizuki, 1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Akiko Sakashita 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. In-house (72) Inventor Yoshito Iwata 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.
Claims (5)
素を直接分析する方法であって、溶融金属表面近傍の蒸
気帯に照射光を照射し、前記蒸気帯を通過した光を原子
吸光分析法により処理して溶融金属中の成分濃度を求め
ることを特徴とする溶融金属の直接分析方法。1. A method for directly analyzing an element in a molten metal by using atomic absorption spectrometry, which comprises irradiating a vapor band near the surface of the molten metal with irradiation light and atomically absorbing light passing through the vapor band. A method for direct analysis of molten metal, characterized in that the concentration of a component in the molten metal is obtained by processing by an analytical method.
蒸気帯を通過した後溶融金属の表面で反射し再び蒸気帯
を通過した光を原子吸光分析法により処理する請求項1
記載の溶融金属の直接分析方法。2. Irradiation light is irradiated toward the surface of the molten metal,
The light reflected by the surface of the molten metal after passing through the vapor zone and again passing through the vapor zone is processed by atomic absorption spectrometry.
A method for direct analysis of a molten metal as described.
トルの波長と分析試料の主構成元素の線スペクトルの波
長を含むものを使用し、各々の前記線スペクトルの中心
位置とバックグラウンド位置について照射光の強度と蒸
気帯を通過した光の光強度の差を求め、線スペクトルの
中心位置における光強度の差とバックグラウンド位置に
おける光強度の差の比の対数を求めることにより分析対
象元素と分析試料の主構成元素の吸光度をそれぞれ計算
し、更にこれらの吸光度を用いて分析対象元素の吸光度
と主構成元素の吸光度との比を求め、この比に基づいて
溶融金属中の成分濃度を求めることを特徴とする請求項
1又は請求項2に記載の溶融金属の直接分析方法。3. Irradiation light containing the wavelength of the line spectrum of the element to be analyzed and the wavelength of the line spectrum of the main constituent element of the analytical sample is used, and irradiation is carried out at the center position and background position of each of the line spectra. Analyze the element to be analyzed by obtaining the difference between the light intensity and the light intensity of the light that has passed through the vapor band, and then calculating the logarithm of the ratio of the light intensity difference at the center position of the line spectrum to the light intensity difference at the background position. Calculate the absorbance of each of the main constituent elements of the sample, and then use these absorbances to find the ratio between the absorbance of the element to be analyzed and the absorbance of the main constituent element, and then find the concentration of the component in the molten metal based on this ratio. The method for direct analysis of molten metal according to claim 1 or 2, characterized in that.
路と、この照射光路の先端面と間隔を開けてその先端面
が設置された受光路と、この受光路の他端に接続された
分光器と、分光された光を測定する測光器及び測光結果
を演算する演算装置とを有してなり、前記照射光路と前
記受光路の先端がプローブ内に設けられ、プローブはそ
の下端に溶融金属を導入する開口部を有し上部に不活性
ガス導入口を有することを特徴とする溶融金属の直接分
析装置。4. A light source, an irradiation optical path for guiding the irradiation light from the light source, a light receiving path in which the front end surface of the irradiation optical path is spaced apart from the front end surface of the irradiation light path, and the other end of the light receiving path is connected. A spectroscope, a photometer for measuring the dispersed light, and a computing device for computing the photometric result.The irradiation optical path and the tip of the light receiving path are provided in the probe, and the probe is at the lower end of the probe. A direct analyzer for molten metal having an opening for introducing the molten metal and having an inert gas inlet at the top.
バであり、これらの光ファイバが、その先端面をプロー
ブ内下方中央の一点に向けて、配置されている請求項4
記載の溶融金属の直接分析装置。5. The irradiation optical path and the receiving optical path are both optical fibers, and these optical fibers are arranged with their tip faces toward a point in the lower center of the probe.
The molten metal direct analyzer described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20362295A JP3304700B2 (en) | 1995-08-09 | 1995-08-09 | Method and apparatus for direct analysis of molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20362295A JP3304700B2 (en) | 1995-08-09 | 1995-08-09 | Method and apparatus for direct analysis of molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0949795A true JPH0949795A (en) | 1997-02-18 |
JP3304700B2 JP3304700B2 (en) | 2002-07-22 |
Family
ID=16477101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20362295A Expired - Fee Related JP3304700B2 (en) | 1995-08-09 | 1995-08-09 | Method and apparatus for direct analysis of molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3304700B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001228083A (en) * | 2000-02-21 | 2001-08-24 | Nkk Corp | Method for directly analyzing molten metal |
WO2001071320A1 (en) * | 2000-03-24 | 2001-09-27 | Nkk Corporation | Method and apparatus for analyzing vaporized metal |
-
1995
- 1995-08-09 JP JP20362295A patent/JP3304700B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001228083A (en) * | 2000-02-21 | 2001-08-24 | Nkk Corp | Method for directly analyzing molten metal |
WO2001071320A1 (en) * | 2000-03-24 | 2001-09-27 | Nkk Corporation | Method and apparatus for analyzing vaporized metal |
Also Published As
Publication number | Publication date |
---|---|
JP3304700B2 (en) | 2002-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zahniser et al. | Measurement of trace gas fluxes using tunable diode laser spectroscopy | |
US5991020A (en) | Method for determining the concentration of atomic species in gases and solids | |
Cabrera et al. | Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation | |
US4730925A (en) | Method of spectroscopically determining the composition of molten iron | |
CN104062028A (en) | Thermometer | |
US5042946A (en) | Atomic absorption spectrophotometric method and apparatus | |
CN108593631A (en) | A kind of method of aerosol auxiliary laser probe in detecting molecular radical spectrum | |
US5315528A (en) | Method of, and apparatus for, absorbance correction in atomic absorption spectroscopy | |
US5155545A (en) | Method and apparatus for the spectroscopic concentration measurement of components in a gas mixture | |
JP3304700B2 (en) | Method and apparatus for direct analysis of molten metal | |
US5644401A (en) | Method for direct chemical analysis of molten metal using spectrometer | |
JPH11108829A (en) | Method and device for online analysis of molten metal | |
Edel et al. | Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry | |
JP2006300819A (en) | Method and analyzer for laser emission spectrochemical analysis for molten metal | |
JP3274187B2 (en) | Emission spectroscopy method | |
Dittrich et al. | Laser-excited atomic fluorescence spectrometry as a practical analytical method. Part I. Design of a graphite tube atomiser for the determination of trace amounts of lead | |
JPH0339631B2 (en) | ||
JP2000338039A (en) | Method and apparatus for analyzing molten metal | |
JPH0875651A (en) | Method for emission spectrochemical analysis by laser | |
JPH04274743A (en) | Laser emission analysis method | |
Berglund et al. | Test of the generalized standard addition method and linearization algorithms for the direct, simultaneous, multi-element analysis of solid samples by electrothermal atomic absorption spectrometry | |
JPH0211097B2 (en) | ||
Rains | Determination of aluminum, barium, calcium, lead, magnesium, and silver in ferrous alloys by atomic emission and absorption spectrometry | |
JPH112605A (en) | Directly analyzing method of gas using laser | |
JP2005201772A (en) | Direct vaporization analysis method for solid sample and its device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020409 |
|
LAPS | Cancellation because of no payment of annual fees |