JPH0949465A - Method and device for reducing harmful substance in engine exhaust gas - Google Patents

Method and device for reducing harmful substance in engine exhaust gas

Info

Publication number
JPH0949465A
JPH0949465A JP7222714A JP22271495A JPH0949465A JP H0949465 A JPH0949465 A JP H0949465A JP 7222714 A JP7222714 A JP 7222714A JP 22271495 A JP22271495 A JP 22271495A JP H0949465 A JPH0949465 A JP H0949465A
Authority
JP
Japan
Prior art keywords
fuel
radiation
irradiator
irradiation
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7222714A
Other languages
Japanese (ja)
Inventor
Shiyouitsu Uda
性逸 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7222714A priority Critical patent/JPH0949465A/en
Publication of JPH0949465A publication Critical patent/JPH0949465A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To reduce a harmful substance of smoke, nitrogen oxide, hydroxide, carbon monoxide, etc., in exhaust gas, by applying irradiation of ionizing radiation to fuel to radiolyze aromatic hydroxide thereafter supplying the fuel to an engine to be burned, and enhancing combustion efficiency in the engine. SOLUTION: Fuel is advanced from a fuel inlet 5 to a radiation irradiation band A1 in the upstream in a cylindrical main unit 1, to go out from a fuel outlet 7 via an intermediate flow side magnetic field band B and a radiation irradiation band A2 in the downstream. In each radiation irradiation band A1 , A2 in the upstream/downstream, fuel receives irradiation of infrared radiation and ionizing radiation generated from an radiation irradiation material 9, and also receives repeatedly self heating action by infrared radiation and radiolysis by ionizing irradiation during the time from the fuel inlet 5 to going out the fuel outlet 7, passing through each radiation irradiation material 9. Consequently, in fuel going out from the fuel outlet 7, aromatic hydroxide of high flashing point is decomposed to be decreased, and a molecule is supplied in a fine pulverized condition to an engine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、エンジン排気ガス
の有害物質低減方法及びエンジン排気ガスの有害物質低
減装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing harmful substances in engine exhaust gas and a device for reducing harmful substances in engine exhaust gas.

【0002】[0002]

【従来の技術】自動車のエンジンから排出される排気ガ
ス中には、黒煙、窒素酸化物、炭化水素、一酸化炭素等
の有害物質が多量に含まれており、この窒素酸化物等の
有害物質が地球の自然環境を破壊する大きな原因の一つ
として問題となっている。なお、この排気ガスの有害物
質を抑える目的で自動車窒素酸化物削減法が施行されて
いる。
Exhaust gas emitted from automobile engines contains a large amount of harmful substances such as black smoke, nitrogen oxides, hydrocarbons and carbon monoxide. Material is becoming a problem as one of the major causes of destroying the natural environment of the earth. In addition, the automobile nitrogen oxides reduction law is enforced for the purpose of suppressing the harmful substances of this exhaust gas.

【0003】この有害物質を除去する対策として、従
来、エンジンの開発、改良等の他に、例えば遠赤外線を
利用した有害物質低減装置が提案されている。この装置
は、筒状本体の内部に、粒状の遠赤外線照射体を充填し
た遠赤外線照射体層と磁石層とを夫々複数個設け、ガソ
リンエンジン、ディーゼルエンジンの別を問わず、燃料
タンクとエンジンとを結ぶ燃料供給系統に介在して使用
するものである。
As measures for removing this harmful substance, conventionally, in addition to the development and improvement of the engine, for example, a harmful substance reducing device using far infrared rays has been proposed. This device is provided with a plurality of far-infrared ray irradiating body layers each filled with a granular far-infrared ray irradiating body and a magnet layer inside a tubular body, and a fuel tank and an engine are provided regardless of whether the engine is a gasoline engine or a diesel engine. It is used by interposing a fuel supply system that connects with.

【0004】そして、燃料が筒状本体内を通過する際
に、粒状の遠赤外線照射体から照射する遠赤外線と、磁
石層の磁場とによって燃料の分子を活性化させて、エン
ジンでの燃焼効率を大幅に改善し、排気ガス中の黒煙、
窒素酸化物、炭化水素、一酸化炭素等の有害物質を低減
すると共に、燃費の向上を図るようにしている。
When the fuel passes through the cylindrical body, the far infrared rays emitted from the granular far infrared ray irradiating body and the magnetic field of the magnet layer activate the molecules of the fuel, and the combustion efficiency in the engine is increased. Greatly improved the black smoke in the exhaust gas,
It aims to reduce harmful substances such as nitrogen oxides, hydrocarbons, and carbon monoxide while improving fuel efficiency.

【0005】[0005]

【発明が解決しようとする課題】この装置は、既に使用
中の既存の自動車に容易に採用でき、自動車窒素酸化物
削減法の規制に適合できる利点がある。しかし、従来の
装置は、次の点で問題がある。即ち、燃料が遠赤外線照
射体層を通過する際に、遠赤外線照射体から発生する遠
赤外線を燃料に照射するため、遠赤外線による自己発熱
作用によって燃料を活性化し分子を微分化できるが、燃
料中の引火点の高い芳香族炭化水素を分解することはで
きない。従って、エンジンでの燃料の燃焼効率を上げる
にも自ずと限界がある。
This device has the advantage that it can be easily adopted in existing automobiles that are already in use and can comply with the regulations of the automobile nitrogen oxides reduction law. However, the conventional device has the following problems. That is, when the fuel passes through the far infrared ray irradiator layer, the far infrared ray generated from the far infrared ray irradiator irradiates the fuel, so that the fuel can be activated by the self-heating action of the far infrared ray and the molecules can be differentiated. Aromatic hydrocarbons with a high flash point cannot be decomposed. Therefore, there is a limit to improving the combustion efficiency of fuel in the engine.

【0006】例えば、燃料が軽油の場合、アルカン(単
結合の飽和鎖式炭化水素)とオレフィン(二重結合の不
飽和鎖式炭化水素)と芳香族炭化水素(ベンゼン環を持
つ不飽和炭化水素)の含有比率は、約7対1対2程度で
ある。そして、その各成分の吸収波長は、アルカンが7
μ、オレフィンが10〜15μ、芳香族炭化水素が11
〜15μである。
For example, when the fuel is light oil, alkane (single bond saturated chain hydrocarbon), olefin (double bond unsaturated chain hydrocarbon), and aromatic hydrocarbon (unsaturated hydrocarbon having a benzene ring) ) Content ratio is about 7: 1: 2. The absorption wavelength of each component is 7 for alkanes.
μ, olefin 10 to 15 μ, aromatic hydrocarbon 11
~ 15μ.

【0007】従って、各成分の吸収波長に見合った遠赤
外線を軽油に照射すれば、その遠赤外線が軽油の各成分
内に吸収されて、軽油の各成分を構成する分子が共振・
共鳴運動を起こすので、その時の自己発熱現象によって
軽油を細かい分子に微分化することができる。
Therefore, when the light oil is irradiated with far-infrared rays corresponding to the absorption wavelength of each component, the far-infrared rays are absorbed in each component of the light oil and the molecules constituting each component of the light oil resonate.
Since it causes resonance motion, the gas oil can be differentiated into fine molecules by the self-heating phenomenon at that time.

【0008】しかし、軽油の各成分の引火点は、アルカ
ン、オレフィン、芳香族炭化水素の順で高くなってお
り、芳香族炭化水素の成分が多い程、エンジン内で燃焼
し難くなる。このため、軽油に遠赤外線を照射してその
自己発熱現象によって分子を微分化しても、軽油中に引
火点の高い芳香族炭化水素の成分が依然として20%前
後もある限り、エンジンでの燃料の燃焼効率が悪く、排
気ガス中の黒煙、窒素酸化物、炭化水素、一酸化炭素等
の有害物質を十分に低減することができず、また燃費も
悪くなる欠点がある。
However, the flash point of each component of light oil increases in the order of alkane, olefin, and aromatic hydrocarbon, and the more aromatic hydrocarbon component is, the more difficult it is to combust in the engine. Therefore, even if light oil is irradiated with far infrared rays and the molecule is differentiated by its self-heating phenomenon, as long as the content of aromatic hydrocarbons having a high flash point in the light oil is still around 20%, It has a drawback that combustion efficiency is poor, harmful substances such as black smoke, nitrogen oxides, hydrocarbons, carbon monoxide, etc. in exhaust gas cannot be sufficiently reduced, and fuel efficiency is deteriorated.

【0009】本発明は、かかる従来の課題に鑑み、放射
線分解して燃料中の芳香族炭化水素の含有量を極力少な
くして、エンジンでの燃料の燃焼効率を良くし、排気ガ
ス中の黒煙、窒素酸化物、炭化水素、一酸化炭素等の有
害物質を低減できるエンジン排気ガスの有害物質低減方
法及びエンジン排気ガスの有害物質低減装置を提供する
ことを目的とする。
In view of such conventional problems, the present invention reduces the content of aromatic hydrocarbons in the fuel by radiation decomposition to improve the combustion efficiency of the fuel in the engine and to reduce the black in the exhaust gas. An object of the present invention is to provide a method for reducing harmful substances in engine exhaust gas and a device for reducing harmful substances in engine exhaust gas, which are capable of reducing harmful substances such as smoke, nitrogen oxides, hydrocarbons and carbon monoxide.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の本発明
は、燃料に電離性放射線を照射して、燃料の芳香族炭化
水素を放射線分解した後、この燃料をエンジンに供給し
て燃焼させるものである。
According to a first aspect of the present invention, a fuel is irradiated with ionizing radiation to radiolytically decompose aromatic hydrocarbons in the fuel, and then the fuel is supplied to an engine for combustion. It is what makes me.

【0011】請求項2に記載の本発明は、請求項1に記
載の発明において、燃料に、該燃料中の芳香族炭化水素
の吸収波長に見合った遠赤外線を照射して、この芳香族
炭化水素の自己発熱作用による発熱により芳香族炭化水
素の分子を活性化し、電離性放射線による放射線分解に
よって芳香族炭化水素を分解するものである。
According to a second aspect of the present invention, in the invention according to the first aspect, the fuel is irradiated with far infrared rays corresponding to the absorption wavelength of the aromatic hydrocarbon, and the aromatic carbonization is performed. The heat generated by the self-heating effect of hydrogen activates the molecules of aromatic hydrocarbons, and the aromatic hydrocarbons are decomposed by radiolysis by ionizing radiation.

【0012】請求項3に記載の本発明は、一端に燃料入
り口5 を、他端に燃料出口7 を備えた筒状本体1 の内部
に、粒状の放射線照射体9 を充填した放射線照射体層2
を設け、筒状本体1 内を通過する燃料に放射線照射体9
により放射線を照射して燃料を活性化するようにしたエ
ンジン排気ガスの有害物質低減装置において、放射線照
射体9 として、電離性放射線を発生し照射する電離性放
射線照射体を設けたものである。
According to a third aspect of the present invention, a radiation irradiator layer in which a granular radiation irradiator 9 is filled inside a cylindrical body 1 having a fuel inlet 5 at one end and a fuel outlet 7 at the other end 2
Is provided, and the radiation irradiator 9
In the device for reducing harmful substances in engine exhaust gas, which is adapted to irradiate radiation to activate fuel, an ionizing radiation irradiating body for generating and irradiating ionizing radiation is provided as the radiation irradiating body 9.

【0013】請求項4に記載の本発明は、請求項3に記
載の発明において、放射線照射体層2 に、遠赤外線を発
生し照射する遠赤外線照射体9 を設けたものである。
According to a fourth aspect of the present invention, in the invention of the third aspect, the radiation irradiating body layer 2 is provided with a far infrared irradiating body 9 for generating and irradiating far infrared rays.

【0014】請求項5に記載の本発明は、請求項3又は
4に記載の発明において、放射線照射体9 として、遠赤
外線及び電離性放射線を発生し照射する照射体を設けた
ものである。
According to a fifth aspect of the present invention, in the invention according to the third or fourth aspect, as the radiation irradiating body 9, an irradiating body for generating and irradiating far infrared rays and ionizing radiation is provided.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳述する。図1乃至図8は本発明の第1実施形
態を例示する。この有害排気ガス低減装置は、図1乃至
図3に示すように、筒状本体1 の内部の上流側と下流側
に放射線照射帯域A1,A2 が、この放射線照射帯域A1,A2
間の中流側に磁場帯域B が夫々設けられている。そし
て、各放射線照射帯域A1,A2 が夫々複数個、例えば3個
の放射線照射体層2 により構成され、また磁場帯域B が
複数個、例えば3個の磁石層3により構成されており、
その各放射線照射体層2 及び磁石層3 の各層間に空室4
が夫々形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 8 illustrate a first embodiment of the present invention. As shown in FIGS. 1 to 3, this harmful exhaust gas reducing apparatus has radiation irradiation zones A 1 and A 2 on the upstream side and the downstream side inside the cylindrical body 1, and the radiation irradiation zones A 1 and A 2 respectively.
Magnetic field bands B are provided on the middle stream side of the space. Each of the radiation irradiation zones A 1 and A 2 is composed of a plurality of, for example, three radiation irradiation body layers 2, and the magnetic field band B is composed of a plurality of, for example, three magnet layers 3.
A space 4 is provided between the layers of the radiation irradiator layer 2 and the magnet layer 3.
Are formed respectively.

【0016】筒状本体1 は円筒状のステンレス鋼管等か
ら成り、この筒状本体1 の一端側は、中心部に燃料入り
口5 を有する蓋体6 により閉塞され、他端側は上部側に
燃料出口7 を有する蓋体8 により閉塞されている。各放
射線照射体層2 は、多数個のセラミックス粒体等の粒状
の放射線照射体9を充填して成る。各放射線照射体9 の
上流側及び下流側の両側に仕切り板10が設けられ、この
各仕切り板10を介して放射線照射体9 の上流側及び下流
側の両側に空室4 が形成されている。
The tubular main body 1 is made of a cylindrical stainless steel pipe or the like. One end side of the tubular main body 1 is closed by a lid 6 having a fuel inlet 5 in the central portion, and the other end side is provided with an upper fuel side. It is closed by a lid 8 having an outlet 7. Each radiation irradiator layer 2 is formed by filling a large number of granular radiation irradiators 9 such as ceramic particles. Partition plates 10 are provided on both upstream and downstream sides of each radiation irradiation body 9, and vacant chambers 4 are formed on both upstream and downstream sides of the radiation irradiation body 9 via each partition plate 10. .

【0017】放射線照射体9 は、遠赤外線と電離性放射
線とを発生し且つその遠赤外線と電離性放射線とを筒状
本体1 の内部を通過する燃料に対して照射するためのも
のであって、放射性希土鉱石と遠赤外線照射鉱石と適当
なバインダーとを原料とし、これらを粉砕工程、混練工
程、造粒工程、乾燥工程、焼成工程及び研磨工程を経て
球状、その他の粒状に製造したセラミックス粒体が用い
られている。
The radiation irradiator 9 is for generating far infrared rays and ionizing radiation, and for irradiating the far infrared rays and ionizing radiation to the fuel passing through the inside of the cylindrical main body 1. , A ceramic produced by using a radioactive rare earth ore, a far-infrared ray-irradiated ore, and a suitable binder as raw materials, and pulverizing them, kneading them, granulating them, drying them, firing them, and polishing them into spherical or other granular materials. Granules are used.

【0018】放射線照射体9 は遠赤外線と電離性放射線
とを発生し燃料に照射して、その遠赤外線による自己発
熱作用により燃料を加熱し、電離性放射線の励起、電離
の非弾性散乱によって燃料を放射線分解するようになっ
ている。なお、電離性放射線には、X線、α線、β線、
γ線等があるが、電離はα線が最大で、β線、γ線の順
で小さくなる。また電離性放射線の放射線量は、人体に
対して影響を及ぼさない程度の微弱なものである。
The radiation irradiator 9 generates far-infrared rays and ionizing radiation to irradiate the fuel, heats the fuel by the self-heating action of the far-infrared rays, and excites the ionizing radiation and inelastically scatters the ionized fuel. Is to be decomposed by radiation. The ionizing radiation includes X-rays, α-rays, β-rays,
Although there are γ-rays and the like, the largest ionization is α-rays, and β-rays and γ-rays become smaller in this order. In addition, the dose of ionizing radiation is so small that it does not affect the human body.

【0019】各仕切り板10は、図4及び図5に示すよう
に、耐油性、耐熱性を有する合成樹脂材料によって成形
された円板状であって、仕切り板10の板厚方向に貫通し
て仕切り板10の上流側と下流側とを連通させる通孔13が
形成されると共に、外周にV字状等の周溝11が形成さ
れ、その周溝11にシールリング12が嵌合されている。そ
して、この仕切り板10は、シールリング12を介して筒状
本体1 に内嵌されている。なお、通孔13は、図6の
(A)に示す楕円形状、(B)に示す長方形状、又は
(C)に示す3個の円形状等の何れであっても良く、粒
状の放射線照射体9 が通過しない程度の大きさであれ
ば、その形状は別に問題ではない。
As shown in FIGS. 4 and 5, each partition plate 10 is a disk-shaped member formed of a synthetic resin material having oil resistance and heat resistance, and penetrates in the plate thickness direction of the partition plate 10. A through hole 13 for communicating the upstream side and the downstream side of the partition plate 10 is formed, and a V-shaped peripheral groove 11 is formed on the outer periphery, and a seal ring 12 is fitted into the peripheral groove 11. There is. The partition plate 10 is fitted in the tubular body 1 via the seal ring 12. The through holes 13 may have any of the elliptical shape shown in FIG. 6A, the rectangular shape shown in FIG. 6B, the three circular shapes shown in FIG. The shape does not matter as long as the body 9 does not pass through.

【0020】シールリング12は耐油性、耐熱性を有し且
つ適度な弾性を有する合成樹脂材料によって断面円形状
に形成されている。各仕切り板10の通孔13は、放射線照
射体9 の上流側の仕切り板10ではその下部側に位置し、
また放射線照射体9 の下流側の仕切り板10ではその上部
側に位置するように、放射線照射体9 の上下流の仕切り
板10でその通孔13の位置が上下反対になっている。
The seal ring 12 is made of a synthetic resin material having oil resistance, heat resistance and appropriate elasticity, and has a circular cross section. The through hole 13 of each partition plate 10 is located on the lower side of the partition plate 10 on the upstream side of the radiation irradiation body 9,
Further, the positions of the through holes 13 are upside down in the partition plate 10 on the upstream and downstream sides of the radiation irradiation body 9 so that the partition plate 10 on the downstream side of the radiation irradiation body 9 is located on the upper side thereof.

【0021】各磁石層3 は、仕切り板を兼用する磁石板
14により構成されている。磁石板14は仕切り板10の板厚
と同等又は仕切り板10よりも若干薄い板厚の円板状であ
り、この磁石板14にも図7の(A)及び(B)に示すよ
うに、その板厚方向に貫通して磁石板14の上流側と下流
側とを連通させる通孔15が夫々形成されている。なお、
この磁石板14の通孔15も、その形状は別段問題ではな
い。
Each magnet layer 3 is a magnet plate that also serves as a partition plate.
It is composed of 14. The magnet plate 14 is in the shape of a disk having a plate thickness equal to or slightly smaller than that of the partition plate 10. The magnet plate 14 also has a plate thickness as shown in (A) and (B) of FIG. Through holes 15 are formed so as to penetrate the magnet plate 14 in the plate thickness direction so as to connect the upstream side and the downstream side of the magnet plate 14, respectively. In addition,
The shape of the through hole 15 of the magnet plate 14 does not matter.

【0022】各磁石板14は、図8に示す如くその上流側
と下流側とが異なる磁極となるように着磁されている。
例えば、空室4 の両側にN極とS極とが相対向し、その
N極とS極とが筒状本体1 の長手方向に交互に並ぶよう
に、各磁石板14が着磁されている。各磁石板14は、筒状
本体1 の上流域の下流端の仕切り板10と下流域の上流端
の仕切り板10との間に、上下流方向に保持リング16を介
在した状態で一定間隔をおいて嵌合されている。各磁石
板14はその通孔13が交互に上下に位置するように筒状本
体1 に嵌合され、従って、中流域の各空室4 では燃料が
上下に蛇行しながら上流側から下流側へと流れるように
なっている。
As shown in FIG. 8, each magnet plate 14 is magnetized so that its upstream side and downstream side have different magnetic poles.
For example, the magnet plates 14 are magnetized so that the N pole and the S pole face each other on both sides of the vacant chamber 4, and the N pole and the S pole are alternately arranged in the longitudinal direction of the cylindrical main body 1. There is. Each magnet plate 14 has a certain interval between the partition plate 10 at the downstream end of the upstream region of the tubular body 1 and the partition plate 10 at the upstream end of the downstream region with a retaining ring 16 interposed in the upstream and downstream directions. Are fitted together. Each magnet plate 14 is fitted into the cylindrical main body 1 so that the through holes 13 are alternately located on the upper and lower sides. Therefore, in each empty chamber 4 in the middle flow region, the fuel meanders up and down, and the fuel flows from the upstream side to the downstream side. It is supposed to flow.

【0023】筒状本体1 の下流端側の空室4 を除く各空
室4 は、保持リング16の幅分に相当する空間となってお
り、また筒状本体1 の下流端側の空室4 は放射線照射体
9 の容積と同程度の空間となっている。この装置を製作
する際には、例えば、燃料入り口5 側の蓋体6 を筒状本
体1 に固定して置き、この筒状本体1 の他端側から各保
持リング16、仕切り板10、放射線照射体9 、磁石板14等
を順次挿入し嵌合させて行く。そして、最後に、筒状本
体1 の他端側に、燃料出口7 を有する蓋体8 を固定す
る。
Each of the empty chambers 4 except the empty space 4 on the downstream end side of the cylindrical main body 1 is a space corresponding to the width of the retaining ring 16, and the empty space on the downstream end side of the cylindrical main body 1. 4 is the irradiation body
The space is about the same as the volume of 9. When manufacturing this device, for example, the lid 6 on the fuel inlet 5 side is fixedly placed on the tubular main body 1, and each holding ring 16, the partition plate 10, the radiation plate from the other end side of the tubular main body 1. The irradiator 9 and the magnet plate 14 are sequentially inserted and fitted. Then, finally, the lid body 8 having the fuel outlet 7 is fixed to the other end side of the tubular main body 1.

【0024】各仕切り板10、磁石板14を挿入する場合、
その通孔13が交互に上下に位置すべく、その向きを順次
変えながら嵌合させて行く。このため、仕切り板10、磁
石板14には、同一形状のものを夫々一種類準備すれば良
い。
When inserting each partition plate 10 and magnet plate 14,
The through holes 13 are fitted while sequentially changing their directions so that the through holes 13 are alternately located on the upper and lower sides. Therefore, as the partition plate 10 and the magnet plate 14, one type having the same shape may be prepared.

【0025】各仕切り板10、磁石板14はその板厚方向の
両側で筒状本体1 に嵌着された一対の保持リング16によ
り保持されているため、筒状本体1 内での仕切り板10、
磁石板14の倒れを確実に防止できる。このため、筒状本
体1 の端部側から保持リング16、仕切り板10、磁石板14
等を順次挿入するだけで、各仕切り板10及び磁石板14相
互間の間隔を一定に保持しつつ容易に組み立てることが
できるので、組み立て時の作業性が非常に良好である。
Since each partition plate 10 and magnet plate 14 are held by a pair of retaining rings 16 fitted to the tubular body 1 on both sides in the plate thickness direction, the partition plate 10 inside the tubular body 1 is retained. ,
The fall of the magnet plate 14 can be reliably prevented. For this reason, the holding ring 16, the partition plate 10, and the magnet plate 14 are inserted from the end side of the tubular main body 1.
Since it is possible to easily assemble the partition plates 10 and the magnet plates 14 at a constant interval by simply inserting them, the workability during assembly is very good.

【0026】この装置を使用する場合には、筒状本体1
の燃料入り口5 をエンジンの燃料供給系統の燃料タンク
側に、燃料出口7 をキャブレター又はフィードポンプ側
に夫々接続する。そして、この装置を経由して燃料タン
クからエンジンに燃料を供給し、エンジンで燃焼させ
る。
When using this device, the tubular body 1
The fuel inlet 5 is connected to the fuel tank side of the engine fuel supply system, and the fuel outlet 7 is connected to the carburetor or feed pump side. Then, the fuel is supplied from the fuel tank to the engine through this device and burned in the engine.

【0027】燃料は燃料入り口5 から筒状本体1 内の上
流側の放射線照射帯域A1に入り、この上流側の放射線照
射帯域A1から中流側の磁場帯域B 、下流側の放射線照射
帯域A2を経て燃料出口7 から出て行く。そして、燃料
は、各放射線照射帯域A1,A2 で、遠赤外線による自己発
熱作用と電離性放射線による放射線分解とを繰り返し受
けると共に、磁場帯域B で磁場の磁力による浄化作用を
受ける。
The fuel enters the irradiation zone A 1 on the upstream side of the cylindrical body 1 from the fuel inlet 5, the magnetic field band B middle side from the irradiation zone A 1 in the upstream, downstream of the irradiation zone A Go out through fuel exit 7 via 2 . Then, the fuel is repeatedly subjected to self-heating action by far infrared rays and radiolysis by ionizing radiation in each of the radiation irradiation zones A 1 and A 2 , and is purified by the magnetic force of the magnetic field in the magnetic field zone B 2.

【0028】即ち、燃料は、図2及び図4に示すよう
に、先ず上流側の放射線照射帯域A1にある第1番目の空
室4 に入り、この第1番目の空室4 内を下降して仕切り
板10の下部側の通孔13を経て第1番目の放射線照射体層
2 内に入る。そして、この第1番目の放射線照射体層2
内に入った燃料は、放射線照射体9 から発生する遠赤外
線及び電離性放射線の照射を受けて、この遠赤外線及び
電離性放射線の作用により活性化及び放射線分解され
る。
That is, as shown in FIGS. 2 and 4, the fuel first enters the first empty chamber 4 in the radiation irradiation zone A 1 on the upstream side, and descends in the first empty chamber 4. Then, the first radiation irradiator layer is passed through the through hole 13 on the lower side of the partition plate 10.
Go into 2 And, this first radiation irradiator layer 2
The fuel that has entered the inside is irradiated with far infrared rays and ionizing radiation generated from the radiation irradiator 9, and is activated and radiolytically decomposed by the action of the far infrared rays and ionizing radiation.

【0029】第1番目の放射線照射体層2 の下流側の仕
切り板10には、その上部側に通孔13があるため、この第
1番目の放射線照射体層2 内の燃料は、その上部側の通
孔13から第2番目の空室4 へと流出して行く。従って、
第1番目の放射線照射体層2内では、多数の粒状の放射
線照射体9 間の間隙を通過しながら、燃料が上流側の下
部から下流側の上部へと流れて行くので、燃料は第1番
目の放射線照射体層2内を満遍なく全体に亘って略均等
に流れることになり、各放射線照射体9 から遠赤外線及
び電離性放射線を燃料に効果的に照射することができ
る。
Since the partition plate 10 on the downstream side of the first radiation irradiator layer 2 has a through hole 13 on the upper side thereof, the fuel in the first radiation irradiator layer 2 has an upper portion thereof. It flows out from the through hole 13 on the side to the second vacant chamber 4. Therefore,
In the first radiation irradiator layer 2, the fuel flows from the lower part on the upstream side to the upper part on the downstream side while passing through the gaps between the large number of granular radiation irradiators 9. In the second radiation irradiating body layer 2, it flows evenly and substantially evenly over the whole, and far infrared rays and ionizing radiation can be effectively irradiated from the respective radiation irradiating bodies 9 to the fuel.

【0030】特に、第1番目の放射線照射体層2 の下流
側の仕切り板10には、その上部側に通孔13があり、この
第1番目の放射線照射体層2 を通過した燃料を上部側か
ら次の第2番目の空室4 へと流すため、仮に燃料内に空
気等の気泡が混入した状態であっても、その気泡は仕切
り板10の通孔13を経て第2番目の空室4 へと流れて行
く。従って、第1番目の放射線照射体層2 の下流側の仕
切り板10の下部側に通孔13がある場合に比較して、放射
線照射体層2 内での空気溜まりの発生を少なくできる。
この結果、放射線照射体層2 内を燃料が通過する時に
は、多数の粒状の放射線照射体9 の全体に亘って燃料が
充満した状態になり、放射線照射体9 の全体によって燃
料に効率的に遠赤外線及び電離性放射線を照射できる。
In particular, the partition plate 10 on the downstream side of the first radiation irradiator layer 2 has a through hole 13 on the upper side thereof, and the fuel passing through the first radiation irradiator layer 2 is placed above the partition plate 10. Since it flows from the side to the next second empty chamber 4, even if air bubbles such as air are mixed in the fuel, the bubbles pass through the through hole 13 of the partition plate 10 and the second empty chamber. Flows into chamber 4. Therefore, as compared with the case where the through hole 13 is provided on the lower side of the partition plate 10 on the downstream side of the first radiation irradiating body layer 2, the occurrence of air pockets in the radiation irradiating body layer 2 can be reduced.
As a result, when the fuel passes through the radiation irradiator layer 2, the whole of the many granular radiation irradiators 9 is filled with the fuel, and the whole of the radiation irradiator 9 effectively separates the fuel from the fuel. Infrared and ionizing radiation can be applied.

【0031】第1番目の放射線照射体層2 を通過した燃
料は、仕切り板10の上部側の通孔13から第2番目の空室
4 に入った後、この第2番目の空室4 内を下降する、そ
して、この第2番目の空室4 の下流側にある仕切り板10
の下部側の通孔13を経て、第2番目の放射線照射体層2
内へと下部側から流入する。この第2番目の空室4 内で
は、燃料は一旦下降した後、その下流側にある仕切り板
10の下部側の通孔13を経て第2番目の放射線照射体9 内
へと流れるので、燃料中に空気の気泡があれば、その空
気の一部はこの第2番目の空室4 内の上部に空気溜まり
となって溜まって行く。
The fuel that has passed through the first radiation irradiator layer 2 passes through the through hole 13 on the upper side of the partition plate 10 to the second vacant chamber.
After entering 4, the partition plate 10 descends in the second empty space 4 and is located downstream of the second empty space 4.
Through the through hole 13 on the lower side of the second irradiation layer 2
It flows in from the lower side. In this second chamber 4, the fuel drops once and then the partition plate on the downstream side
Since it flows into the second radiation irradiator 9 through the through hole 13 on the lower side of 10, if there is air bubble in the fuel, a part of the air will be contained in this second vacant chamber 4. Air accumulates in the upper part and accumulates.

【0032】燃料は、以下同様にして上流域の各放射線
照射体層2 、空室4 を順次通過して行く。そして、この
上流域の放射線照射帯域A1の各放射線照射体層2 、空室
4 を通過した燃料が、中流域の磁場帯域B にある第4番
目の空室4 に入ると、図8に示すように、その燃料は第
4番目の空室4 内を下降した後、その下流側の仕切り板
兼用の磁石板14の下部側の通孔15を経て第5番目の空室
4 へと入り、第5番目の空室4 内を上昇してその下流側
の磁石板14の上部の通孔15を経て第6番目の空室4 へと
入る。
In the same manner, the fuel successively passes through the radiation irradiating body layers 2 and the vacant chambers 4 in the upstream region. Then, each radiation irradiation body layer 2 in the radiation irradiation zone A 1 in this upstream region
When the fuel that has passed through 4 enters the fourth chamber 4 in the magnetic field band B in the middle flow region, the fuel descends in the fourth chamber 4 and then, as shown in FIG. The fifth vacant chamber through the lower side through hole 15 of the magnet plate 14 also serving as the partition plate on the downstream side.
4, then rises in the fifth chamber 4 and enters the sixth chamber 4 through the through hole 15 in the upper part of the magnet plate 14 on the downstream side.

【0033】つまり、この中流域では、仕切り板兼用の
磁石板14間に形成された各空室4 を交互に上下に蛇行し
ながら下流側へと流れて行く。そして、この中流域を通
過する間に、各磁石板14の両側の磁極による磁場の影響
を受けて、その磁気作用により燃料が活性化される。ま
た各空室4 の内、燃料が下降流となって流れる空室4で
は、燃料中の気泡が順次除去されて、その上部側に空気
溜まりとなって溜まって行く。
That is, in this middle stream region, the respective empty chambers 4 formed between the magnet plates 14 also serving as the partition plates alternately meander vertically and flow toward the downstream side. Then, while passing through this middle flow region, the fuel is activated by the magnetic action under the influence of the magnetic fields of the magnetic poles on both sides of each magnet plate 14. In each of the empty chambers 4, in the empty chamber 4 in which the fuel flows as a downward flow, the bubbles in the fuel are sequentially removed, and the air bubbles are accumulated on the upper side thereof.

【0034】中流域の磁場帯域B の各磁石層3 を通過し
た燃料は、下流域の放射線照射帯域A2にある各放射線照
射体層2 及び空室4 を順次通過して、上流域の放射線照
射帯域A1の場合と同様に遠赤外線及び電離性放射線の照
射を受けて、更に活性化及び放射線分解されて行く。
The fuel that has passed through each magnet layer 3 in the magnetic field band B in the middle flow region sequentially passes through each radiation irradiator layer 2 and the vacant chamber 4 in the radiation irradiation band A 2 in the downstream region, and then the radiation in the upstream region. As in the case of the irradiation zone A 1 , it is irradiated with far infrared rays and ionizing radiation, and is further activated and radiolyzed.

【0035】各放射線照射体層2 を通過する際に、その
放射線照射体9 から電離性放射線及び遠赤外線が発生し
ているため、その電離性放射線及び遠赤外線が燃料に照
射しているため、電離性放射線により燃料を分解して活
性化できると共に、遠赤外線により燃料を活性化でき
る。
Since ionizing radiation and far-infrared rays are generated from the radiation irradiating body 9 when passing through each radiation irradiating body layer 2, the ionizing radiation and far-infrared rays irradiate the fuel, The fuel can be activated by decomposing the fuel by ionizing radiation and by the far infrared rays.

【0036】例えば、燃料が軽油の場合、アルカン(単
結合の飽和鎖式炭化水素)が70%、オレフィン(二重
結合の不飽和鎖式炭化水素)が10%、芳香族炭化水素
(ベンゼン環を持つ不飽和炭化水素)が20%である。
そして、この各成分の吸収波長は、アルカンが7μ、オ
レフィンが10〜15μ、芳香族炭化水素が11〜15
μである。
For example, when the fuel is light oil, alkane (single bond saturated chain hydrocarbon) 70%, olefin (double bond unsaturated chain hydrocarbon) 10%, aromatic hydrocarbon (benzene ring) Is 20%.
The absorption wavelength of each component is 7 μ for alkane, 10 to 15 μ for olefin, and 11 to 15 for aromatic hydrocarbon.
μ.

【0037】従って、軽油の各線分の吸収波長に見合っ
た5〜15μ程度の遠赤外線を放射線照射体9 にて発生
させて、この遠赤外線を軽油に照射する。すると放射線
照射体9 から発生する遠赤外線が軽油の各成分内に吸収
されて、軽油の各成分を構成する分子が共振・共鳴運動
を起こすので、各分子が活性化されて活発に活動して激
しく衝突する。このため、各分子が高まったエネルギー
を熱で放射して、その自己発熱現象によって軽油の各成
分が細かい分子に微分化される。
Therefore, the far-infrared rays of about 5 to 15 μ corresponding to the absorption wavelength of each line segment of light oil are generated by the radiation irradiator 9, and the far-infrared rays are irradiated to the light oil. Then, the far-infrared rays generated from the radiation irradiator 9 are absorbed in each component of the gas oil, and the molecules constituting each component of the gas oil resonate and resonate, so that each molecule is activated and actively activated. Collide violently. Therefore, each molecule radiates the increased energy by heat, and each component of light oil is differentiated into fine molecules by its self-heating phenomenon.

【0038】しかし、軽油の各成分の引火点は、アルカ
ン、オレフィン、芳香族炭化水素の順で引火点が高くな
っており、芳香族炭化水素の成分が多い程、エンジン内
で燃焼し難く、エンジンの燃費が悪くなる。このため、
軽油に遠赤外線を照射してその自己発熱現象によって分
子を微分化しても、軽油中に引火点の高い芳香族炭化水
素の成分が依然として20%前後もある限り、黒煙の発
生を防止し燃費を向上させるにも自ずと限界がある。
However, the flash point of each component of light oil is higher in the order of alkane, olefin, and aromatic hydrocarbon, and the more aromatic hydrocarbon component is, the more difficult it is to burn in the engine. The fuel efficiency of the engine becomes poor. For this reason,
Even if light oil is irradiated with far-infrared rays and molecules are differentiated by its self-heating phenomenon, as long as the content of aromatic hydrocarbons with a high flash point is still around 20% in light oil, black smoke is prevented and fuel consumption is reduced. There is naturally a limit to improving.

【0039】そこで、放射線照射体9 から発生する電離
性放射線を軽油に照射して、電離や励起の非弾性散乱を
発生させて軽油を放射線分解する。即ち、この放射線分
解は、電離や励起の非弾性散乱によってC−C結合の切
断、C−H結合の切断による化学反応を引き起こし、そ
の結果生じたラジカルの反応によって進行する。そし
て、この放射線分解に伴って、軽油中の芳香族炭化水素
(ベンゼン環を持つ不飽和炭化水素)が、引火点の低い
鎖式炭化水素へと変化して行くので、芳香族炭化水素の
成分の比率が低下してエンジン内での燃焼効率が向上
し、燃費の向上、黒煙の低下等が可能である。
Therefore, the light oil is irradiated with the ionizing radiation generated from the radiation irradiator 9 to generate inelastic scattering of ionization and excitation, and the light oil is decomposed by radiation. That is, this radiolysis is caused by inelastic scattering of ionization or excitation, which causes a chemical reaction due to C—C bond breakage or C—H bond breakage, and proceeds by the reaction of the resulting radicals. Along with this radiolysis, aromatic hydrocarbons (unsaturated hydrocarbons having a benzene ring) in light oil change to chain hydrocarbons with a low flash point. It is possible to improve the fuel efficiency and the black smoke by improving the combustion efficiency in the engine by decreasing the ratio of.

【0040】一方、単に放射線照射体9 から電離性放射
線を照射するばかりでなく、放射線照射体9 から同時に
発生する遠赤外線を軽油に照射して、軽油中の芳香族炭
化水素の放射線分解を促進し易くする。即ち、放射線照
射体9 は、常温で芳香族炭化水素の吸収波長に見合った
10μ以上の遠赤外線を発生し、この10μ以上の遠赤
外線を軽油に照射して、その芳香族炭化水素の分子を活
性化し、自己発熱作用によって芳香族炭化水素を発熱及
び加熱して、芳香族炭化水素を電離性放射線と反応し易
い状態にする。このため、軽油に電離性放射線を照射し
た時の放射線分解を促進できる。
On the other hand, not only the ionizing radiation is radiated from the radiation irradiator 9, but far infrared rays simultaneously generated from the radiation irradiator 9 are also radiated to the light oil to accelerate the radiolysis of aromatic hydrocarbons in the light oil. Make it easier. That is, the radiation irradiator 9 generates far infrared rays of 10 μ or more corresponding to the absorption wavelength of aromatic hydrocarbons at room temperature and irradiates light oil with the far infrared rays of 10 μm or more to remove the molecules of the aromatic hydrocarbon. When activated, the aromatic hydrocarbons generate heat and heat by a self-heating action, and make the aromatic hydrocarbons easily react with ionizing radiation. Therefore, it is possible to promote the radiolysis when the light oil is irradiated with the ionizing radiation.

【0041】また放射線照射体9 から電離性放射線を照
射すると、電離や励起の非弾性散乱等を起こしてそのエ
ネルギーを失うが、最終的には熱エネルギーになるの
で、芳香族炭化水素を鎖式炭化水素へと分解する他に、
軽油の各分子を更に微分化することになり、エンジンで
の燃焼効率がより向上する。
When ionizing radiation is irradiated from the radiation irradiator 9, energy is lost due to ionization, inelastic scattering of excitation, etc., but the energy eventually becomes thermal energy. Besides decomposing into hydrocarbons,
Each molecule of light oil is further differentiated, and the combustion efficiency in the engine is further improved.

【0042】このように筒状本体1 の上流側の放射線照
射帯域A1で空室4 、放射線照射体9槽を交互に3回通過
させることによって、燃料中の芳香族炭化水素を鎖式炭
化水素へと分解すると共に、その分子を微分化し、また
燃料中の空気を除去して各空室4 の上部の空気溜まりに
溜める。そして、この上流側の放射線照射帯域A1を通過
した燃料は、筒状本体1 の中流側の磁場帯域B の各磁石
板14により構成された磁石層3 に沿って各空室4 を上下
にジグザグ状に蛇行させながら、磁石板14の磁場中を通
過させる。このため、磁石層3 の磁場の磁力によって燃
料の分子を活性化できると共に、この活性化によって放
射線照射体9 に付着する汚れを除去でき、放射線照射体
9 、磁石板14の効果を長期に亘って維持できる。
In this way, the aromatic hydrocarbons in the fuel are chain-chain carbonized by alternately passing the empty space 4 and the radiation irradiation body 9 tank three times in the radiation irradiation zone A 1 on the upstream side of the cylindrical main body 1. While decomposing into hydrogen, the molecules are differentiated, and the air in the fuel is removed and stored in the air pool above each vacant chamber 4. Then, the fuel that has passed through the radiation irradiation zone A 1 on the upstream side moves up and down the vacant chambers 4 along the magnet layer 3 constituted by the magnet plates 14 of the magnetic field zone B on the middle stream side of the tubular body 1. The magnetic plate 14 is passed through the magnetic field while meandering in a zigzag shape. Therefore, the molecules of the fuel can be activated by the magnetic force of the magnetic field of the magnet layer 3, and the dirt attached to the radiation irradiator 9 can be removed by this activation.
9. The effect of the magnet plate 14 can be maintained for a long time.

【0043】また燃料は、各磁石板14により構成された
磁石層3 に沿って各空室4 を上下にジグザグ状に蛇行し
ながら通過するため、燃料の流れ経路を十分に確保で
き、筒状本体1 、取り分け中流域の長さを短くして小型
化を図りつつも、燃料が各磁場中を通過する時間を長く
できる。更に燃料が下向きに流れる下降流の空室4 で
は、その燃料中の空気を空気溜まりに捕捉することがで
きる。
Further, the fuel passes along the magnet layers 3 constituted by the magnet plates 14 while zigzag vertically in the respective cavities 4, so that a sufficient fuel flow path can be secured and the tubular shape can be obtained. The main body 1 can shorten the length of the middle-flow region, in particular, to reduce the size of the main body 1, while increasing the time for the fuel to pass through each magnetic field. Further, in the downward flow chamber 4 in which the fuel flows downward, the air in the fuel can be trapped in the air reservoir.

【0044】磁場帯域B を通過した燃料は、下流側の放
射線照射帯域A2の空室4 、放射線照射体9 を交互に通過
する時にも、上流側の放射線照射帯域A1を通過する時と
同様の作用を受ける。従って、燃料は、筒状本体1 の燃
料入り口5 から燃料出口7 を出るまでの間に、各放射線
照射体9 を通過する毎に、遠赤外線による自己発熱作用
と電離性放射線による放射線分解とを繰り返して受け
る。
The fuel that has passed through the magnetic field zone B passes through the empty space 4 and the radiation irradiator 9 of the downstream side radiation irradiation zone A 2 alternately and when it passes through the upstream side radiation irradiation zone A 1. The same effect is received. Therefore, as the fuel passes through each radiation irradiator 9 between the fuel inlet 5 and the fuel outlet 7 of the tubular body 1, the self-heating effect by far infrared rays and the radiolytic decomposition by ionizing radiation occur. Receive repeatedly.

【0045】このため、筒状本体1 の燃料出口7 から出
る燃料は、引火点の高い芳香族炭化水素が分解されて少
なくなり、しかも燃料の分子を微分化された状態になっ
ており、この状態の燃料がエンジンに供給されるので、
エンジンでの燃焼効率が著しく向上し、黒煙、一酸化炭
素等の発生を低減できる。
Therefore, the fuel discharged from the fuel outlet 7 of the tubular body 1 is reduced by the decomposition of aromatic hydrocarbons having a high flash point, and the molecule of the fuel is differentiated. Since the fuel of the state is supplied to the engine,
The combustion efficiency in the engine is significantly improved, and the generation of black smoke and carbon monoxide can be reduced.

【0046】図9は本発明の第2実施形態を例示し、筒
状本体1 の上流側から下流側へと3個の第1〜第3放射
線照射帯域A1,A2,A3を設け、その各放射線照射帯域A1,A
2,A3間に磁場帯域B1,B2 設けたものである。各放射線照
射帯域A1,A2,A3 は2個の放射線照射体層2 を、各磁場
帯域B1,B2 は5個の磁石層3 を夫々有し、その各放射線
照射体層2 及び磁石層3 間に空室4 が設けられている。
この第2実施形態でも、第1実施形態と同様に作用し、
同様の効果を得ることができる。
FIG. 9 illustrates a second embodiment of the present invention, in which three first to third radiation irradiation zones A 1 , A 2 and A 3 are provided from the upstream side to the downstream side of the cylindrical body 1. , Each radiation irradiation zone A 1 , A
Magnetic field bands B 1 and B 2 are provided between 2 and A 3 . Each radiation irradiation zone A 1 , A 2 , A 3 has two radiation irradiation layer 2 and each magnetic field zone B 1 , B 2 has 5 magnet layers 3, respectively. A space 4 is provided between the magnet layer 3 and the magnet layer 3.
In the second embodiment, the same operation as in the first embodiment is performed,
Similar effects can be obtained.

【0047】図10は本発明の第3実施形態を例示し、
筒状本体1 の上流側の1/3程度の範囲に磁場帯域B を
設け、下流側の残りの2/3に放射線照射帯域A を設け
たものである。磁場帯域B は10個の磁石層3 を、放射
線照射帯域A は6個の放射線照射体層2 を夫々有し、そ
の各磁石層3 及び放射線照射体層2 の各層間に空室4が
設けられている。この第3実施形態でも、第1実施形態
と同様に作用し、同様の効果を得ることができる。
FIG. 10 illustrates a third embodiment of the present invention,
The magnetic field band B is provided in a range of about 1/3 on the upstream side of the cylindrical main body 1, and the radiation irradiation band A is provided on the remaining 2/3 on the downstream side. The magnetic field band B has 10 magnet layers 3 and the radiation irradiation band A has 6 radiation irradiation body layers 2, and a vacant chamber 4 is provided between each of the magnet layers 3 and radiation irradiation body layers 2. Has been. Also in this third embodiment, the same operation and the same effect as those of the first embodiment can be obtained.

【0048】図11は本発明の第4実施形態を例示し、
第3実施形態の装置を2個準備して、この2個の装置を
平行に配置すると共に、接続管で直列状に接続したもの
である。排気量の大きい大型エンジンの場合には、この
第4実施形態に示すように2個の装置を直列に接続して
用いても良い。以上、各実施形態について説明したが、
本発明はこれらに限定されるものではない。
FIG. 11 illustrates a fourth embodiment of the present invention,
Two devices of the third embodiment are prepared, and these two devices are arranged in parallel and connected in series by a connecting pipe. In the case of a large engine having a large displacement, two devices may be connected in series and used as shown in the fourth embodiment. As described above, each embodiment has been described.
The present invention is not limited to these.

【0049】例えば、筒状本体1 内での放射線照射帯域
A 及び磁場帯域B の配置は、各実施形態に限定されるも
のではなく、例えば放射線照射帯域A を4分割し、その
各放射線照射帯域A 間に磁場帯域B を配置しても良い。
また各放射線照射帯域A における放射線照射体層2 の個
数、磁場帯域B における磁石層3 の個数は、各実施形態
では前者を6個、後者を10としているが、燃料の芳香
族炭化水素の分解、汚れの除去等が可能であれば、その
個数は自在に選択し決定することができる。
For example, the radiation irradiation zone in the cylindrical main body 1
The arrangement of A and the magnetic field band B is not limited to each embodiment. For example, the radiation irradiation band A may be divided into four, and the magnetic field band B may be arranged between the respective radiation irradiation bands A.
The number of the radiation irradiator layers 2 in each radiation irradiation zone A and the number of the magnet layers 3 in the magnetic field zone B are 6 in the former and 10 in the latter, but the decomposition of aromatic hydrocarbons in the fuel is performed. If stains can be removed, the number can be freely selected and determined.

【0050】更に第4の実施形態では、第3の実施形態
の装置を2個直列に接続しているが、第1又は第2の実
施形態の装置を2個直列に接続しても良いし、異なる実
施形態同士の装置を2個直列に接続しても良い。また2
個の装置を直列に接続した場合、燃料の消費量の多い大
型エンジン用では、筒状本体1 内での燃料の流速が速く
なるが、2個の装置を並列に接続して流速を下げるよう
にしても良い。
Further, in the fourth embodiment, two devices of the third embodiment are connected in series, but two devices of the first or second embodiment may be connected in series. Alternatively, two devices according to different embodiments may be connected in series. Also 2
When connecting two devices in series, the flow velocity of fuel in the tubular body 1 will be faster for large engines that consume a lot of fuel, but two devices should be connected in parallel to reduce the flow velocity. You can

【0051】更に各実施形態では、遠赤外線と電離性放
射線とを共に発生する放射線照射体9 を使用している
が、遠赤外線照射体と電離性放射線照射体とを別々に設
けても良い。しかも、電離性放射線でも最後は熱エネル
ギーとなって燃料の各分子を加熱し活性化する作用があ
るので、遠赤外線の照射は省略しても良い。
Further, in each of the embodiments, the radiation irradiator 9 which generates both far infrared rays and ionizing radiation is used, but the far infrared irradiator and the ionizing radiation irradiator may be provided separately. In addition, since ionizing radiation also has the effect of finally becoming thermal energy to heat and activate each molecule of the fuel, irradiation of far infrared rays may be omitted.

【0052】その他、実施形態では燃料として軽油を例
示しているが、軽油以外の燃料、例えばガソリン等でも
同様に実施することができる。この装置は、自動車エン
ジン用の他、船舶エンジン、発電機用等の据置きエンジ
ン等にも採用することができる。
In addition, although light oil is used as an example of fuel in the embodiment, fuel other than light oil, such as gasoline, can be similarly used. This device can be adopted not only for automobile engines but also for stationary engines such as for marine engines and generators.

【0053】[0053]

【発明の効果】請求項1に記載の本発明によれば、燃料
に電離性放射線を照射して、燃料の芳香族炭化水素を放
射線分解した後、この燃料をエンジンに供給して燃焼さ
せるので、燃料中の芳香族炭化水素を放射線分解してそ
の含有量を極力少なくできる。従って、エンジンでの燃
料の燃焼効率を良くし、排気ガス中の黒煙、窒素酸化
物、炭化水素、一酸化炭素等の有害物質を低減できる。
According to the first aspect of the present invention, the fuel is irradiated with ionizing radiation to radiolytically decompose the aromatic hydrocarbons of the fuel, and then the fuel is supplied to the engine for combustion. The content of aromatic hydrocarbons in fuel can be reduced by radiolysis. Therefore, the combustion efficiency of fuel in the engine can be improved, and harmful substances such as black smoke, nitrogen oxides, hydrocarbons, carbon monoxide, etc. in the exhaust gas can be reduced.

【0054】請求項2に記載の本発明によれば、請求項
1に記載の発明において、燃料に、該燃料中の芳香族炭
化水素の吸収波長に見合った遠赤外線を照射して、この
芳香族炭化水素の自己発熱作用による発熱により芳香族
炭化水素の分子を活性化し、電離性放射線による放射線
分解によって芳香族炭化水素を分解するので、芳香族炭
化水素の放射線分解を容易に促進できる。
According to the present invention of claim 2, in the invention of claim 1, the fuel is irradiated with far-infrared rays corresponding to the absorption wavelength of the aromatic hydrocarbon in the fuel, and the fragrance is obtained. The aromatic hydrocarbon molecules are activated by the heat generated by the self-heating effect of the group hydrocarbon, and the aromatic hydrocarbon is decomposed by the radiolysis by the ionizing radiation. Therefore, the radiolysis of the aromatic hydrocarbon can be easily promoted.

【0055】請求項3に記載の本発明によれば、一端に
燃料入り口5 を、他端に燃料出口7を備えた筒状本体1
の内部に、粒状の放射線照射体9 を充填した放射線照射
体層2 を設け、筒状本体1 内を通過する燃料に放射線照
射体9 により放射線を照射して燃料を活性化するように
したエンジン排気ガスの有害物質低減装置において、放
射線照射体9 として、電離性放射線を発生し照射する電
離性放射線照射体を設けているので、燃料中の芳香族炭
化水素を放射線分解して含有量を極力少なくできる。従
って、エンジンでの燃料の燃焼効率を良くし、排気ガス
中の黒煙、窒素酸化物、炭化水素、一酸化炭素等の有害
物質を低減でき、しかも装置的にも簡単であり、容易に
実施できる。
According to the present invention as set forth in claim 3, the tubular body 1 is provided with the fuel inlet 5 at one end and the fuel outlet 7 at the other end.
An engine in which a radiation irradiator layer 2 filled with a granular radiation irradiator 9 is provided in the interior of the cylinder to irradiate the fuel passing through the cylindrical main body 1 with the radiation irradiator 9 to activate the fuel In the device for reducing harmful substances in exhaust gas, an ionizing radiation irradiation body that generates and irradiates ionizing radiation is provided as the radiation irradiation body 9, so the aromatic hydrocarbons in the fuel are decomposed by radiation to reduce the content as much as possible. Can be reduced. Therefore, the combustion efficiency of the fuel in the engine can be improved, and harmful substances such as black smoke, nitrogen oxides, hydrocarbons, carbon monoxide in the exhaust gas can be reduced, and the system is simple and easy to implement. it can.

【0056】請求項4に記載の本発明によれば、請求項
3に記載の発明において、放射線照射体層2 に、遠赤外
線を発生し照射する遠赤外線照射体9 を設けているの
で、遠赤外線の照射による自己発熱作用によって芳香族
炭化水素の分子を活性化でき、芳香族炭化水素の放射線
分解を容易に促進できる
According to the present invention described in claim 4, in the invention described in claim 3, since the far-infrared irradiation body 9 for generating and irradiating far-infrared rays is provided in the radiation irradiation body layer 2, The molecules of aromatic hydrocarbons can be activated by the self-heating effect of infrared irradiation, and the radiolysis of aromatic hydrocarbons can be easily promoted.

【0057】請求項5に記載の本発明によれば、請求項
3又は4に記載の発明において、放射線照射体9 とし
て、遠赤外線及び電離性放射線を発生し照射する照射体
を設けているので、遠赤外線用と電離性放射線用の照射
体を別々に設ける場合に比較して、装置全体を小型化す
ることができる。
According to the present invention of claim 5, in the invention of claim 3 or 4, the radiation irradiating body 9 is provided with an irradiating body for generating and irradiating far infrared rays and ionizing radiation. In comparison with the case where the far-infrared radiation and ionizing radiation irradiation bodies are separately provided, the entire apparatus can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態を示す装置全体の断面
図である。
FIG. 1 is a cross-sectional view of an entire device showing a first embodiment of the present invention.

【図2】本発明の第1の実施形態を示す装置の上流側部
分の断面図である。
FIG. 2 is a cross-sectional view of an upstream side portion of the device showing the first embodiment of the present invention.

【図3】本発明の第1の実施形態を示す装置の上流側部
分の一部切り欠き斜視図である。
FIG. 3 is a partially cutaway perspective view of an upstream side portion of the device showing the first embodiment of the present invention.

【図4】本発明の第1の実施形態を示す装置の要部の拡
大断面図である。
FIG. 4 is an enlarged cross-sectional view of a main part of the device showing the first embodiment of the present invention.

【図5】図4のX−X線断面図である。5 is a sectional view taken along line XX of FIG.

【図6】本発明の第1の実施形態を示す仕切り板の正面
図である。
FIG. 6 is a front view of the partition plate showing the first embodiment of the present invention.

【図7】本発明の第1の実施形態を示す磁石板の正面図
である。
FIG. 7 is a front view of the magnet plate showing the first embodiment of the present invention.

【図8】本発明の第1の実施形態を示す装置の中流側部
分の断面図である。
FIG. 8 is a cross-sectional view of the middle-flow side portion of the device showing the first embodiment of the present invention.

【図9】本発明の第2の実施形態を示す装置全体の断面
図である。
FIG. 9 is a sectional view of the entire apparatus showing a second embodiment of the present invention.

【図10】本発明の第3の実施形態を示す装置全体の断
面図である。
FIG. 10 is a cross-sectional view of the entire device showing a third embodiment of the present invention.

【図11】本発明の第4の実施形態を示す装置全体の断
面図である。
FIG. 11 is a sectional view of the entire apparatus showing a fourth embodiment of the present invention.

【符合の説明】[Description of sign]

1 筒状本体 2 放射線照射体層 4 空室 5 燃料入り口 7 燃料出口 9 放射線照射体 10 仕切り板 13,15 通孔 14 磁石板 16 保持リング 1 Cylindrical body 2 Radiation irradiation layer 4 Vacancy 5 Fuel inlet 7 Fuel outlet 9 Radiation irradiation body 10 Partition plate 13,15 Through hole 14 Magnet plate 16 Retaining ring

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 燃料に電離性放射線を照射して、燃料の
芳香族炭化水素を放射線分解した後、この燃料をエンジ
ンに供給して燃焼させることを特徴とするエンジン排気
ガスの有害物質低減方法。
1. A method for reducing harmful substances in engine exhaust gas, which comprises irradiating a fuel with ionizing radiation to radiolytically decompose aromatic hydrocarbons of the fuel and then supplying the fuel to an engine for combustion. .
【請求項2】 燃料に、該燃料中の芳香族炭化水素の吸
収波長に見合った遠赤外線を照射して、この芳香族炭化
水素の自己発熱作用による発熱により芳香族炭化水素の
分子を活性化し、電離性放射線による放射線分解によっ
て芳香族炭化水素を分解することを特徴とする請求項1
に記載のエンジン排気ガスの有害物質低減方法。
2. The fuel is irradiated with far-infrared rays corresponding to the absorption wavelength of the aromatic hydrocarbon in the fuel, and the molecules of the aromatic hydrocarbon are activated by the heat generated by the self-heating action of the aromatic hydrocarbon. The aromatic hydrocarbon is decomposed by radiolysis with ionizing radiation.
The method for reducing harmful substances in engine exhaust gas according to.
【請求項3】 一端に燃料入り口(5) を、他端に燃料出
口(7) を備えた筒状本体(1) の内部に、粒状の放射線照
射体(9) を充填した放射線照射体層(2) を設け、筒状本
体(1) 内を通過する燃料に放射線照射体(9) により放射
線を照射して燃料を活性化するようにしたエンジン排気
ガスの有害物質低減装置において、放射線照射体(9) と
して、電離性放射線を発生し照射する電離性放射線照射
体を設けたことを特徴とするエンジン排気ガスの有害物
質低減装置。
3. A radiation irradiator layer in which a granular radiation irradiator (9) is filled inside a cylindrical body (1) having a fuel inlet (5) at one end and a fuel outlet (7) at the other end. In the engine exhaust gas harmful substance reduction device, which is provided with (2) to activate the fuel by irradiating the fuel passing through the cylindrical body (1) with the radiation irradiator (9), A device for reducing harmful substances in engine exhaust gas, comprising an ionizing radiation irradiator for generating and irradiating ionizing radiation as the body (9).
【請求項4】 放射線照射体層(2) に、遠赤外線を発生
し照射する遠赤外線照射体(9) を設けたことを特徴とす
る請求項3に記載のエンジン排気ガスの有害物質低減装
置。
4. The apparatus for reducing harmful substances in engine exhaust gas according to claim 3, wherein the radiation irradiator layer (2) is provided with a far infrared irradiator (9) for generating and irradiating far infrared rays. .
【請求項5】 放射線照射体(9) として、遠赤外線及び
電離性放射線を発生し照射する照射体を設けたことを特
徴とする請求項3又は4に記載のエンジン排気ガスの有
害物質低減装置。
5. An apparatus for reducing harmful substances in engine exhaust gas according to claim 3, wherein the radiation irradiator (9) is provided with an irradiator for generating and irradiating far infrared rays and ionizing radiation. .
JP7222714A 1995-08-07 1995-08-07 Method and device for reducing harmful substance in engine exhaust gas Pending JPH0949465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222714A JPH0949465A (en) 1995-08-07 1995-08-07 Method and device for reducing harmful substance in engine exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7222714A JPH0949465A (en) 1995-08-07 1995-08-07 Method and device for reducing harmful substance in engine exhaust gas

Publications (1)

Publication Number Publication Date
JPH0949465A true JPH0949465A (en) 1997-02-18

Family

ID=16786761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222714A Pending JPH0949465A (en) 1995-08-07 1995-08-07 Method and device for reducing harmful substance in engine exhaust gas

Country Status (1)

Country Link
JP (1) JPH0949465A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028613A1 (en) * 1997-12-03 1999-06-10 Isao Yoshida Fuel improving method and apparatus
KR20010111465A (en) * 2001-11-06 2001-12-19 김정민 Fuel saving device for internal combustion engine
JP2003074424A (en) * 2001-09-04 2003-03-12 Plan Tec Co Ltd Fuel activating device for heat engine
WO2003021102A1 (en) * 2001-09-04 2003-03-13 Yugen Kaisha Plan Tec Heat engine liquid fuel activation device
WO2003074861A1 (en) * 2002-03-06 2003-09-12 Nissho Co., Ltd. Fuel processing device
WO2008133050A1 (en) * 2007-04-13 2008-11-06 Yashiro Kogyo Kabushiki Kaisha Fuel reforming method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999028613A1 (en) * 1997-12-03 1999-06-10 Isao Yoshida Fuel improving method and apparatus
JP2003074424A (en) * 2001-09-04 2003-03-12 Plan Tec Co Ltd Fuel activating device for heat engine
WO2003021102A1 (en) * 2001-09-04 2003-03-13 Yugen Kaisha Plan Tec Heat engine liquid fuel activation device
KR20010111465A (en) * 2001-11-06 2001-12-19 김정민 Fuel saving device for internal combustion engine
WO2003074861A1 (en) * 2002-03-06 2003-09-12 Nissho Co., Ltd. Fuel processing device
WO2008133050A1 (en) * 2007-04-13 2008-11-06 Yashiro Kogyo Kabushiki Kaisha Fuel reforming method and device

Similar Documents

Publication Publication Date Title
CN1654111A (en) Method and apparatus for gas treatment using non-equilibrium plasma
CN108355491B (en) Photocatalyst honeycomb assembly
WO2005121540A1 (en) Fuel reformer
JPH0949465A (en) Method and device for reducing harmful substance in engine exhaust gas
JP2005127138A (en) Liquid fuel improving catalyst and liquid fuel improving device storing the catalyst
US20060087243A1 (en) Packed-bed radial-flow non-thermal plasma reactor
JPH0949464A (en) Harmful substance reducing device for engine exhaust gas
CN100509641C (en) Gas-liquid mixed discharge process for degrading organic pollutant in water
JPH1112022A (en) Ceramic agglomeration and fuel reforming unit
JPH0949462A (en) Liquid fuel activating device
Youssef et al. Purification of liquid scintillation waste from binding radionuclides using different adsorbents
JP3205489U (en) Α-ray emitter and apparatus for fluid treatment
WO2016188485A1 (en) Energy superimposition substance modifying platform and modifying method thereof
JP3205487U (en) Gas processing equipment
JPH11166456A (en) Method and device for fuel improvement
JPH1089164A (en) Liquid fuel refining device
JP2008224233A (en) Alpha-ray radiator for treating fluid, and device
JPH05171926A (en) Combustion exhaust gas purifying method and device
JP4344565B2 (en) Exhaust gas purification device for internal combustion engine
JP2005009898A (en) Alpha ray emitting ceramic for fluid treatment and holding structure therefor
JP2007198192A (en) Air filtration cleaner for internal combustion engine
KR101303356B1 (en) Fuel efficiency increase and exhaust gas reduction system by far-infrared radiation increase and magnetic field
Grothaus et al. A synergistic approach for the removal of NO/sub x/and PM from diesel engine exhaust
JP2005036705A (en) Method and apparatus for purifying combustion engine
JP2557034B2 (en) Liquid fuel reforming apparatus and liquid fuel reforming tank