JPH0949727A - Optical distance-measuring apparatus - Google Patents

Optical distance-measuring apparatus

Info

Publication number
JPH0949727A
JPH0949727A JP7203440A JP20344095A JPH0949727A JP H0949727 A JPH0949727 A JP H0949727A JP 7203440 A JP7203440 A JP 7203440A JP 20344095 A JP20344095 A JP 20344095A JP H0949727 A JPH0949727 A JP H0949727A
Authority
JP
Japan
Prior art keywords
light
light receiving
distance
measured
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7203440A
Other languages
Japanese (ja)
Inventor
Hirotada Watanabe
博忠 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7203440A priority Critical patent/JPH0949727A/en
Publication of JPH0949727A publication Critical patent/JPH0949727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a measuring error that a distance of an object outside a measuring range is output as a value within the measuring range in an optical distance-measuring method based on the principle of triangulation. SOLUTION: A light is cast on an object to be measured, and a scattering light by the object is condensed onto a light receiving element by a photodetecting lens, whereby a distance to the object from the condensed point is measured in the apparatus. A plurality of position sensors of different resolutions are used for the light receiving element 22, for example, a position sensor 22a of a good positional resolution having a photodetecting face corresponding in size to a measuring range and a position sensor 22b which does not have a so good positional resolution, but is inexpensive or easy to use. Accordingly, the generation of an error to judge the distance as indefinitely far is eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学式測距装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical distance measuring device.

【0002】[0002]

【従来の技術】 従来より、カメラのオートフォーカス
用の測距センサーや車輌の障害物センサーとして様々な
光学式距離センサーが開発されている。このようなセン
サ─を用いた光学式測距方式は非接触で被測定物までの
距離を測定できるため、この他にもいろいろな分野で利
用されている。この光学式測距方式には様々なものがあ
り、光の伝播時間を測定するものや、三角測量の原理を
利用したものなどがある。
2. Description of the Related Art Conventionally, various optical distance sensors have been developed as distance measuring sensors for autofocus of cameras and obstacle sensors of vehicles. Since the optical distance measuring method using such a sensor can measure the distance to the object to be measured without contact, it is used in various other fields. There are various optical distance measuring methods, such as one that measures the propagation time of light and one that uses the principle of triangulation.

【0003】三角測量の原理を利用した方式の中に、測
距装置より被測定物に光を照射し、その散乱光の情報よ
り距離を求める方式があり、一般的にアクティブ方式と
呼ばれ、コンパクトカメラのオートフォーカスや自動ド
アの測距方式として広く使われている。この方式による
測距の原理を図3を用いて説明する。まず発光素子12
と集光レンズ11を備えた光ビ─ム投光部1より光ビ─
ム4がスポット光として被測定物3に照射される。光ビ
─ムはこれによって散乱され、その一部の光5が受光レ
ンズ21と受光素子22を備えた光検知器2に入射し、
受光素子22上に集光されて点像となる。距離の算定に
必要な数値である集光点位置xは受光素子の出力より求
められるが、このアクティブ方式の受光素子としてよく
使用されるPSD(Position-Sensitive Detector) の
場合には発生する光電流I1とI2よりx=L×I2/(I1+I
2)としてxを求めることが出来るし、CCDやフォトダ
イオードアレイのように画素が互いに分離されているよ
うな受光素子、言い換えれば位置決めに対してデジタル
的な受光素子の場合には最高出力を有する画素位置より
xを求めることが出来る。このxより被測定物までの距
離DはD=B×f/x より求めることができる。なおこれら
の式および図3中のfは受光レンズの焦点距離を表すも
のである。
Among the methods utilizing the principle of triangulation, there is a method of irradiating the object to be measured with light from a distance measuring device and obtaining the distance from the information of the scattered light, which is generally called the active method. It is widely used as an auto focus for compact cameras and a distance measurement method for automatic doors. The principle of distance measurement by this method will be described with reference to FIG. First, the light emitting element 12
And a light beam from the light beam projecting unit 1 equipped with a condenser lens 11.
The object 4 is irradiated with the beam 4 as spot light. The light beam is scattered by this, and a part of the light 5 is incident on the light detector 2 having the light receiving lens 21 and the light receiving element 22,
It is condensed on the light receiving element 22 to form a point image. The focal point position x, which is a numerical value required to calculate the distance, is obtained from the output of the light receiving element, but the photocurrent generated in the case of PSD (Position-Sensitive Detector) which is often used as this active type light receiving element. From I1 and I2, x = L × I2 / (I1 + I
2) x can be obtained, and the maximum output is obtained in the case of a light receiving element in which pixels are separated from each other such as a CCD or a photodiode array, in other words, a digital light receiving element for positioning. X can be obtained from the pixel position. The distance D from this x to the object to be measured can be obtained from D = B × f / x. Note that these expressions and f in FIG. 3 represent the focal length of the light receiving lens.

【0004】[0004]

【発明が解消しようとする課題】しかしながら、例えば
PSDにより検出された受光面上の集光点位置xから物
体までの距離を求める場合に、無限遠から近距離までを
位置分解能(PSDの受光面上で検出可能な集光点の最
小変位分)は良いが受光面の長さが短いPSDを用いて
測定しようとすると、集光点の位置変化の範囲がPSD
の受光面の長さよりも大きくなり、測定対象範囲からの
散乱光の一部がPSDの受光面上に集光されなくなる。
例えば、図3中の3aに位置する被測定物及びそれより
も遠距離に位置する被測定物からの散乱光5や5aは受
光素子(長さL)上に入射するが、前記被測定物よりも
近距離に位置する被測定物からの散乱光の集光点はPS
Dの受光面からはずれてしまう。そして、このような場
合には誤測距になるという問題があった。この誤測距を
防ぐためには長い受光面を有するPSDを用いるか、あ
るいは受光レンズの焦点距離を短くすれば良いが、前者
の場合には、PSDの位置分解能が受光面の長さの増大
と共に低下して、その結果、距離分解能が低化してしま
うという別の問題点が、また後者の場合には、位置分解
能は良いが、集光像が縮小されるために実際上は位置分
解能、即ち距離分解能が低下してしまうという別の問題
点が生じていた。
However, for example, when obtaining the distance from the focus point position x on the light receiving surface detected by PSD to the object, the position resolution (on the light receiving surface of the PSD) is changed from infinity to a short distance. (The minimum displacement of the condensing point that can be detected by) is good, but if you try to measure using a PSD with a short light-receiving surface, the range of position change of the condensing point is PSD.
Is longer than the length of the light receiving surface of, and part of the scattered light from the measurement target range is not collected on the light receiving surface of the PSD.
For example, scattered light 5 and 5a from the object to be measured located at 3a in FIG. 3 and the object to be measured located farther than that are incident on the light receiving element (length L). The condensing point of the scattered light from the DUT located closer than the
It comes off from the light receiving surface of D. In such a case, there is a problem that the distance measurement becomes erroneous. In order to prevent this erroneous distance measurement, a PSD having a long light receiving surface may be used, or the focal length of the light receiving lens may be shortened. In the former case, the position resolution of PSD increases with the length of the light receiving surface. Another problem is that the distance resolution is lowered, and as a result, the distance resolution is lowered. In the latter case, the position resolution is good, but the position resolution is actually reduced because the condensed image is reduced. Another problem was that the range resolution was reduced.

【0005】前記誤測距問題は位置センサーとして前記
短い受光面のPSDを用いる場合のみならず、位置決め
に対してデジタル的な素子(例えば、CCD)を用いる
場合にも生じ、問題回避のために長いが全画素数が同じ
である素子(例えばCCD)を用いると同様に分解能の
低下を招く、また長くて画素密度の等しいもの(例えC
CD)を用いると分解能の低下はないがコストの大幅な
アップを引きおこすという別の問題点が生じていた。
The problem of erroneous distance measurement occurs not only when the PSD of the short light receiving surface is used as a position sensor, but also when a digital element (for example, CCD) is used for positioning, in order to avoid the problem. If a long element (for example, a CCD) having the same total number of pixels is used, the resolution is similarly deteriorated, and a long element having the same pixel density (for example, C
The use of (CD) does not lower the resolution but causes another significant increase in cost.

【0006】本発明は、かかる問題を解決するためにな
されたものであり、遠距離から近距離までを誤測距なく
測定できると共に、所定の距離範囲の測距について高分
解能を有する、低コストの測距装置を提供する事を目的
とする。
The present invention has been made in order to solve such a problem, and it is possible to measure from a long distance to a short distance without erroneous distance measurement, and also has high resolution for distance measurement in a predetermined distance range and low cost. The purpose of the present invention is to provide a distance measuring device.

【0007】[0007]

【課題を解決するための手段】そのため、本発明は第一
に光ビームを被測定物に照射する光ビーム投光部と、照
射された光ビームの被測定物による散乱光を受けて集光
する受光レンズ及び該受光レンズによる散乱光の集光点
位置を検出する受光素子を有する光検出部と、該光検出
部からの信号により被測定物までの距離を算出する信号
処理部を備えた光学式測距装置において、前記受光素子
は分解能が異なる複数の位置センサ─を有することを特
徴とする光学式測距装置を提供する。また、本発明は第
二に前記複数の位置センサーは互いに隣接して配置され
てなる事を特徴とする光学式測距装置を提供する。さら
に、本発明は第三に光ビームを被測定物に照射する光ビ
ーム投光部と、照射された光ビームの被測定物による散
乱光を受けて集光する受光レンズ及び該受光レンズによ
る散乱光の集光点位置を検出する受光素子を有する複数
の光検出部と、該光検出部からの信号により被測定物ま
での距離を算出する信号処理部を備えた光学式測距装置
において前記各光検出部の受光素子は分解能が異なる2
種類の位置センサーのどちらか一方をそれぞれ有し、か
つ、前記複数の光検出部が互いに隔離されて配置されて
なる事を特徴とする光学式測距装置を提供する。
Therefore, according to the present invention, firstly, a light beam projecting unit for irradiating a light beam to an object to be measured, and a scattered light of the irradiated light beam from the object to be measured are condensed. A light receiving lens and a light detecting unit having a light receiving element for detecting the position of the condensing point of scattered light by the light receiving lens, and a signal processing unit for calculating the distance to the object to be measured by the signal from the light detecting unit. In the optical distance measuring device, there is provided an optical distance measuring device characterized in that the light receiving element has a plurality of position sensors having different resolutions. Further, the present invention secondly provides an optical distance measuring device characterized in that the plurality of position sensors are arranged adjacent to each other. Furthermore, the present invention thirdly provides a light beam projector for irradiating an object to be measured with a light beam, a light receiving lens for collecting and condensing scattered light of the irradiated light beam by the object to be measured, and scattering by the light receiving lens. In the optical distance measuring device including a plurality of light detectors having a light receiving element for detecting the light condensing point position, and a signal processor for calculating the distance to the object to be measured by signals from the light detectors. The light receiving element of each photodetector has a different resolution.
There is provided an optical distance measuring device characterized in that it has either one of position sensors of different types, and that the plurality of photodetection sections are arranged separately from each other.

【0008】[0008]

【作用】図3に示すような測距装置を用いて物体までの
距離を測定した場合、遠距離にある物体からの光の集光
点と近距離にある物体からの光の集光点は図4に示すよ
うに受光素子22上でその両端に位置することになる。
従って、無限遠から近距離までを一つの受光素子を用い
て測定しようとした場合、どうしても長い受光素子が必
要となる。しかしながら、実際の測距においては、所定
の距離範囲のみに高い距離分解能が要求され、それ以外
の距離範囲では距離分解能は左程要求されない事が殆ど
である。従って、これを考慮すると、高分解能が要求さ
れる距離範囲に対しては高分解能を有する位置センサー
を用い、それ以外の距離範囲に対してはコストとか使い
やすさを優先した位置センサーを一つまたは複数個用い
ることにより、実用上の精度を落とす事なく、低コスト
にて、遠距離から近距離までの測距を行う事ができる。
即ち、本発明によれば、例えば位置センサーの配置とし
て分解能の異なる少なくとも二つの位置センサーを互い
に隣接するように配置する事で実際上は長い一本の受光
素子を用いた場合と同じ効果を得る事ができる。また、
例えば分解能の異なる少なくとも二つの位置センサーと
それぞれの位置センサ─に対応する受光レンズの組み
(少なくとも二つの光検出部)をそれぞれ異なる位置に
配置する事で、同様の効果を得ることが出来る。即ち、
本発明によれば、遠距離から近距離までを誤測距なく測
距することができると共に、所定の距離範囲について高
い分解能で測距することができる。
When the distance to the object is measured by using the distance measuring device as shown in FIG. 3, the light collection point of the light from the object at the long distance and the light collection point of the light from the object at the short distance are As shown in FIG. 4, it is located on both ends of the light receiving element 22.
Therefore, when trying to measure from infinity to a short distance using one light receiving element, a long light receiving element is inevitably required. However, in the actual distance measurement, a high distance resolution is required only in a predetermined distance range, and in most other distance ranges, the distance resolution is not so much required to the left. Therefore, in consideration of this, a position sensor having high resolution is used for a distance range that requires high resolution, and one position sensor that prioritizes cost and ease of use for other distance ranges is used. Alternatively, by using a plurality of them, it is possible to perform distance measurement from a long distance to a short distance at a low cost without lowering the accuracy in practical use.
That is, according to the present invention, for example, by arranging at least two position sensors having different resolutions so as to be adjacent to each other as an arrangement of the position sensors, the same effect as in the case of using one light receiving element which is actually long is obtained. I can do things. Also,
For example, the same effect can be obtained by arranging at least two position sensors having different resolutions and light receiving lens groups (at least two light detecting portions) corresponding to the respective position sensors at different positions. That is,
According to the present invention, it is possible to perform distance measurement from a long distance to a short distance without erroneous distance measurement, and it is possible to perform distance measurement with high resolution in a predetermined distance range.

【0009】[0009]

【実施例】【Example】

ー実施例1ー 図1は、本実施例の光学式測距装置の光検出部2を示す
概略構成図である。本実施では位置分解能が異なる二つ
の位置センサ─を用いて広範囲な距離の測定を可能とし
ている。即ち、受光素子22は高い位置分解能を有する
位置センサー22aと分解能は低いが他の点(コストと
か使いやすさ)で優れた特性を有する位置センサ─22
bからなる。本実施例では、前者として長さ3mmのP
SDを、後者には長さ3mm、画素数4のシリコンフォト
ダイオ─ドアレイ(以下SPDと記す)を用いている。
受光素子を位置センサ−22aだけで構成した場合に
は、図中の5bから5aの範囲で入射する散乱光のみが
受光素子上に集光されるのに対し、ふたつの位置センサ
−22a、22bからなる本実施例の受光素子22では
5aから5cに入射する散乱光も受光される事になる。
-Embodiment 1- Fig. 1 is a schematic configuration diagram showing a light detection unit 2 of an optical distance measuring apparatus of the present embodiment. In this implementation, it is possible to measure a wide range of distance by using two position sensors having different position resolutions. That is, the light receiving element 22 has a position sensor 22a having a high position resolution and a position sensor 22a having a low resolution but excellent characteristics in other respects (cost and ease of use).
It consists of b. In the present embodiment, as the former, P having a length of 3 mm is used.
For the SD, the latter is a silicon photodiode array (hereinafter referred to as SPD) having a length of 3 mm and a number of pixels of 4.
When the light receiving element is composed of only the position sensor 22a, only the scattered light which is incident in the range of 5b to 5a in the figure is condensed on the light receiving element, whereas the two position sensors 22a and 22b. In the light receiving element 22 of the present embodiment consisting of, the scattered light entering from 5a to 5c is also received.

【0010】この受光素子22を図3の装置に組み込ん
で測距実験を行った。装置構成の主なパラメ−タとし
て、集光レンズと受光レンズの間隔Bを50mm、受光
レンズの焦点距離fを20mmとした。この様に構成し
た装置を用いてまず、正確に測定装置より10mの位置
にある物体の距離を測った所、PSD22aが作動して
正確に10mという測定結果が得られた。次に22. 5
cmの位置にある物体の距離を測った所、SPD22b
が作動して24.5cmという測定結果が得られた。
A distance measuring experiment was conducted by incorporating the light receiving element 22 into the apparatus shown in FIG. As main parameters of the device configuration, the distance B between the condenser lens and the light receiving lens was 50 mm, and the focal length f of the light receiving lens was 20 mm. When the distance between an object located at a position of 10 m from the measuring device was measured accurately by using the device configured as described above, the PSD 22a was activated and a measurement result of exactly 10 m was obtained. Next 22.5
When the distance of the object at the position of cm is measured, SPD22b
Was activated and a measurement result of 24.5 cm was obtained.

【0011】これに対して、従来の受光素子(一つのP
SD)を用いた装置で測定した所、10mの距離にある
物体に対しては本実施例の装置場合と同じ測定値が得ら
れたが、22.5cmの距離にある物体に対しては無限
遠との測定結果が出力され、誤測距となった。そこで、
誤測距の原因となる、物体が近距離にある場合の現象お
よびその現象に対する装置の対応を考えてみる。物体が
前述の様な近距離にある場合、散乱光の集光点はPSD
の受光面上に位置しなくなって光電流が零になり、出力
I1とI2はノイズ成分のみからなり、かつI1=I2
となる。I1=I2であれば前述の計算式よりx=L/2
、距離はD=2 ×B ×f/L となるが、従来装置では
I1+I2が小さい時には信号処理部での論理演算処理
により距離を無限遠と判断するのが一般的である。従っ
て、前述の誤測距は、集光点が受光面上に位置しないた
めに光電流が零になる現象を、散乱体が無限遠にあるた
めに光電流が零になると誤って判断をした事に起因して
いる。しかしこれに対して、本実施例の装置によればこ
のような誤った判断を防止することができる。
On the other hand, the conventional light receiving element (one P
When measured with a device using SD), the same measured value as that of the device of this example was obtained for an object at a distance of 10 m, but infinite for an object at a distance of 22.5 cm. The measurement result of distance was output, resulting in incorrect distance measurement. Therefore,
Consider the phenomenon that causes an erroneous distance measurement when an object is in a short distance and the device's response to the phenomenon. When the object is at a short distance as described above, the condensing point of scattered light is PSD
, The photocurrent becomes zero, the outputs I1 and I2 consist only of noise components, and I1 = I2
Becomes If I1 = I2, x = L / 2 from the above calculation formula
, The distance becomes D = 2 × B × f / L, but in the conventional apparatus, when I1 + I2 is small, it is general to judge the distance to be infinity by the logical operation processing in the signal processing unit. Therefore, the above-mentioned erroneous distance measurement erroneously determined that the photocurrent was zero because the condensing point was not located on the light receiving surface, and that the photocurrent was zero because the scatterer was at infinity. It is due to things. On the other hand, according to the apparatus of this embodiment, such an erroneous determination can be prevented.

【0012】なお、図1ではPSDの近距離側にSPD
を配置した例を示したが、PSDの遠距離側(図1では
PSDの左側)にSPDを配置してもよい。この場合に
は、近距離にある物体の距離をさらに精度よく測定出来
る事ので好ましい。また、中間的な距離を重視する場合
には、PSDを複数のSPDにより挟んだ構成にする
と、精度良く測定ができるので好ましい。
In FIG. 1, the SPD is located on the near side of the PSD.
However, the SPD may be arranged on the far side of the PSD (on the left side of the PSD in FIG. 1). In this case, the distance of an object at a short distance can be measured more accurately, which is preferable. Further, when the intermediate distance is emphasized, it is preferable that the PSD is sandwiched by a plurality of SPDs because accurate measurement can be performed.

【0013】ー実施例2ー 図2は本実施例の光学式測距装置の光検出器の概略構成
と位置関係を示す説明図である。本実施例では位置分解
能が異なる2種類の位置センサ−の一方をそれぞれ有す
る受光素子と受光レンズを備えた複数の光検出器を用い
て広範囲な距離の測定を可能としている。受光レンズ2
1a21b と位置センサー( 受光素子)22a,22b を
それぞれ備えた光検出器2a,2bが互いに隔離して配
置されている。図中、位置センサ−22aは高い位置分
解能を有し、その受光面の一端が受光レンズ21aの光
軸上にあり、かつ受光面は5のような散乱光を受光出来
るようになっている。他方位置センサ−22bは、位置
分解能は低いが他の点(コストとか使いやすさ)で優れ
た特性を有する位置センサーであり、その受光面の一端
が受光レンズ21bの光軸から位置センサー22aの受
光面の長さだけずれた位置にくるように配置され、かつ
5dのような散乱光を受光出来るようになっている。こ
の様な受光レンズ21a,bと位置センサー22a,b の組
(即ち、各光検出部2a,b)を集光レンズ11の光軸の
周りに等距離に配置することにより散乱光5のような遠
方の物体からの散乱光は位置センサ−22aにより、散
乱光5dのような近くの物体からの散乱光は位置センサ
ー22bによりそれぞれ受光されるようになる。ここで
は位置センサ−22aとして長さ3mmのPSDを、位
置センサ−22bとして長さ3mm、画素数4のSPD
を用い、集光レンズ11と受光レンズ21a,b の光軸間
距離を50mm、受光レンズ21a,b の焦点距離を20
mmとして装置を構築し、実施例1と同様な測距実験を
行ったところ、同様な満足すべき結果が得られた。本実
施例の測距装置によれば遠距離から近距離までを測距出
来ると共に所定の距離区間については、高分解能の測距
が可能であり、実用上問題なく使用できる。以上二つの
実施例では、高分解能を有する素子(位置センサ−)と
してPSDを、左程分解能は高くないが他の点(コスト
とか使いやすさ)で優れている素子(位置センサ−)と
してSPDを用いたが、これらに限定されるものではな
い。また、光検出器として、CCDやフォトトランジス
タなどを用いてもよい.さらに、前記実施例ではPSD
とは別の位置センサ−(受光素子)と受光レンズの組
(光検出部)を一組だけ配置したが、この光検出器を複
数個、例えば投光した光ビ─ムにたいして同心円上に配
置する事により、さらに測距精度を広範囲にわたって増
大する事も可能である。また、測距におけるS/N比を
向上させるために、投光素子を変調して発光させ、受光
素子に生じた光電流を復調して信号を測定してもよい。
Second Embodiment FIG. 2 is an explanatory diagram showing a schematic structure and a positional relationship of a photodetector of the optical distance measuring apparatus of the present embodiment. In this embodiment, a wide range of distances can be measured by using a plurality of photodetectors each having a light receiving element and a light receiving lens having one of two types of position sensors having different position resolutions. Light receiving lens 2
1a21b and photodetectors 2a and 2b having position sensors (light receiving elements) 22a and 22b are arranged separately from each other. In the figure, the position sensor 22a has a high position resolution, one end of its light receiving surface is on the optical axis of the light receiving lens 21a, and the light receiving surface can receive scattered light such as 5. On the other hand, the position sensor 22b is a position sensor having a low position resolution but excellent characteristics in other respects (cost and ease of use), and one end of its light receiving surface is located from the optical axis of the light receiving lens 21b to the position sensor 22a. It is arranged so as to be displaced by the length of the light receiving surface, and can receive scattered light such as 5d. By arranging such a set of the light receiving lenses 21a and 21b and the position sensors 22a and 22b (that is, the respective photodetecting sections 2a and 2b) at equal distances around the optical axis of the condenser lens 11, the scattered light 5 is generated. The scattered light from a distant object is received by the position sensor 22a, and the scattered light from a nearby object such as the scattered light 5d is received by the position sensor 22b. Here, a PSD having a length of 3 mm is used as the position sensor-22a, and an SPD having a length of 3 mm and a pixel number of 4 is used as the position sensor-22b.
The distance between the optical axes of the condenser lens 11 and the light receiving lenses 21a and 21b is 50 mm, and the focal length of the light receiving lenses 21a and 21 is 20 mm.
When the apparatus was constructed in mm and the distance measurement experiment similar to that in Example 1 was performed, the same satisfactory result was obtained. According to the distance measuring device of the present embodiment, it is possible to measure a distance from a long distance to a short distance, and it is possible to measure a high resolution in a predetermined distance section, which can be practically used without any problem. In the above two embodiments, PSD is used as an element (position sensor) having high resolution, and SPD is used as an element (position sensor) which is not as high in resolution as the left but is excellent in other points (cost and ease of use). However, the present invention is not limited to these. A CCD or phototransistor may be used as the photodetector. Further, in the above embodiment, PSD
Although only one set of position sensor (light receiving element) and light receiving lens (light detecting unit) other than the above is arranged, a plurality of such light detectors, for example, are arranged concentrically with respect to the projected light beam. By doing so, it is possible to further increase the ranging accuracy over a wide range. Further, in order to improve the S / N ratio in distance measurement, the light projecting element may be modulated to emit light, and the photocurrent generated in the light receiving element may be demodulated to measure the signal.

【0014】[0014]

【発明の効果】以上の如く本発明によれば、測距装置は
遠距離から近距離までの被測定物の信号を検出する事が
できる。つまり、光束不感域がなくなる。さらに、長さ
の短い高分解能位置センサ−(PSD)を用いているの
で、所定の距離範囲について高い分解能で測距すること
ができる。さらに、図2に示したような光検出部を、光
投光部の光軸を中心とした同心円上に、複数個配置し、
その光検出部として長さの短い高分解能位置センサ−
(例えばPSD)を用いることにより、精度良く測定レ
ンジを拡大することが出来る。
As described above, according to the present invention, the distance measuring device can detect the signal of the object to be measured from a long distance to a short distance. That is, the light beam dead zone is eliminated. Furthermore, since a high-resolution position sensor (PSD) having a short length is used, it is possible to perform distance measurement with high resolution in a predetermined distance range. Further, a plurality of light detecting portions as shown in FIG. 2 are arranged on a concentric circle centered on the optical axis of the light projecting portion,
A high-resolution position sensor with a short length as its photodetector
By using (for example, PSD), the measurement range can be expanded with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による第1実施例の受光素子の概略構成
図である。
FIG. 1 is a schematic configuration diagram of a light receiving element of a first embodiment according to the present invention.

【図2】本発明による第2実施例の概略構成図である。FIG. 2 is a schematic configuration diagram of a second embodiment according to the present invention.

【図3】三角測量の原理を利用した一般的な測距装置の
概略構成図である。
FIG. 3 is a schematic configuration diagram of a general distance measuring device using the principle of triangulation.

【図4】遠距離にある物体と、近距離にある物体を測距
したときの入射光の角度の違いを説明する図である。
FIG. 4 is a diagram illustrating a difference in angle of incident light when distance measurement is performed on an object at a long distance and an object at a short distance.

【符号の説明】[Explanation of symbols]

1 ・・・ 光ビーム投光装
置 11 ・・・ 集光レンズ 12 ・・・ 発光素子 2、2a、2b ・・・ 光検知器 21、21a、21b ・・・ 受光レンズ 22 ・・・ 受光素子 22a、22b ・・・ 位置センサー 3、3a、3b ・・・ 被測定物 4 ・・・ 照射された光ビ
ーム 5、5a、5b、5c、5d ・・・ 散乱光
DESCRIPTION OF SYMBOLS 1 ... Light beam projector 11 ... Condensing lens 12 ... Light emitting element 2, 2a, 2b ... Photodetector 21, 21a, 21b ... Light receiving lens 22 ... Light receiving element 22a , 22b ... Position sensor 3, 3a, 3b ... DUT 4 ... Irradiated light beam 5, 5a, 5b, 5c, 5d ... Scattered light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ビームを被測定物に照射する光ビーム
投光部と、照射された光ビームの被測定物による散乱光
を受けて集光する受光レンズ及び該受光レンズによる散
乱光の集光点位置を検出する受光素子を有する光検出部
と、該光検出部からの信号により被測定物までの距離を
算出する信号処理部を備えた光学式測距装置において、
前記受光素子は分解能が異なる複数の位置センサーを有
することを特徴とする光学式測距装置。
1. A light beam projecting unit for irradiating an object to be measured with a light beam, a light receiving lens for collecting and condensing scattered light of the irradiated light beam by the object to be measured, and a collection of scattered light by the light receiving lens. In an optical distance measuring device including a photodetector having a light receiving element for detecting a light spot position, and a signal processor for calculating a distance to an object to be measured by a signal from the photodetector,
The optical distance measuring device, wherein the light receiving element has a plurality of position sensors having different resolutions.
【請求項2】 前記複数の位置センサーは互いに隣接し
て配置されてなる事を特徴とする請求項1記載の光学式
測距装置。
2. The optical distance measuring apparatus according to claim 1, wherein the plurality of position sensors are arranged adjacent to each other.
【請求項3】 光ビームを被測定物に照射する光ビーム
投光部と、照射された光ビームの被測定物による散乱光
を受けて集光する受光レンズ及び該受光レンズによる散
乱光の集光点位置を検出する受光素子を有する複数の光
検出部と、該光検出部からの信号により被測定物までの
距離を算出する信号処理部を備えた光学式測距装置にお
いて、前記各光検出部の受光素子は分解能が異なる2種
類の位置センサーのどちらか一方をそれぞれ有し、か
つ、前記光検出部が互いに隔離されて配置されてなる事
を特徴とする光学式測距装置。
3. A light beam projector for irradiating an object to be measured with a light beam, a light receiving lens for collecting and condensing scattered light of the irradiated light beam by the object to be measured, and a collection of scattered light by the light receiving lens. In the optical distance measuring device including a plurality of photodetector units each having a light receiving element for detecting a light spot position and a signal processing unit for calculating a distance to an object to be measured based on signals from the photodetector units, The optical distance measuring device, wherein the light receiving element of the detection unit has one of two types of position sensors having different resolutions, and the light detection units are arranged separately from each other.
JP7203440A 1995-08-09 1995-08-09 Optical distance-measuring apparatus Pending JPH0949727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7203440A JPH0949727A (en) 1995-08-09 1995-08-09 Optical distance-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7203440A JPH0949727A (en) 1995-08-09 1995-08-09 Optical distance-measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0949727A true JPH0949727A (en) 1997-02-18

Family

ID=16474146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7203440A Pending JPH0949727A (en) 1995-08-09 1995-08-09 Optical distance-measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0949727A (en)

Similar Documents

Publication Publication Date Title
US6538751B2 (en) Image capturing apparatus and distance measuring method
JPH0324636B2 (en)
JPH04319615A (en) Optical height measuring apparatus
JPH05164552A (en) Range finder
JPH0949727A (en) Optical distance-measuring apparatus
JPS61112905A (en) Optical measuring apparatus
JP3091276B2 (en) Displacement measuring device
JPH0242311A (en) Detector for inclined angle
JP2507394B2 (en) Ranging device
JP2609606B2 (en) Optical pickup objective lens position detector
JP3039623U (en) Distance measuring device
JPH0778429B2 (en) Ranging device
JPH01156694A (en) Photoelectric switch
JP2534177B2 (en) Optical displacement measuring device
JPS63206682A (en) Photoelectric switch
JPH0227216A (en) Photoelectric switch
JPH0371041B2 (en)
JP3181647B2 (en) Distance measuring device
JP3204726B2 (en) Edge sensor
JPH0792377A (en) Range finder
JPS6285813A (en) Distance measuring instrument
JPS5826325Y2 (en) position detection device
JPH0558483B2 (en)
JPH065165B2 (en) Photoelectric object detector
JPH03223616A (en) Photoelectric range finder