JPH0948922A - Transparent thermoplastic resin composition - Google Patents

Transparent thermoplastic resin composition

Info

Publication number
JPH0948922A
JPH0948922A JP21957595A JP21957595A JPH0948922A JP H0948922 A JPH0948922 A JP H0948922A JP 21957595 A JP21957595 A JP 21957595A JP 21957595 A JP21957595 A JP 21957595A JP H0948922 A JPH0948922 A JP H0948922A
Authority
JP
Japan
Prior art keywords
layer
thermoplastic resin
transparent thermoplastic
refractive index
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21957595A
Other languages
Japanese (ja)
Other versions
JP3563166B2 (en
Inventor
Hideaki Haino
英明 拝野
Takao Hoshiba
孝男 干場
Mitsuo Otani
三夫 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP21957595A priority Critical patent/JP3563166B2/en
Publication of JPH0948922A publication Critical patent/JPH0948922A/en
Application granted granted Critical
Publication of JP3563166B2 publication Critical patent/JP3563166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a transparent thermoplastic resin composition having excellent in transparency and impact resistance and reduced in an increase in haze upon a temperature change brought about by e.g. heating by specifying the refractive indices of the rubber phase and the resin phase and specifying the difference between the changes in them upon a temperature change. SOLUTION: This transparent thermoplastic resin composition is the one prepared by dispersing particles having a core/shell multilayer structure in which a rubber phase of a glass transition temperature of 0 deg.C is dispersed in a transparent thermoplastic resin and satisfying the replationship: 0.01>nR23-nP23<0 (wherein nR23 is the refractive index of the rubber phase at 23 deg.C, and nP23 is the refractive index of the resin phase at 23 deg.C when they are independently measured) and the relationship: 0.00025>|dnR/dT-dnP/dT| (wherein dnR/dT is the change in the refractive index of the rubber phase upon a temperature change in a range of 23-70 deg.C, and dnP/dT is the change in the refractive index of the resin phase when they are independently measured). It is desirable that the glass transition temperature of the thermoplastic resin is 50 deg.C or above and that the particles of the core/shell multilayer structure are those of a three-layer structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透明熱可塑性樹脂
組成物に関するものであって、さらに詳しくは、透明
性、耐衝撃性に優れ、温度変化によるヘイズ値の温度変
化が低減された透明熱可塑性樹脂組成物に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent thermoplastic resin composition, and more particularly to a transparent thermoplastic resin which is excellent in transparency and impact resistance and has a reduced change in haze value due to temperature change. The present invention relates to a plastic resin composition.

【0002】[0002]

【従来の技術】熱可塑性樹脂の耐衝撃性を改善する方法
として、弾性を有するゴム相を硬質樹脂中に不連続的に
分散させることが一般的に行われている。その際、ジエ
ン系エラストマーの導入が一般的であるが、耐侯性の観
点からアクリル系エラストマーの導入についても種々検
討されている。アクリル系エラストマーを用いた改質樹
脂としては、コア−シェル構造を基本とする、軟質層と
硬質層を組み合わせた多層構造重合体が種々検討されて
いる(特公昭54−18298号公報、特公昭55−2
7576号公報、特公昭62−41241号公報等)。
これらは耐衝撃性の改善効果は優れているものの、加熱
等の温度変化によるヘイズの増加が大きく、耐衝撃性透
明アクリル樹脂に代表されるゴム変性透明熱可塑性樹脂
の応用範囲が限定される問題点があった。
2. Description of the Related Art As a method for improving the impact resistance of a thermoplastic resin, it is common practice to disperse a rubber phase having elasticity in a hard resin discontinuously. At that time, the introduction of a diene elastomer is common, but various introductions of an acrylic elastomer have been studied from the viewpoint of weather resistance. As a modified resin using an acrylic elastomer, various multilayer structure polymers based on a core-shell structure and having a combination of a soft layer and a hard layer have been studied (Japanese Patent Publication No. 54-18298 and Japanese Examined Patent Publication). 55-2
No. 7576, Japanese Patent Publication No. 62-41241, etc.).
Although these have an excellent effect of improving impact resistance, there is a large increase in haze due to temperature changes such as heating, and the application range of rubber-modified transparent thermoplastic resin typified by impact-resistant transparent acrylic resin is limited. There was a point.

【0003】また、加熱によるヘイズの増加を改善する
方法も幾つか検討されている(特開昭63−19925
8号公報等)。この方法は樹脂層とゴム層とのグラフト
率を高めることにより加熱によるヘイズの増加を低減さ
せるというものであるが、実用に供するには十分満足で
きる物性を有していない。
Several methods for improving the increase in haze due to heating have also been investigated (Japanese Patent Laid-Open No. 63-19925).
No. 8, etc.). This method is to reduce the increase in haze due to heating by increasing the graft ratio between the resin layer and the rubber layer, but it does not have sufficiently satisfactory physical properties for practical use.

【0004】[0004]

【発明が解決しようとする課題】したがって、本発明の
目的は、透明熱可塑性樹脂の優れた透明性に加え、耐衝
撃性に優れ、加熱等の温度変化によるヘイズの増加の低
減された透明熱可塑性樹脂組成物を提供することにあ
る。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a transparent thermoplastic resin which, in addition to the excellent transparency of the transparent thermoplastic resin, has excellent impact resistance and which has a reduced increase in haze due to temperature changes such as heating. It is to provide a plastic resin composition.

【0005】[0005]

【課題を解決するための手段】本発明者らはこのような
現状に鑑み鋭意検討した結果、ゴム相と樹脂相が特定の
温度において特定の屈折率の差を有し、さらにゴム相と
樹脂相との屈折率の温度変化量の差を限定することによ
り上記問題点が解決されることを見出し、本発明を完成
するに至った。
DISCLOSURE OF THE INVENTION As a result of intensive studies made by the present inventors in view of such a situation, the rubber phase and the resin phase have a specific difference in refractive index at a specific temperature, and further, the rubber phase and the resin phase. The inventors have found that the above problems can be solved by limiting the difference in the amount of change in the refractive index with respect to the phase, and have completed the present invention.

【0006】すなわち、本発明は、透明熱可塑性樹脂中
に、ガラス転移温度が0℃以下のゴム相を有するコア−
シェル型多層構造粒子が分散された透明熱可塑性樹脂組
成物であって、それぞれ単独で測定したときの23℃に
おけるゴム相の屈折率(nR23)と樹脂相の屈折率
(nP23)が下記の式(I)の関係にあり、かつそれ
ぞれ単独で測定したときの23〜70℃におけるゴム相
の屈折率の温度変化量(dnR/dT)と樹脂相の屈折
率の温度変化量(dnP/dT)とが下記の式(II)の
関係を有することを特徴とする透明熱可塑性樹脂組成物
である。
That is, according to the present invention, a core having a rubber phase having a glass transition temperature of 0 ° C. or less in a transparent thermoplastic resin.
A transparent thermoplastic resin composition in which shell-type multi-layered particles are dispersed, wherein the refractive index (nR23) of the rubber phase and the refractive index (nP23) of the resin phase at 23 ° C. when measured individually are as follows: In the relationship of (I), and the temperature change amount of the refractive index of the rubber phase (dnR / dT) and the temperature change amount of the refractive index of the resin phase (dnP / dT) at 23 to 70 ° C. when measured individually. And have a relationship of the following formula (II) is a transparent thermoplastic resin composition.

【0007】 0.01>nR23−nP23>0 (I) 0.00025>|dnR/dT−dnP/dT| (II)0.01> nR23-nP23> 0 (I) 0.00025> | dnR / dT-dnP / dT | (II)

【0008】[0008]

【発明の実施の形態】本発明においては、上記の通り、
それぞれ単独で測定したときの23℃におけるゴム層の
屈折率(nR23)と樹脂層の屈折率(nP23)が上
記の式(I)の関係にあることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as described above,
It is necessary that the refractive index (nR23) of the rubber layer and the refractive index (nP23) of the resin layer at 23 ° C., which are individually measured, have the relationship of the above formula (I).

【0009】耐衝撃性アクリル樹脂に代表されるゴム変
性透明熱可塑性樹脂は、加熱によるヘイズの増加が大き
いため応用範囲が限定される問題点があったが、この現
象は、高いガラス転移温度(以下Tgと記する場合があ
る)を有し一般的な使用温度においてガラス状態である
アクリル樹脂等の樹脂相と、低いTgを有し一般的な使
用温度においてはゴム状態であるゴム相が混在すること
に起因する。
The rubber-modified transparent thermoplastic resin typified by impact-resistant acrylic resin has a problem that its application range is limited due to a large increase in haze due to heating, but this phenomenon has a high glass transition temperature ( (Hereinafter sometimes referred to as Tg) and a resin phase such as an acrylic resin which is in a glass state at a general use temperature and a rubber phase which has a low Tg and is in a rubber state at a general use temperature are mixed. Due to.

【0010】Tgを境として、高分子の物性が異なるこ
とはよく知られているが、屈折率の温度変化に伴う変化
量もTg以上とTg以下では大きく異なる。Tgより高
温側ではミクロブラウン運動が解放され、分子の各部分
は相当大きな範囲に熱振動することができるため、線膨
張係数は大きく、Tg以下ではミクロブラウン運動が凍
結されているため、線膨張係数は相対的に小さい。屈折
率の温度変化量は、分子屈折の温度変化と線膨張係数か
ら近似的に見積もることができるが、分子屈折の温度変
化は線膨張係数による影響と比較してほとんど無視でき
ることから、屈折率の温度変化は単純に線膨張係数から
算出される。よってTg以上では屈折率の温度変化量は
大きく、Tg以下では小さいこととなる。以上から、あ
る温度において樹脂相とゴム相の屈折率が等しくても、
温度変化によりそれらの屈折率に差異が生じ、温度変化
によるヘイズの増加が生ずることとなる。しかしながら
驚くべきことに、ある一定の屈折率範囲では室温におけ
るヘイズの増加を最低限としながら、加熱によるヘイズ
の増加を大きく抑制させることが可能であることが判明
した。すなわち、加熱によるヘイズ増加を抑制できるの
は、nR23−nP23(以下、nR23−nP23を
Δn23と記す)が0.01>Δn23>0の場合であ
り、より好ましくは0.008>Δn23>0の場合で
ある。Δn23が0.01以上になると、室温でのヘイ
ズが急激に増大し、透明性樹脂としての実用性が大きく
損なわれるため好ましくなく、Δn23が0以下の場
合、加熱時に樹脂相とゴム相の屈折率差が大きくなり、
ヘイズが増大し実用性を損なうため好ましくない。
It is well known that the physical properties of polymers differ at Tg as a boundary, but the amount of change in refractive index with temperature change also greatly differs between Tg and Tg. Micro-Brownian motion is released on the temperature side higher than Tg, and each part of the molecule can thermally oscillate in a considerably large range, so that the linear expansion coefficient is large. The coefficient is relatively small. The temperature change of the refractive index can be approximately estimated from the temperature change of the molecular refraction and the linear expansion coefficient, but the temperature change of the molecular refraction can be almost ignored compared to the effect of the linear expansion coefficient. The temperature change is simply calculated from the linear expansion coefficient. Therefore, the temperature change amount of the refractive index is large when the temperature is Tg or higher, and is small when the temperature is Tg or lower. From the above, even if the resin phase and the rubber phase have the same refractive index at a certain temperature,
A change in temperature causes a difference in their refractive index, which causes an increase in haze due to a change in temperature. However, it has been surprisingly found that it is possible to significantly suppress the increase in haze due to heating while minimizing the increase in haze at room temperature within a certain refractive index range. That is, the increase in haze due to heating can be suppressed when nR23-nP23 (hereinafter, nR23-nP23 is referred to as Δn23) is 0.01>Δn23> 0, and more preferably 0.008>Δn23> 0. This is the case. When Δn23 is 0.01 or more, the haze at room temperature sharply increases and the practicality as a transparent resin is greatly impaired, which is not preferable, and when Δn23 is 0 or less, the refraction of the resin phase and the rubber phase during heating is decreased. The rate difference increases,
It is not preferable because the haze increases and the practicality is impaired.

【0011】本発明においては、上記式(I)の関係に
あると同時に、上記の式(II)の関係も満たすことが必
要である。
In the present invention, it is necessary to satisfy not only the relation of the above formula (I) but also the relation of the above formula (II).

【0012】すなわち、ゴム相の屈折率の温度変化量
(dnR/dT)と樹脂相の屈折率の温度変化量(dn
P/dT)の差が0.00025/Kより小さいこと、
好ましくは0.0002/Kより小さいことが室温及び
加熱時も透明性を良好に保つ方法として必要である。
That is, the temperature change amount of the refractive index of the rubber phase (dnR / dT) and the temperature change amount of the refractive index of the resin phase (dn)
P / dT) difference is less than 0.00025 / K,
It is preferably less than 0.0002 / K as a method of maintaining good transparency even at room temperature and during heating.

【0013】一般に、非晶質樹脂のTg以下の屈折率の
温度変化量は、ほとんどが1〜2×10-4/Kであるの
に対し、Tg以上のそれが3〜5×10-4/Kと増加す
ることが知られている。ゴム変性熱可塑性樹脂は、室温
においてTg以下である樹脂相中に、室温においてTg
以上であるゴム相を分散させた構造であるため、屈折率
の温度変化量が異なる成分が混在していることになる。
室温における透明性と、加熱時における透明性を兼備す
るためには、樹脂相とゴム相の屈折率の温度変化量の差
が小さいこと、すなわち、その値が0.00025/K
より小さいことが必要となる。
Generally, the temperature change amount of the refractive index of Tg or less of the amorphous resin is 1 to 2 × 10 -4 / K, whereas that of Tg or more is 3 to 5 × 10 -4. It is known to increase with / K. The rubber-modified thermoplastic resin has a Tg at room temperature in a resin phase that is Tg or less at room temperature.
Because of the structure in which the rubber phase is dispersed as described above, components having different refractive index temperature changes are mixed.
In order to have both transparency at room temperature and transparency at the time of heating, the difference in the temperature change amount of the refractive index between the resin phase and the rubber phase is small, that is, the value is 0.00025 / K.
It needs to be smaller.

【0014】本発明における透明熱可塑性樹脂として
は、例えばメチルメタクリレートを主成分とするメタク
リル樹脂、スチレンを主成分とするスチロール樹脂、メ
チルメタクリレート及びスチレンを主成分とするメチル
メタクリレート−スチレン樹脂、アクリロニトリル及び
スチレンを主成分とするアクリロニトリル−スチレン樹
脂、ポリカーボネート樹脂、塩化ビニル樹脂等が挙げら
れる。この透明熱可塑性樹脂は懸濁重合、溶液重合、乳
化重合、塊状重合等の公知の方法により得られる。
Examples of the transparent thermoplastic resin in the present invention include methacrylic resin containing methyl methacrylate as a main component, styrene resin containing styrene as a main component, methyl methacrylate-styrene resin containing methyl methacrylate and styrene as a main component, acrylonitrile and Examples thereof include acrylonitrile-styrene resin containing styrene as a main component, polycarbonate resin, vinyl chloride resin and the like. This transparent thermoplastic resin can be obtained by known methods such as suspension polymerization, solution polymerization, emulsion polymerization and bulk polymerization.

【0015】本発明に用いる透明熱可塑性樹脂のガラス
転移温度は、耐熱性の点から50℃以上であることが好
ましい。
The glass transition temperature of the transparent thermoplastic resin used in the present invention is preferably 50 ° C. or higher from the viewpoint of heat resistance.

【0016】本発明の透明熱可塑性樹脂組成物は、上記
の透明熱可塑性樹脂中に、コア−シェル型多層構造粒子
が分散されたものである。このコア−シェル型多層構造
粒子は2層以上の構造粒子であれば良いが、本発明にお
いては3層の構造粒子であることが好ましい。従って以
下、3層のコア−シェル型構造粒子について説明する。
The transparent thermoplastic resin composition of the present invention comprises the above-mentioned transparent thermoplastic resin and core-shell type multilayer structure particles dispersed therein. The core-shell type multilayer structured particles may be structured particles having two or more layers, but are preferably structured particles of three layers in the present invention. Therefore, the three-layer core-shell structured particles will be described below.

【0017】本発明におけるコア−シェル型3層構造粒
子の第1層(コア)を構成する単量体としては、例えば
メタクリル酸メチル、メタクリル酸エチル、メタクリル
酸ブチル、メタクリル酸ベンジル、メタクリル酸シクロ
ヘキシル等のメタクリル酸エステル、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸ブチル、アクリル酸
−2−エチルヘキシル、アクリル酸シクロヘキシル、ア
クリル酸ベンジル等のアクリル酸エステル、スチレン、
ビニルトルエン、α−メチルスチレン等の芳香族ビニル
化合物、N−シクロヘキシルマレイミド、N−o−クロ
ロフェニルマレイミド、N−tert−ブチルマレイミ
ド等のN−置換マレイミド化合物、アクリロニトリル、
メタクリロニトリル等のシアン化ビニル化合物が挙げら
れ、それらは単独または2種以上が用いられる。また、
多官能性単量体として、例えばメタクリル酸アリル、ア
クリル酸アリル、シアヌル酸トリアリル、桂皮酸アリ
ル、ソルビン酸アリル、マレイン酸ジアリル、フタル酸
ジアリル、フマル酸ジアリル、エチレングリコールジ
(メタ)アクリレート、ポリエチレングリコールジ(メ
タ)アクリレート、ジビニルベンゼン、1,3−ブチレ
ングリコールジ(メタ)アクリレート、ジビニルベンゼ
ン等の多官能性単量体が挙げられ、それらは単独または
2種以上が用いられる。
Examples of the monomer forming the first layer (core) of the core-shell type three-layer structure particles in the present invention include, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate, cyclohexyl methacrylate. Such as methacrylic acid ester, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, acrylic acid ester such as benzyl acrylate, styrene,
Aromatic vinyl compounds such as vinyltoluene and α-methylstyrene, N-substituted maleimide compounds such as N-cyclohexylmaleimide, N-o-chlorophenylmaleimide and N-tert-butylmaleimide, acrylonitrile,
Examples thereof include vinyl cyanide compounds such as methacrylonitrile, which may be used alone or in combination of two or more. Also,
Examples of polyfunctional monomers include allyl methacrylate, allyl acrylate, triallyl cyanurate, allyl cinnamate, allyl sorbate, diallyl maleate, diallyl phthalate, diallyl fumarate, ethylene glycol di (meth) acrylate, polyethylene. Examples thereof include polyfunctional monomers such as glycol di (meth) acrylate, divinylbenzene, 1,3-butylene glycol di (meth) acrylate, and divinylbenzene, which may be used alone or in combination of two or more.

【0018】第1層は、そのガラス転移温度が50℃以
上の樹脂層であることが好ましい。ガラス転移温度が5
0℃以下であると、透明熱可塑性樹脂組成物の耐熱性が
不十分になるほか、透明熱可塑性樹脂組成物のヘイズの
温度依存性が大きくなり、加熱時のヘイズが増大する傾
向がある。また、第1層は耐衝撃性及びヘイズの温度依
存性のために架橋構造体であることが好ましい。第1層
を構成する多官能性単量体としては、メタクリル酸アリ
ルが特に好ましく、その添加量としては第1層の0.0
1〜1重量%用いるのが好ましい。また第1層の屈折率
は、透明熱可塑性樹脂の屈折率に出来る限り近いことが
好ましい。
The first layer is preferably a resin layer having a glass transition temperature of 50 ° C. or higher. Glass transition temperature is 5
When the temperature is 0 ° C. or lower, the heat resistance of the transparent thermoplastic resin composition becomes insufficient, the temperature dependency of the haze of the transparent thermoplastic resin composition becomes large, and the haze during heating tends to increase. In addition, the first layer is preferably a crosslinked structure for impact resistance and temperature dependence of haze. Allyl methacrylate is particularly preferable as the polyfunctional monomer constituting the first layer, and the addition amount thereof is 0.0
It is preferable to use 1 to 1% by weight. The refractive index of the first layer is preferably as close as possible to the refractive index of the transparent thermoplastic resin.

【0019】本発明におけるコア−シェル型3層構造粒
子の第2層(中間層)を構成する単量体としては、例え
ばアクリル酸ブチル、アクリル酸−2−エチルヘキシル
等のアクリル酸アルキルエステルと、スチレン、ビニル
トルエン等の芳香族ビニル化合物、メタクリル酸メチ
ル、メタクリル酸ベンジル等のメタクリル酸エステル、
アクリロニトリル、メタクリロニトリル等のシアン化ビ
ニル化合物が挙げられ、それらは単独または2種以上が
用いられる。また、多官能性単量体として、例えばメタ
クリル酸アリル、アクリル酸アリル、シアヌル酸トリア
リル、桂皮酸アリル、ソルビン酸アリル、マレイン酸ジ
アリル、フタル酸ジアリル、フマル酸ジアリル、エチレ
ングリコールジ(メタ)アクリレート、ポリエチレング
リコールジ(メタ)アクリレート、ジビニルベンゼン、
1,3−ブチレングリコールジ(メタ)アクリレート、
ジビニルベンゼン等の多官能性単量体が挙げられ、それ
らは単独または2種以上が用いられる。
Examples of the monomer forming the second layer (intermediate layer) of the core-shell type three-layer structure particles in the present invention include acrylate alkyl esters such as butyl acrylate and 2-ethylhexyl acrylate; Aromatic vinyl compounds such as styrene and vinyltoluene, methacrylic acid esters such as methyl methacrylate and benzyl methacrylate,
Examples thereof include vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, which may be used alone or in combination of two or more. Further, as the polyfunctional monomer, for example, allyl methacrylate, allyl acrylate, triallyl cyanurate, allyl cinnamate, allyl sorbate, diallyl maleate, diallyl phthalate, diallyl fumarate, ethylene glycol di (meth) acrylate. , Polyethylene glycol di (meth) acrylate, divinylbenzene,
1,3-butylene glycol di (meth) acrylate,
Examples include polyfunctional monomers such as divinylbenzene, which may be used alone or in combination of two or more.

【0020】第2層は、そのガラス転移温度が0℃以下
の架橋ゴム層であることが好ましい。ガラス転移温度が
0℃を超えると、透明熱可塑性樹脂組成物の耐衝撃性が
不十分になり、また、第2層が非架橋構造であると、衝
撃強度が低くなる上、透明熱可塑性樹脂組成物の透明性
が悪化し、更に透明熱可塑性樹脂組成物の耐熱性が悪化
する傾向がある。第2層を構成する単量体としては、ア
クリル酸アルキルエステルとしてアクリル酸ブチル、ア
クリル酸−2−エチルヘキシル、アクリル酸ベンジル、
他の単量体としてスチレン、メタクリル酸ベンジルを適
宜選択し併用して用いる方法が特に好ましい。第2層を
構成する多官能性単量体としては、メタクリル酸アリル
が特に好ましく、第2層の0.01〜1重量%用いるの
が好ましい。
The second layer is preferably a crosslinked rubber layer having a glass transition temperature of 0 ° C. or lower. When the glass transition temperature exceeds 0 ° C., the impact resistance of the transparent thermoplastic resin composition becomes insufficient, and when the second layer has a non-crosslinked structure, the impact strength becomes low and the transparent thermoplastic resin The transparency of the composition tends to deteriorate, and the heat resistance of the transparent thermoplastic resin composition tends to deteriorate. As the monomer forming the second layer, butyl acrylate as an acrylic acid alkyl ester, 2-ethylhexyl acrylate, benzyl acrylate,
A method in which styrene or benzyl methacrylate is appropriately selected and used in combination as the other monomer is particularly preferable. As the polyfunctional monomer forming the second layer, allyl methacrylate is particularly preferable, and 0.01 to 1% by weight of the second layer is preferably used.

【0021】なお、一般的にゴム変性樹脂のゴム相に用
いる成分として、1,3−ブタジエン、イソプレン等の
共役ジエン、アクリル酸n−ブチル、アクリル酸2−エ
チルヘキシル等のアクリル酸エステル等が主成分として
用いられている。しかるに、1,3−ブタジエン、イソ
プレン等の共役ジエンは優れたゴムとしての機能を有す
る一方、熱膨張率がアクリル酸エステル等と比較して大
きいため、屈折率の温度変化量も大きい。ゴム相または
樹脂層の組成が不適当でdnR/dTとdnP/dTの
差が0.00025/K以上の場合、室温と加熱時での
ゴム相と樹脂層の屈折率の差が大きくなりすぎ、従っ
て、室温におけるヘイズが少ないときは加熱時のヘイズ
が高くなり、逆に加熱時のヘイズが少ないときは室温に
おけるヘイズが高くなる。そのため透明性を有する樹脂
としての価値が喪失される傾向がある。よって本発明に
おいては、ゴム相に用いる成分としてアルキル基の炭素
数が1〜8であるアクリル酸アルキルエステル59.9
〜99.9重量%と、他の共重合性単量体0〜40重量
%及び多官能性単量体0.05〜5重量%からなり、た
だし他の共重合性単量体に上記ジエン系化合物を含まな
いものであることが望ましい。
In general, as components used in the rubber phase of the rubber-modified resin, conjugated dienes such as 1,3-butadiene and isoprene, n-butyl acrylate, and acrylic acid esters such as 2-ethylhexyl acrylate are mainly used. Used as an ingredient. However, while conjugated diene such as 1,3-butadiene and isoprene has an excellent function as rubber, it has a large coefficient of thermal expansion as compared with acrylate ester and the like, so that the temperature change amount of the refractive index is large. When the composition of the rubber phase or resin layer is improper and the difference between dnR / dT and dnP / dT is 0.00025 / K or more, the difference in the refractive index between the rubber phase and the resin layer at room temperature and during heating becomes too large. Therefore, when the haze at room temperature is small, the haze at the time of heating becomes high, and conversely, when the haze at the time of heating is small, the haze at the room temperature becomes high. Therefore, the value as a resin having transparency tends to be lost. Therefore, in the present invention, as a component used in the rubber phase, an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms, 59.9.
.About.99.9% by weight, other copolymerizable monomers 0 to 40% by weight and polyfunctional monomers 0.05 to 5% by weight, provided that the above diene is added to the other copolymerizable monomers. It is desirable that the compound does not contain a system compound.

【0022】本発明におけるコア−シェル型3層構造粒
子の第3層を構成する単量体としては、例えばメタクリ
ル酸メチル、メタクリル酸エチル、メタクリル酸ブチ
ル、メタクリル酸ベンジル、メタクリル酸シクロヘキシ
ル等のメタクリル酸エステル、アクリル酸メチル、アク
リル酸エチル、アクリル酸ブチル、アクリル酸−2−エ
チルヘキシル、アクリル酸シクロヘキシル、アクリル酸
ベンジル等のアクリル酸エステル、スチレン、ビニルト
ルエン、α−メチルスチレン等の芳香族ビニル化合物、
N−シクロヘキシルマレイミド、N−o−クロロフェニ
ルマレイミド、N−tert−ブチルマレイミド等のN
−置換マレイミド化合物、アクリロニトリル、メタクリ
ロニトリル等のシアン化ビニル化合物が挙げられ、それ
らは単独または2種以上で用いられる。また、必要に応
じて連鎖移動剤を用いることができるが、その際連鎖移
動剤としては、n−オクチルメルカプタン、n−ドデシ
ルメルカプタン、tert−ドデシルメルカプタン、s
ec−ブチルメルカプタン等を第3層の0.01〜1重
量%用いるのが好ましい。
Examples of the monomer constituting the third layer of the core-shell type three-layer structure particles in the present invention include methacrylic acid such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, benzyl methacrylate and cyclohexyl methacrylate. Acrylic esters such as acid esters, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate and benzyl acrylate, aromatic vinyl compounds such as styrene, vinyltoluene and α-methylstyrene ,
N such as N-cyclohexylmaleimide, N-o-chlorophenylmaleimide, N-tert-butylmaleimide, etc.
-Substituted maleimide compounds, vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and the like can be mentioned, and they can be used alone or in combination of two or more. If necessary, a chain transfer agent can be used. In that case, as the chain transfer agent, n-octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, s
It is preferable to use ec-butyl mercaptan or the like in an amount of 0.01 to 1% by weight of the third layer.

【0023】また第3層は非架橋樹脂層であることが好
ましく、第3層が架橋構造であると、透明熱可塑性樹脂
への分散性が不十分となり、衝撃強度が低下する傾向が
ある。さらに第3層の屈折率は、透明熱可塑性樹脂の屈
折率に出来る限り近いことが好ましく、第3層は、透明
熱可塑性樹脂と相溶性のあることが望ましい。
The third layer is preferably a non-crosslinked resin layer. When the third layer has a crosslinked structure, the dispersibility in the transparent thermoplastic resin becomes insufficient and the impact strength tends to decrease. Further, the refractive index of the third layer is preferably as close as possible to the refractive index of the transparent thermoplastic resin, and the third layer is preferably compatible with the transparent thermoplastic resin.

【0024】本発明のコア−シェル型多層構造粒子は、
公知の乳化重合法により製造することができる。製造方
法としては、まず所望の単量体混合物を乳化重合させて
芯粒子を作った後、他の単量体混合物をその芯粒子の存
在下において乳化重合させて周りに殻を作る。更に該粒
子の存在下において他の単量体混合物を乳化重合させて
別の殻を作る。このような反応を繰り返して所望のゴム
層含有多層構造粒子を得る。各層の重合体又は共重合体
を形成させるための適切な重合温度は、各層とも0〜1
20℃、好ましくは5〜90℃の範囲である。
The core-shell type multilayer structure particles of the present invention are
It can be produced by a known emulsion polymerization method. As a manufacturing method, first, a desired monomer mixture is emulsion-polymerized to form core particles, and then another monomer mixture is emulsion-polymerized in the presence of the core particles to form a shell around it. Further, in the presence of the particles, another monomer mixture is emulsion polymerized to form another shell. Such reaction is repeated to obtain desired rubber layer-containing multi-layer structure particles. Suitable polymerization temperatures for forming the polymer or copolymer of each layer are 0 to 1 for each layer.
It is in the range of 20 ° C, preferably 5 to 90 ° C.

【0025】また本発明においては、コア−シェル型多
層構造粒子を乳化重合により製造する際、重合系の液相
全体の溶存酸素濃度が0.2〜10mg/リットルの時
に第一層の重合を開始することが好ましい。この方法に
より、加熱によるヘイズが低下する上に、重合系の窒素
置換を厳密に行う必要がなく、重合操作が簡便になり生
産性が大幅に向上するという予期せぬ効果も得られる。
溶存酸素濃度が0.2mg/リットル未満の場合、加熱
によるヘイズの低下効果が少なくなり、10mg/リッ
トルを超える場合、重合速度の低下や、樹脂の着色が生
じる場合がある。
In the present invention, when the core-shell type multilayer structure particles are produced by emulsion polymerization, the first layer is polymerized when the dissolved oxygen concentration in the entire liquid phase of the polymerization system is 0.2 to 10 mg / liter. It is preferable to start. By this method, the haze due to heating is reduced, and it is not necessary to strictly carry out the nitrogen substitution of the polymerization system, so that the polymerization operation is simplified and the productivity is significantly improved, which is an unexpected effect.
When the dissolved oxygen concentration is less than 0.2 mg / liter, the effect of reducing haze due to heating is small, and when it exceeds 10 mg / liter, the polymerization rate may be reduced and the resin may be colored.

【0026】乳化重合に使用される乳化剤の種類と量
は、重合系の安定性、目的とする粒子の粒子径等によっ
て選択されるが、アニオン界面活性剤、カチオン界面活
性剤、ノニオン界面活性剤等の公知の乳化剤を単独で又
は2種以上で使用されるが、特にアニオン界面活性剤が
好ましく用いられる。アニオン界面活性剤としては、例
えばステアリン酸ナトリウム、ミリスチン酸ナトリウ
ム、N−ラウロイルザルコシン酸ナトリウム等のカルボ
ン酸塩、ジオクチルスルホコハク酸ナトリウム、ドデシ
ルベンゼンスルホン酸ナトリウム等のスルホン酸塩、ラ
ウリル硫酸ナトリウム等の硫酸エステル塩、モノ−n−
ブチルフェニルペンタオキシエチレンリン酸ナトリウム
等のリン酸エステル塩等が挙げられる。上記乳化剤は樹
脂に対して0.01〜15重量%を用いることができ
る。
The type and amount of the emulsifier used in the emulsion polymerization are selected depending on the stability of the polymerization system, the particle size of the intended particles, and the like. Anionic surfactants, cationic surfactants and nonionic surfactants are used. Known emulsifiers such as the above are used alone or in combination of two or more kinds, and anionic surfactants are particularly preferably used. Examples of the anionic surfactant include carboxylates such as sodium stearate, sodium myristate, and sodium N-lauroyl sarcosinate, sulfonates such as sodium dioctylsulfosuccinate, sodium dodecylbenzenesulfonate, and sodium lauryl sulfate. Sulfate ester, mono-n-
Examples thereof include phosphate ester salts such as butylphenylpentaoxyethylene sodium phosphate. The emulsifier may be used in an amount of 0.01 to 15% by weight based on the resin.

【0027】また乳化重合に使用される重合開始剤は特
に限定されないが、過硫酸カリウム、過硫酸アンモニウ
ム等の無機過酸化物、過酸化水素−第一鉄塩系、過硫酸
カリウム−酸性亜硫酸ナトリウム系、過硫酸アンモニウ
ム−酸性亜硫酸ナトリウム系等の水溶性レドックス系開
始剤、クメンハイドロパーオキシド−ナトリウムホルム
アルデヒドスルホキシレート系、tert−ブチルハイ
ドロパーオキシド−ナトリウムホルムアルデヒドスルホ
キシレート系等の水溶−油溶レドックス系の開始剤が用
いられる。この中でも、無機過酸化物系開始剤、水溶−
油溶レドックス系の開始剤が好ましく用いられる。
The polymerization initiator used in emulsion polymerization is not particularly limited, but inorganic peroxides such as potassium persulfate and ammonium persulfate, hydrogen peroxide-ferrous iron salt system, potassium persulfate-sodium acid sulfite system. , Water-soluble redox initiators such as ammonium persulfate-sodium acid sulfite-based, water-oil redox initiators such as cumene hydroperoxide-sodium formaldehyde sulfoxylate-based, tert-butyl hydroperoxide-sodium formaldehyde sulfoxylate-based Initiators are used. Among these, inorganic peroxide-based initiators, water-soluble
An oil-soluble redox type initiator is preferably used.

【0028】乳化重合においては、単量体、乳化剤、開
始剤、連鎖移動剤等を、一括添加法、分割添加法、連続
添加法等公知の任意の方法で添加してよいが、ゴム層の
粒子径が所定の範囲内となるよう、乳化剤、開始剤の種
類や量、重合温度等の重合条件を厳密に定めることが望
ましい。
In emulsion polymerization, a monomer, an emulsifier, an initiator, a chain transfer agent and the like may be added by any known method such as a batch addition method, a divided addition method and a continuous addition method. It is desirable to strictly determine the polymerization conditions such as the type and amount of the emulsifier and the initiator and the polymerization temperature so that the particle diameter falls within the predetermined range.

【0029】すなわち、第2層の粒子径(r)としては r(μm)=0.05〜0.30 (III) の範囲であって、かつrと第1層と第2層における第2
層の重量比率(N)(第2層重量/(第1層重量+第2
層重量))とが N≦0.1/r−0.1 (IV) の関係を有することが好ましい。
That is, the particle diameter (r) of the second layer is in the range of r (μm) = 0.05 to 0.30 (III), and r, the second layer in the first layer and the second layer.
Layer weight ratio (N) (second layer weight / (first layer weight + second layer
(Layer weight)) preferably has a relationship of N ≦ 0.1 / r-0.1 (IV).

【0030】第2層の粒子径が0.05μm未満である
と、加熱時のヘイズは非常に低くなるが衝撃強度が低下
するし、0.30μmを越えると加熱時のヘイズが増大
するようになる。またN値が加熱時のヘイズに影響する
理由は次の通りである。すなわち、コア−シェル型多層
構造粒子は、透明熱可塑性樹脂中に分散されているとき
は、第3層は透明熱可塑性樹脂と相溶化し一体となって
いるため、実質的に透明熱可塑性樹脂組成物中では第1
層と第2層のみでコア−シェル型多層構造粒子を形成す
ることとなる。そこで本発明者らはそれら第1層と第2
層のみでの相互作用を考察した上で、加熱時のヘイズが
生ずる原因である第2層は第1層と比較して少ない重量
比率になるほど加熱時のヘイズが低下することを認め
た。そこでそれらの重量比率で表した場合、上記の式(I
V)に該当する場合、特にヘイズの温度依存性が抑えられ
ることが判明した。
When the particle diameter of the second layer is less than 0.05 μm, the haze during heating becomes very low, but the impact strength decreases, and when it exceeds 0.30 μm, the haze during heating increases. Become. The reason why the N value affects the haze during heating is as follows. That is, when the core-shell type multilayer structure particles are dispersed in the transparent thermoplastic resin, the third layer is compatibilized with and integrated with the transparent thermoplastic resin, so that the transparent thermoplastic resin is substantially First in the composition
The core-shell type multilayer structure particles are formed only by the layer and the second layer. Therefore, the present inventors
After considering the interaction only in the layers, it was found that the second layer, which is a cause of the haze during heating, has a lower weight ratio when heated as the weight ratio becomes smaller than that of the first layer. Therefore, when expressed by their weight ratio, the above formula (I
In the case of V), it was found that the temperature dependence of haze was suppressed.

【0031】乳化重合法により得られたラテックスは、
必要に応じて他の樹脂ラテックス、安定剤等を加えた
後、噴霧乾燥法、酸添加法、塩添加法、凍結凝固法など
公知の方法により重合体等の取り出しを行うことができ
る。この中でも、光学物性が最も優れる凍結凝固法によ
り凝固させることが好ましい。凝固された重合体等は水
又は温水で洗浄した後、乾燥することが好ましい。この
ようにして得られた重合体等の粉体は、乾燥後透明熱可
塑性樹脂及び必要に応じ安定剤、滑剤、可塑剤、充てん
剤、染料、顔料等の公知の添加剤を加え、ヘンシェルミ
キサー等で混合後、押出機を用いて熔融混練する等の公
知の方法で透明熱可塑性樹脂中にゴム相を分散させた透
明熱可塑性樹脂組成物を製造することができる。かくし
て得られた組成物は、押出成形法、射出成形法等の公知
の方法により賦形することができる。
The latex obtained by the emulsion polymerization method is
After adding other resin latices, stabilizers and the like as necessary, the polymer and the like can be taken out by a known method such as a spray drying method, an acid addition method, a salt addition method, and a freeze coagulation method. Among these, it is preferable to coagulate by a freeze coagulation method, which has the best optical properties. The coagulated polymer or the like is preferably dried after washing with water or warm water. The powder of the polymer or the like thus obtained is dried and then added with a transparent thermoplastic resin and, if necessary, known additives such as a stabilizer, a lubricant, a plasticizer, a filler, a dye and a pigment, and a Henschel mixer. It is possible to produce a transparent thermoplastic resin composition in which a rubber phase is dispersed in a transparent thermoplastic resin by a known method such as, for example, melting and kneading with an extruder after mixing with the above. The composition thus obtained can be shaped by a known method such as an extrusion molding method or an injection molding method.

【0032】[0032]

【実施例】以下実施例を挙げて本発明を具体的に説明す
る。実施例に示した諸特性の測定は下記の方法に従って
実施した。なお、部は重量部、%は重量%をそれぞれ表
す。 (1)アイゾット衝撃強度;ASTM−D256 (2)全光線透過率,ヘイズ;ASTM−D1003 また、実施例中、以下のとおり()内の略称を用いた。 ・メタクリル酸メチル(MMA) ・アクリル酸メチル(MA) ・アクリル酸ブチル(BA) ・スチレン(ST) ・メタクリル酸アリル(ALMA) ・メタクリル酸ベンジル(BZMA) ・アクリル酸2−エチルヘキシル(2−EHA) ・1,3−ブタジエン(BD) ・n−オクチルメルカプタン(n−OM) ・ステアリン酸ナトリウム(SS) ・N−ラウロイルザルコシン酸ナトリウム(LSS) ・過硫酸カリウム(KPS)
The present invention will be specifically described below with reference to examples. The measurements of various properties shown in the examples were carried out according to the following methods. In addition, parts represent parts by weight, and% represents% by weight. (1) Izod impact strength; ASTM-D256 (2) Total light transmittance, haze; ASTM-D1003 In the examples, the abbreviations in parentheses were used as follows. -Methyl methacrylate (MMA) -Methyl acrylate (MA) -Butyl acrylate (BA) -Styrene (ST) -Allyl methacrylate (ALMA) -Benzyl methacrylate (BZMA) -2-Ethylhexyl acrylate (2-EHA) ), 1,3-Butadiene (BD), n-octyl mercaptan (n-OM), sodium stearate (SS), sodium N-lauroyl sarcosinate (LSS), potassium persulfate (KPS)

【0033】実施例1 (第1層の重合)還流冷却器付き反応容器に、イオン交
換水300部、SS1.0部、LSS0.1部を投入
し、撹拌しながら空気雰囲気中70℃に昇温し、30分
間撹拌して乳化剤を溶解させた。その後、窒素雰囲気と
した後、すぐに5%KPS水溶液1.2部を投入し、M
MA50部、MA2部、ALMA0.15部からなる単
量体混合物(1)を続けて投入した。開始剤を投入する
直前の水系及びモノマー系をサンプリングし、溶存酸素
濃度を溶存ガス発生装置(ガスクロ工業社製 DGA−
MU型)を使用して測定したところ、水系の溶存酸素濃
度は2.4mg/リットルであり、またモノマー系の溶
存酸素濃度は32mg/リットルであった。よって、重
合を開始する直前の反応系全体の溶存酸素濃度は約6.
5mg/リットルであった。モノマー系投入後、発熱ピ
ークを過ぎてから80℃に昇温し60分保持した。 (第2層の重合)次いでこのラテックスの存在下に、5
%KPS水溶液0.6部を投入し、BA55.部、ST
12.6部、ALMA1.6部からなる単量体混合物
(2)を60分かけて連続的に添加し、添加終了後30
分間保持した。このラテックスを希釈し、電子顕微鏡で
観察して粒子径を測定したところ、0.14μmであ
り、また粒子径のばらつきはほとんど無かった。仕込み
組成から第2層までのゴム層の重量比を計算すると0.
57であるが、この粒子径から計算した重量比の上限値
は0.61であり、範囲内であった。なお、この単量体
混合物(2)を用いてゴム層の重合のみを行い、23℃
における屈折率を測定したところ、nd=1.4905
であり、70℃における屈折率を測定したところ、nd
=1.4783であった。よって23〜70℃でのゴム
相の屈折率の温度変化量はdnR/dT=(1.490
5−1.4783)/(70−23)〓0.00026
であった。 (第3層の重合)次いでこのラテックスの存在下に、5
%KPS水溶液0.6部を投入し、MMA29部、MA
1部、n−OM0.06部からなる単量体混合物(3)
を30分かけて連続的に添加し、添加終了後60分間保
持して三層構造重合体ラテックスを得た。
Example 1 (Polymerization of the First Layer) 300 parts of ion-exchanged water, 1.0 part of SS and 0.1 part of LSS were put into a reaction vessel equipped with a reflux condenser, and the temperature was raised to 70 ° C. in an air atmosphere while stirring. Warmed and stirred for 30 minutes to dissolve the emulsifier. Then, after setting to a nitrogen atmosphere, 1.2 parts of a 5% KPS aqueous solution was immediately added, and M
A monomer mixture (1) consisting of 50 parts MA, 2 parts MA and 0.15 parts ALMA was continuously added. The water system and the monomer system immediately before the initiator was added are sampled, and the dissolved oxygen concentration is measured by a dissolved gas generator (DGA- manufactured by Gas Black Industrial Co., Ltd.).
MU type), the dissolved oxygen concentration in the aqueous system was 2.4 mg / liter, and the dissolved oxygen concentration in the monomer system was 32 mg / liter. Therefore, the dissolved oxygen concentration of the entire reaction system immediately before the start of polymerization is about 6.
It was 5 mg / liter. After the monomer system was charged, the temperature was raised to 80 ° C. and maintained for 60 minutes after passing the exothermic peak. (Polymerization of second layer) Then, in the presence of this latex, 5
% KPS aqueous solution 0.6 part, BA55. Department, ST
A monomer mixture (2) consisting of 12.6 parts and ALMA 1.6 parts was continuously added over 60 minutes, and after the addition was completed, 30
Hold for minutes. When this latex was diluted and observed with an electron microscope to measure the particle size, it was 0.14 μm, and there was almost no variation in particle size. The weight ratio of the rubber layer from the charged composition to the second layer was calculated to be 0.
Although it was 57, the upper limit of the weight ratio calculated from the particle diameter was 0.61, which was within the range. It should be noted that only the rubber layer was polymerized using this monomer mixture (2) at 23 ° C.
When the refractive index in was measured, nd = 1.4905
And the refractive index at 70 ° C. was measured to be nd
= 1.4783. Therefore, the temperature change amount of the refractive index of the rubber phase at 23 to 70 ° C. is dnR / dT = (1.490
5-1.4783) / (70-23) 〓0.00026
Met. (Polymerization of third layer) Then, in the presence of this latex, 5
% KPS aqueous solution 0.6 part, MMA 29 parts, MA
Monomer mixture (3) consisting of 1 part and n-OM 0.06 part
Was continuously added over 30 minutes, and after the addition was completed, the mixture was kept for 60 minutes to obtain a three-layer structure polymer latex.

【0034】このようにして得られたラテックスをステ
ンレス製容器に入れ、凍結し、70℃で融解させた後、
瀘別して重合体を分離した。さらに70℃温水で水洗脱
水を3回繰り返した後、80℃で10時間乾燥した。得
られたアクリル系多層構造重合体(B)の粉体とアクリ
ル樹脂(A)ビーズ(パラペットHR−L;(株)クラ
レ製品;Tg=102℃)を2対3の割合で混合し、ペ
レット押出機(VSK型40m/mベント式押出機:中
央機械製作所製)で250℃でペレット化後、射出成形
機(N70A型射出成形機:日本製鋼所製)を用いて成
形温度250℃、金型温度50℃の条件で所定の試験片
を製作し、物性測定を行った。なお、第1層を重合後、
第2層を重合せずに第3層を重合して得た重合体と、ア
クリル樹脂ビーズを1.09対3の割合(試験片のゴム
層を除いた成分に相当する)で混合して同様にゴム層不
含試験片を作成後、23℃における屈折率を測定したと
ころ、nd=1.4896であり、70℃における屈折
率を測定したところ、nd=1.4856であった。よ
って23から70℃での樹脂相の屈折率の温度変化量は
dnP/dT=(1.4896−1.4856)/(7
0−23)〓0.00009となり、dnR/dT−d
nP/dTは0.00017であった。結果を表1に示
す。
The latex thus obtained was placed in a stainless steel container, frozen, and thawed at 70 ° C.
The polymer was separated by filtration. Furthermore, after washing with water at 70 ° C. and washing with water was repeated three times, the product was dried at 80 ° C. for 10 hours. The obtained acrylic multi-layer structure polymer (B) powder and acrylic resin (A) beads (Parapet HR-L; Kuraray Co., Ltd .; Tg = 102 ° C.) were mixed at a ratio of 2: 3 and pelletized. After pelletizing at 250 ° C. with an extruder (VSK type 40 m / m vent type extruder: manufactured by Chuo Kikai Seisakusho), molding temperature of 250 ° C., gold using an injection molding machine (N70A type injection molding machine: manufactured by Japan Steel Works) Predetermined test pieces were produced under the condition of the mold temperature of 50 ° C. and the physical properties were measured. After the first layer is polymerized,
The polymer obtained by polymerizing the third layer without polymerizing the second layer and acrylic resin beads were mixed at a ratio of 1.09: 3 (corresponding to the components of the test piece excluding the rubber layer). Similarly, after producing a rubber layer-free test piece, the refractive index at 23 ° C. was nd = 1.4896, and the refractive index at 70 ° C. was nd = 1.4856. Therefore, the temperature change amount of the refractive index of the resin phase from 23 to 70 ° C. is dnP / dT = (1.4896−1.4856) / (7
0-23) = 0.00009, dnR / dT-d
nP / dT was 0.00017. The results are shown in Table 1.

【0035】実施例2 ゴム層の重合の際に用いる単量体混合物として、BA5
4部、ST13.6部、ALMA1.6部を用いた以外
は、全て実施例1と同様に操作して重合し物性測定を行
った。得られた試験片の評価結果を表1に示す。なお、
この単量体混合物を用いてゴム層の重合のみを行い、2
3℃における屈折率を測定したところ、nd=1.49
26であり、70℃における屈折率を測定したところ、
nd=1.4804であった。
Example 2 BA5 was used as a monomer mixture used in the polymerization of the rubber layer.
Polymerization was carried out in the same manner as in Example 1 except that 4 parts, ST13.6 parts and ALMA 1.6 parts were used, and the physical properties were measured. Table 1 shows the evaluation results of the obtained test pieces. In addition,
Only the rubber layer was polymerized using this monomer mixture.
When the refractive index at 3 ° C. was measured, nd = 1.49
26, and the refractive index at 70 ° C. was measured,
It was nd = 1.4804.

【0036】実施例3 ゴム層の重合の際に用いる単量体混合物として、BA5
3部、ST14.6部、ALMA1.6部を用いた以外
は、全て実施例1と同様に操作して重合し物性測定を行
った。得られた試験片の評価結果を表1に示す。なお、
この単量体混合物を用いてゴム層の重合のみを行い、2
3℃における屈折率を測定したところ、nd=1.49
47であり、70℃における屈折率を測定したところ、
nd=1.4825であった。
Example 3 BA5 was used as a monomer mixture used in the polymerization of the rubber layer.
Polymerization was carried out in the same manner as in Example 1 except that 3 parts, ST14.6 parts and ALMA 1.6 parts were used, and the physical properties were measured. Table 1 shows the evaluation results of the obtained test pieces. In addition,
Only the rubber layer was polymerized using this monomer mixture.
When the refractive index at 3 ° C. was measured, nd = 1.49
47, and the refractive index at 70 ° C. was measured,
nd = 1.4825.

【0037】実施例4 還流冷却器付き反応容器に、イオン交換水300部、S
S1部、LSS0.1部を投入し、250rpmの回転
数で撹拌しながら窒素雰囲気中70℃に昇温し、5%K
PS水溶液3部を投入した。次いでMMA144部、M
A6部、n−OM0.3部からなる単量体混合物を投入
し、80℃に昇温し90分保持してアクリル樹脂ラテッ
クスを得た。ラテックスに含まれるアクリル樹脂のTg
は102℃であった。得られたアクリル樹脂ラテックス
と、実施例1で得られた三層構造重合体ラテックスを3
対2の割合で混合し、実施例1と同様に凍結、融解、瀘
別、洗浄、乾燥を行った。なお、このアクリル樹脂ラテ
ックスと実施例1に示した第1層を重合後、第2層を重
合せずに第3層を重合して得た重合体とを1.09対3
の割合(試験片のゴム層を除いた成分に相当する)で混
合し、23℃における屈折率を測定したところ、nd=
1.4893であり、70℃における屈折率を測定した
ところ、nd=1.4852であった。得られた粉体を
そのまま実施例1と同条件にてペレット化・射出成形に
より試験片を作成し、物性測定を行った。得られた試験
片の評価結果を表1に示す。
Example 4 In a reaction vessel equipped with a reflux condenser, 300 parts of ion-exchanged water and S
Add 1 part S, 0.1 part LSS, and raise the temperature to 70 ° C. in a nitrogen atmosphere while stirring at a rotation speed of 250 rpm to obtain 5% K.
3 parts of PS aqueous solution was added. Then MMA 144 parts, M
A monomer mixture consisting of 6 parts of A and 0.3 part of n-OM was added, the temperature was raised to 80 ° C. and held for 90 minutes to obtain an acrylic resin latex. Tg of acrylic resin contained in latex
Was 102 ° C. The obtained acrylic resin latex and the three-layer structure polymer latex obtained in Example 1 were mixed in 3 parts.
The mixture was mixed at a ratio of 2 and frozen, thawed, filtered, washed and dried in the same manner as in Example 1. The acrylic resin latex and the polymer obtained by polymerizing the first layer shown in Example 1 and then the third layer without polymerizing the second layer were 1.09: 3.
(Corresponding to the components of the test piece excluding the rubber layer) and the refractive index at 23 ° C. was measured.
It was 1.4893, and when the refractive index at 70 ° C. was measured, it was nd = 1.4852. The obtained powder was directly pelletized and injection-molded under the same conditions as in Example 1 to prepare a test piece, and its physical properties were measured. Table 1 shows the evaluation results of the obtained test pieces.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例5 ゴム層の重合の際に用いる単量体混合物として、2−E
HA54部、BZMA13.6部、ALMA1.6部を
用いた以外は、全て実施例1と同様に操作して重合し物
性測定を行った。得られた試験片の評価結果を表2に示
す。なお、この単量体混合物を用いてゴム層の重合のみ
を行い、23℃における屈折率を測定したところ、nd
=1.4915であり、70℃における屈折率を測定し
たところ、nd=1.4793であった。よってdnR
/dT−dnP/dTは0.00017であった。
Example 5 2-E was used as a monomer mixture used in the polymerization of the rubber layer.
Polymerization was carried out in the same manner as in Example 1 except that 54 parts of HA, 13.6 parts of BZMA and 1.6 parts of ALMA were used, and the physical properties were measured. Table 2 shows the evaluation results of the obtained test pieces. The polymerization of the rubber layer was performed using this monomer mixture, and the refractive index at 23 ° C. was measured.
= 1.4915, and when the refractive index at 70 ° C. was measured, it was nd = 1.4793. Therefore dnR
/ DT-dnP / dT was 0.00017.

【0040】実施例6 第1層の重合の際に用いる単量体混合物として、MMA
46.8部、St5.2部、ALMA0.15部を用
い、第2層の重合の際に用いる単量体混合物として、B
A49.5部、ST18.1部、ALMA1.6部を用
い、第3層の重合の際に用いる単量体混合物として、M
MA27部、St3部、n−OM0.09部を用いて、
実施例1と同様に操作して耐衝撃改質樹脂を得た。第2
層まで重合を行ったラテックスを希釈し、電子顕微鏡で
観察して粒子径を測定したところ、0.15μmであ
り、また粒子径のばらつきはほとんど無かった。なお、
第1層の重合を開始するときの反応系全体の溶存酸素濃
度は約3.3mg/lであった。また、第2層単量体混
合物を用いてゴム層の重合のみを行い、ラテックス中の
固形分を取り出し、23℃における屈折率を測定したと
ころ、nd=1.5002であり、70℃における屈折
率を測定したところ、nd=1.4880であった。得
られた粉体とメチルメタクリレート−スチレン共重合体
(MMA:ST=90:10;23℃でのnd=1.4
998,70℃でのnd=1.4955;Tg=105
℃)を1対3の割合で混合し、ペレット押出機(VSK
型40m/mベント式押出機:中央機械製作所製)で2
40℃でペレット化後、射出成形機(N70A型射出成
形機:日本製鋼所製)を用いて成形温度240℃、金型
温度50℃の条件で所定の試験片を製作し、物性測定を
行った。なお、実施例1に示した方法と同様に第1層を
重合後、第2層を重合せずに第3層を重合して得た重合
体とメチルメタクリレート−スチレン共重合体を1.0
9対3の割合(試験片のゴム層を除いた成分に相当す
る)で混合し、23℃における屈折率を測定したとこ
ろ、nd=1.4993であり、70℃における屈折率
を測定したところ、nd=1.4949であった。よっ
てdnR/dT−dnP/dT=0.00017であっ
た。得られた試験片の評価結果を表2に示す。
Example 6 MMA was used as a monomer mixture used in the polymerization of the first layer.
Using 46.8 parts, St5.2 parts, and 0.15 part of ALMA, B was used as a monomer mixture used in the polymerization of the second layer.
A49.5 parts, ST18.1 parts and ALMA 1.6 parts were used, and M was used as the monomer mixture used in the polymerization of the third layer.
Using 27 parts of MA, 3 parts of St, and 0.09 part of n-OM,
The same operation as in Example 1 was carried out to obtain an impact modified resin. Second
When the latex polymerized to the layer was diluted and observed with an electron microscope to measure the particle size, it was 0.15 μm, and there was almost no variation in particle size. In addition,
The dissolved oxygen concentration of the entire reaction system when the polymerization of the first layer was started was about 3.3 mg / l. Moreover, only the polymerization of the rubber layer was performed using the second layer monomer mixture, and the solid content in the latex was taken out and the refractive index at 23 ° C. was measured to find that nd = 1.5002 and the refractive index at 70 ° C. When the rate was measured, it was nd = 1.4880. Obtained powder and methyl methacrylate-styrene copolymer (MMA: ST = 90: 10; nd = 23 ° C. = 1.4
Nd at 998,70 ° C. = 1.4955; Tg = 105
℃) at a ratio of 1: 3, pellet extruder (VSK
Type 40 m / m vent type extruder: 2 by Chuo Kikai Seisakusho
After pelletizing at 40 ° C, an injection molding machine (N70A type injection molding machine: manufactured by Japan Steel Works) was used to manufacture predetermined test pieces under the conditions of a molding temperature of 240 ° C and a mold temperature of 50 ° C, and physical properties were measured. It was After the first layer was polymerized in the same manner as in Example 1, the polymer obtained by polymerizing the third layer without polymerizing the second layer and methyl methacrylate-styrene copolymer were added to 1.0.
When mixed at a ratio of 9: 3 (corresponding to the components excluding the rubber layer of the test piece) and the refractive index at 23 ° C. was measured, nd = 1.4993, and the refractive index at 70 ° C. was measured. , Nd = 1.4949. Therefore, dnR / dT-dnP / dT = 0.00017. Table 2 shows the evaluation results of the obtained test pieces.

【0041】実施例7 重合時の操作を、最初から窒素雰囲気下とし、モノマー
系も3分間窒素バブリングを行ったものを用いた。この
ときの水系の溶存酸素濃度は0.1mg/リットルであ
り、またモノマー系の溶存酸素濃度は1.4mg/リッ
トルであった。よって、重合を開始する直前の反応系全
体の溶存酸素濃度は0.3mg/リットルであった。こ
れ以外は全て実施例1と同様に操作して重合し物性測定
を行った。得られた試験片の評価結果を表2に示す。
Example 7 The operation during polymerization was carried out from the beginning under a nitrogen atmosphere, and the monomer system used was one which had been subjected to nitrogen bubbling for 3 minutes. At this time, the dissolved oxygen concentration in the aqueous system was 0.1 mg / liter, and the dissolved oxygen concentration in the monomer system was 1.4 mg / liter. Therefore, the dissolved oxygen concentration of the entire reaction system immediately before the initiation of polymerization was 0.3 mg / liter. Except for this, all operations were carried out in the same manner as in Example 1 to polymerize and measure the physical properties. Table 2 shows the evaluation results of the obtained test pieces.

【0042】実施例8 重合時の操作を、最初から窒素雰囲気下とし、モノマー
系も窒素バブリングを行い十分窒素置換を行った。この
ときの水系の溶存酸素濃度は0.1mg/リットルであ
り、モノマー系の溶存酸素濃度は0.1mg/リットル
であった。よって、重合を開始する直前の反応系全体の
溶存酸素濃度は0.1mg/リットルであった。これ以
外は全て実施例1と同様に操作して重合し物性測定を行
った。得られた試験片の評価結果を表2に示す。
Example 8 The operation during polymerization was carried out from the beginning in a nitrogen atmosphere, and the monomer system was also subjected to nitrogen bubbling to perform sufficient nitrogen substitution. At this time, the dissolved oxygen concentration in the aqueous system was 0.1 mg / liter, and the dissolved oxygen concentration in the monomer system was 0.1 mg / liter. Therefore, the dissolved oxygen concentration of the entire reaction system immediately before the initiation of polymerization was 0.1 mg / liter. Except for this, all operations were carried out in the same manner as in Example 1 to polymerize and measure the physical properties. Table 2 shows the evaluation results of the obtained test pieces.

【0043】[0043]

【表2】 [Table 2]

【0044】比較例1 ゴム層の重合の際に用いる単量体混合物として、BA5
7部、ST10.6部、ALMA1.6部を用いた以外
は、全て実施例1と同様に操作して重合し物性測定を行
った。得られた試験片の評価結果を表3に示す。なお、
この単量体混合物を用いてゴム層の重合のみを行い、2
3℃における屈折率を測定したところ、nd=1.48
79であり、70℃における屈折率を測定したところ、
nd=1.4757であった。
Comparative Example 1 BA5 was used as a monomer mixture used in the polymerization of the rubber layer.
Polymerization was carried out in the same manner as in Example 1 except that 7 parts, ST10.6 parts and ALMA 1.6 parts were used, and the physical properties were measured. Table 3 shows the evaluation results of the obtained test pieces. In addition,
Only the rubber layer was polymerized using this monomer mixture.
When the refractive index at 3 ° C. was measured, nd = 1.48
79 and the refractive index at 70 ° C. was measured,
It was nd = 1.4757.

【0045】比較例2 ゴム層の重合の際に用いる単量体混合物として、BA5
8.0部、ST9.6部、ALMA1.6部を用いた以
外は、全て実施例1と同様に操作して重合し物性測定を
行った。得られた試験片の評価結果を表3に示す。な
お、この単量体混合物を用いてゴム層の重合のみを行
い、23℃における屈折率を測定したところ、nd=
1.4859であり、70℃における屈折率を測定した
ところ、nd=1.4738であった。
Comparative Example 2 BA5 was used as a monomer mixture used in the polymerization of the rubber layer.
Polymerization was carried out in the same manner as in Example 1 except that 8.0 parts, ST 9.6 parts and ALMA 1.6 parts were used, and the polymerization was carried out to measure the physical properties. Table 3 shows the evaluation results of the obtained test pieces. It should be noted that when only the rubber layer was polymerized using this monomer mixture and the refractive index at 23 ° C. was measured, nd =
It was 1.4859, and when the refractive index at 70 ° C. was measured, it was nd = 1.4738.

【0046】比較例3 ゴム層の重合の際に用いる単量体混合物として、BA4
9.5部、ST18.1部、ALMA1.6部を用いた
以外は、全て実施例1と同様に操作して重合し物性測定
を行った。得られた試験片の評価結果を表3に示す。な
お、この単量体混合物を用いてゴム層の重合のみを行
い、23℃における屈折率を測定したところ、nd=
1.4999であり、70℃における屈折率を測定した
ところ、nd=1.4877であった。
Comparative Example 3 BA4 was used as a monomer mixture used in the polymerization of the rubber layer.
Polymerization was carried out in the same manner as in Example 1 except that 9.5 parts, ST18.1 parts, and ALMA 1.6 parts were used, and the physical properties were measured. Table 3 shows the evaluation results of the obtained test pieces. It should be noted that when only the rubber layer was polymerized using this monomer mixture and the refractive index at 23 ° C. was measured, nd =
It was 1.4999, and when the refractive index at 70 ° C. was measured, it was nd = 1.4877.

【0047】比較例4 ゴム層の重合の際に用いる単量体混合物として、BA4
0.6部、BD27.0部を用い、ゴム層の開始剤系と
してクメンハイドロパーオキシド0.07部、ロンガリ
ット0.5部、硫酸第一鉄0.01部を用い、オートク
レーブ中で55℃で6時間重合を行った以外は、全て実
施例1と同様に操作して重合し物性測定を行った。得ら
れた試験片の評価結果を表4に示す。なお、この単量体
混合物を用いてゴム層の重合のみを行った後、ラテック
ス中の固形分を取り出し、23℃における屈折率を測定
したところ、nd=1.4908であり、70℃におけ
る屈折率を測定したところ、nd=1.4612であっ
た。よってdnR/dT−dnP/dTは0.0005
4であった。
Comparative Example 4 BA4 was used as the monomer mixture used in the polymerization of the rubber layer.
0.6 parts, BD 27.0 parts, cumene hydroperoxide 0.07 parts, Rongalit 0.5 parts, ferrous sulfate 0.01 parts as an initiator system for the rubber layer, and 55 ° C. in an autoclave. Polymerization was performed in the same manner as in Example 1 except that the polymerization was performed for 6 hours, and the physical properties were measured. Table 4 shows the evaluation results of the obtained test pieces. After only polymerizing the rubber layer using this monomer mixture, the solid content in the latex was taken out and the refractive index at 23 ° C. was measured to find that nd = 1.4908 and the refractive index at 70 ° C. When the rate was measured, it was nd = 1.4612. Therefore, dnR / dT-dnP / dT is 0.0005.
It was 4.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明の透明熱可塑性樹脂組成物によれ
ば、従来のゴム変性透明熱可塑性樹脂の持つ耐衝撃性や
成形加工性を維持し、かつ加熱によるヘイズの増加や透
明性の減少等の欠点が改良された透明熱可塑性樹脂組成
物を提供することができる。
According to the transparent thermoplastic resin composition of the present invention, the impact resistance and molding processability of the conventional rubber-modified transparent thermoplastic resin are maintained, and the haze and the transparency are decreased by heating. It is possible to provide a transparent thermoplastic resin composition having improved drawbacks such as the above.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明熱可塑性樹脂中に、ガラス転移温度
が0℃以下のゴム相を有するコア−シェル型多層構造粒
子が分散された透明熱可塑性樹脂組成物であって、それ
ぞれ単独で測定したときの23℃におけるゴム相の屈折
率(nR23)と樹脂相の屈折率(nP23)が下記の
式(I)の関係にあり、かつそれぞれ単独で測定したと
きの23〜70℃におけるゴム相の屈折率の温度変化量
(dnR/dT)と樹脂相の屈折率の温度変化量(dn
P/dT)とが下記の式(II)の関係を有することを特
徴とする透明熱可塑性樹脂組成物。 0.01>nR23−nP23>0 (I) 0.00025>|dnR/dT−dnP/dT| (II)
1. A transparent thermoplastic resin composition in which core-shell type multilayer structure particles having a rubber phase having a glass transition temperature of 0 ° C. or less are dispersed in a transparent thermoplastic resin, each of which is measured independently. The refractive index (nR23) of the rubber phase and the refractive index (nP23) of the resin phase at 23 ° C. at this time are in the relationship of the following formula (I), and of the rubber phase at 23 to 70 ° C. when measured individually. Refractive index temperature change (dnR / dT) and resin phase refractive index temperature change (dn
P / dT) has the relationship of the following formula (II), The transparent thermoplastic resin composition characterized by the above-mentioned. 0.01>nR23-nP23> 0 (I) 0.00025> | dnR / dT-dnP / dT | (II)
【請求項2】 ゴム相が、アルキル基の炭素数が1〜8
であるアクリル酸アルキルエステル59.9〜99.9
重量%、他の共重合性単量体0〜40重量%及び多官能
性単量体0.05〜5重量%からなり、他の共重合性単
量体に共役ジエン系化合物を含まないものであることを
特徴とする、請求項1に記載の透明熱可塑性樹脂組成
物。
2. The rubber phase has an alkyl group having 1 to 8 carbon atoms.
Acrylic acid alkyl ester 59.9 to 99.9
%, Other copolymerizable monomers 0 to 40% by weight and polyfunctional monomers 0.05 to 5% by weight, other copolymerizable monomers not containing conjugated diene compounds The transparent thermoplastic resin composition according to claim 1, wherein
【請求項3】 コア−シェル型多層構造粒子が、乳化重
合法に際し、重合系の液相全体の溶存酸素濃度が0.2
〜10mg/リットルの時に第1層の重合を開始して得
られたものであることを特徴とする、請求項1または2
に記載の透明熱可塑性樹脂組成物。
3. The core-shell type multi-layer structure particles, wherein the concentration of dissolved oxygen in the entire liquid phase of the polymerization system is 0.2 in the emulsion polymerization method.
It is obtained by initiating the polymerization of the first layer at 10 to 10 mg / liter, 3.
The transparent thermoplastic resin composition described in 1.
【請求項4】 透明熱可塑性樹脂が、ガラス転移温度が
50℃以上の透明熱可塑性樹脂であり、コア−シェル型
多層構造粒子が、第1層がそのガラス転移温度が50℃
以上の樹脂層、第2層が架橋ゴム層、第3層が透明熱可
塑性樹脂と相溶性のある非架橋樹脂層の三層からなり、
かつ第2層の粒子径(r)が下記の式(III)の範囲であ
って、rと第1層と第2層における第2層の重量比率
(N)(第2層重量/(第1層重量+第2層重量))と
が下記の式(IV)の関係を有することを特徴とする請求
項1〜3のいずれか1項に記載の透明熱可塑性樹脂組成
物。 r(μm)=0.05〜0.30 (III) N≦0.1/r−0.1 (IV)
4. The transparent thermoplastic resin is a transparent thermoplastic resin having a glass transition temperature of 50 ° C. or higher, and the core-shell type multilayer structure particles have a glass transition temperature of 50 ° C. in the first layer.
The resin layer, the second layer is a crosslinked rubber layer, and the third layer is a non-crosslinked resin layer compatible with the transparent thermoplastic resin.
Further, the particle diameter (r) of the second layer is within the range of the following formula (III), and the weight ratio (N) of the second layer in the first layer and the second layer (N) (second layer weight / (second layer (1 layer weight + 2nd layer weight)) has the relationship of the following formula (IV), The transparent thermoplastic resin composition of any one of Claims 1-3 characterized by the above-mentioned. r (μm) = 0.05 to 0.30 (III) N ≦ 0.1 / r-0.1 (IV)
JP21957595A 1995-08-04 1995-08-04 Transparent thermoplastic resin composition Expired - Fee Related JP3563166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21957595A JP3563166B2 (en) 1995-08-04 1995-08-04 Transparent thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21957595A JP3563166B2 (en) 1995-08-04 1995-08-04 Transparent thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPH0948922A true JPH0948922A (en) 1997-02-18
JP3563166B2 JP3563166B2 (en) 2004-09-08

Family

ID=16737677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21957595A Expired - Fee Related JP3563166B2 (en) 1995-08-04 1995-08-04 Transparent thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP3563166B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088223A (en) * 2000-09-13 2002-03-27 Shin Etsu Chem Co Ltd Light-transmitting epoxy resin composition and semiconductor device
JP2003064231A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Weatherable impact-resistant styrene-based resin composition
EP1337586B1 (en) * 2000-10-17 2006-11-22 General Electric Company Translucent and transparent polycarbonate thermoplastic alloys and methods for making thereof
WO2009096374A1 (en) 2008-01-28 2009-08-06 Kaneka Corporation Alicyclic epoxy resin composition, cured product thereof, production method thereof, and rubbery polymer-containing resin composition
WO2009091124A3 (en) * 2008-01-16 2009-10-22 Lg Chem, Ltd. Impact strength modifiers for thermoplastic polyester and thermoplastic polyester resin composition containing the same
JP2011011543A (en) * 2009-06-01 2011-01-20 Asahi Kasei Chemicals Corp Alternative film for coating and laminated molding having the same
JP2017531704A (en) * 2014-09-24 2017-10-26 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Impact-resistant molding material with improved properties
JP2018002863A (en) * 2016-06-30 2018-01-11 株式会社クラレ Impact resistance improver, thermoplastic resin composition and film
CN113166521A (en) * 2019-08-30 2021-07-23 株式会社Lg化学 Thermoplastic resin composition comprising (meth) acrylate graft copolymer and method for producing thermoplastic resin composition
JP2022540212A (en) * 2019-07-12 2022-09-14 金発科技股▲ふん▼有限公司 Polyacrylic acid ester polymer composite material and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040269A1 (en) * 2019-08-30 2021-03-04 (주) 엘지화학 Thermoplastic resin composition comprising (meth)acrylate graft copolymer, and production method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088223A (en) * 2000-09-13 2002-03-27 Shin Etsu Chem Co Ltd Light-transmitting epoxy resin composition and semiconductor device
EP1337586B1 (en) * 2000-10-17 2006-11-22 General Electric Company Translucent and transparent polycarbonate thermoplastic alloys and methods for making thereof
JP2003064231A (en) * 2001-08-29 2003-03-05 Asahi Kasei Corp Weatherable impact-resistant styrene-based resin composition
US8252867B2 (en) 2008-01-16 2012-08-28 Lg Chem, Ltd. Impact strength modifiers for thermoplastic polyester and thermoplastic polyester resin composition containing the same
WO2009091124A3 (en) * 2008-01-16 2009-10-22 Lg Chem, Ltd. Impact strength modifiers for thermoplastic polyester and thermoplastic polyester resin composition containing the same
WO2009096374A1 (en) 2008-01-28 2009-08-06 Kaneka Corporation Alicyclic epoxy resin composition, cured product thereof, production method thereof, and rubbery polymer-containing resin composition
JP2011011543A (en) * 2009-06-01 2011-01-20 Asahi Kasei Chemicals Corp Alternative film for coating and laminated molding having the same
JP2017531704A (en) * 2014-09-24 2017-10-26 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Impact-resistant molding material with improved properties
US10358552B2 (en) 2014-09-24 2019-07-23 Evonik Röhm Gmbh Impact-resistant molding material having an improved characteristics profile
JP2018002863A (en) * 2016-06-30 2018-01-11 株式会社クラレ Impact resistance improver, thermoplastic resin composition and film
JP2022540212A (en) * 2019-07-12 2022-09-14 金発科技股▲ふん▼有限公司 Polyacrylic acid ester polymer composite material and method for producing the same
CN113166521A (en) * 2019-08-30 2021-07-23 株式会社Lg化学 Thermoplastic resin composition comprising (meth) acrylate graft copolymer and method for producing thermoplastic resin composition
CN113166521B (en) * 2019-08-30 2023-08-01 株式会社Lg化学 Thermoplastic resin composition comprising (meth) acrylate graft copolymer and method for preparing thermoplastic resin composition

Also Published As

Publication number Publication date
JP3563166B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JP2721596B2 (en) Acrylic polymer coagulation composition, its production method and its molded product
EP0136552B1 (en) Impact modifier and thermoplastic resin compositions using the same
JP3960631B2 (en) Resin composition containing multilayer structure graft polymer
JPH05247313A (en) Co-microagglomeration of emulsion polymer
JPS6284109A (en) Production of thermoplastic resin composition
JPH11166091A (en) Vinyl chloride-based resin composition
JP3563166B2 (en) Transparent thermoplastic resin composition
JPH05262953A (en) Production of graft copolymer particle containing rubber
JPH04300947A (en) Production of rubber-containing graft copolymer particle
JPH073106A (en) Production of synthetic resin powder improved in blocking resistance
JP2003261629A (en) Graft copolymer, shock resistance modifier, thermoplastic resin composition, and method for manufacturing graft copolymer
JP4102512B2 (en) Automotive lamp housing
JPH0535173B2 (en)
JP2003522244A (en) Impact-resistant composition based on thermoplastic methacrylic (co) polymer
WO2002004559A1 (en) Transparent impact-resistant thermoplastic resin composition
JPS61133257A (en) Vinyl chloride resin composition
JP3009379B2 (en) Acrylic polymer coagulated product and molded product thereof
JP3154893B2 (en) Thermoplastic acrylic resin composition
JP3357097B2 (en) Impact resistant methacrylic resin composition
JP2783476B2 (en) Method for producing coagulated polymer and composition thereof
JP3181690B2 (en) Method for producing graft copolymer
JP3720543B2 (en) Acrylic resin composition
JPH0742341B2 (en) Thermoplastic resin composition
JPH06192535A (en) Thermoplastic resin composition
KR100553498B1 (en) A anti-stress impact modifier for polyvinylchoride and a preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040602

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees