JPH0948699A - Production of znse bulk single crystal - Google Patents

Production of znse bulk single crystal

Info

Publication number
JPH0948699A
JPH0948699A JP21516595A JP21516595A JPH0948699A JP H0948699 A JPH0948699 A JP H0948699A JP 21516595 A JP21516595 A JP 21516595A JP 21516595 A JP21516595 A JP 21516595A JP H0948699 A JPH0948699 A JP H0948699A
Authority
JP
Japan
Prior art keywords
furnace
znse
single crystal
raw material
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21516595A
Other languages
Japanese (ja)
Other versions
JP3617703B2 (en
Inventor
Kazuyuki Umetsu
一之 梅津
Eiji Shimizu
栄二 清水
Shuji Otaka
修司 大高
Choju Nagata
長寿 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP21516595A priority Critical patent/JP3617703B2/en
Publication of JPH0948699A publication Critical patent/JPH0948699A/en
Application granted granted Critical
Publication of JP3617703B2 publication Critical patent/JP3617703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a ZnSe bulk single crystal having high purity and quality in a clean environment of h furnace by suppressing the scattering of raw material from a crucible to prevent the loss of the raw material and the variation of the molten liquid composition and preventing the contamination of the crystal with the raw material in the furnace and a material generated from the crucible. SOLUTION: A ZnSe bulk single crystal is produced from a molten liquid by a high-pressure melting method using a vertical Bridgman furnace or a vertical annealing furnace. In the above process, a crucible charged with a seed crystal, a ZnSe raw material and an encapsulant (selected from B2 O3 and fluorine compounds such as CaF2 or AIF3 ) in the order is heated in a high- pressure furnace. The obtained single crystal has extremely low impurity content and high crystallinity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ZnSe系化合部の薄
膜をエピタキシャル成長させ、半導体レーザや発光ダイ
オード等の青色発光素子を構築するための基板に用いら
れる高純度のZnSeバルク単結晶の製造方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for producing a high-purity ZnSe bulk single crystal used as a substrate for constructing a blue light-emitting device such as a semiconductor laser or a light-emitting diode by epitaxially growing a thin film of a ZnSe-based compound portion. Regarding

【0002】[0002]

【従来の技術】通常、融液の蒸気圧が高い物質を用いて
融液成長させる成長法では、原料を石英アンプルに封入
してその中で育成するという方法が採用されている。し
かしながら石英ガラスは約1200℃で軟化し始め、そ
れ以上の温度になると変形したり、失透したりするた
め、ZnSeのように融点が1520℃と高い物質の結
晶育成には使用できない。
2. Description of the Related Art Usually, in a growth method for growing a melt using a substance having a high vapor pressure of the melt, a method of encapsulating a raw material in a quartz ampoule and growing it in the ampoule is adopted. However, quartz glass begins to soften at about 1200 ° C. and is deformed or devitrified at a temperature higher than that, and therefore cannot be used for crystal growth of a substance having a high melting point of 1520 ° C. such as ZnSe.

【0003】このため、従来ZnSeの融液成長法とし
ては、グラファイトや焼結BN製のルツボに原料を入
れ、さらにこのルツボを高圧容器に入れて、Ar等の不
活性ガスで加圧し、融液の蒸発をおさえながら結晶の育
成を行う高圧溶融法が用いられてきた。
Therefore, as a conventional melt growth method of ZnSe, the raw material is put into a crucible made of graphite or sintered BN, and the crucible is put into a high-pressure container and pressurized with an inert gas such as Ar to melt. A high-pressure melting method has been used in which crystals are grown while suppressing the evaporation of the liquid.

【0004】[0004]

【発明が解決しようとする課題】上記高圧溶融法は、高
圧の不活性ガスで融液の蒸発量を低減させながら結晶を
育成する方法であるが、通常のルツボ形態から見れば開
管系に属し、高圧の不活性ガスはルツボからの原料の損
失を小さくするだけであり、融液の蒸発を完全に阻止す
ることができなかった。
The above-mentioned high-pressure melting method is a method of growing a crystal while reducing the evaporation amount of the melt with a high-pressure inert gas. The high-pressure inert gas belongs only to reduce the loss of the raw material from the crucible, and cannot completely prevent the evaporation of the melt.

【0005】また、良質の単結晶を得るため、十分に小
さい成長速度で長時間の育成を行うには炉内圧を高くす
る必要があることから、通常は90〜100atm という
非常に大きな圧力下で育成を行っていたが、以下のよう
な問題を有していた。
Further, in order to obtain a good quality single crystal, it is necessary to raise the furnace pressure in order to grow for a long time at a sufficiently low growth rate. Therefore, it is usually performed under a very large pressure of 90 to 100 atm. Although it was being trained, it had the following problems.

【0006】上記方法では、育成中に原料の一部が飛散
するため、仕込んだ原料の重量に対して結晶の重量が小
さくなる他、ルツボから飛散した成分は炉内の低温部に
堆積し、炉内を著しく汚染するという欠点があった。
In the above method, since part of the raw material is scattered during the growth, the weight of the crystal becomes smaller than the weight of the charged raw material, and the components scattered from the crucible are deposited in the low temperature part of the furnace. It has a drawback that it significantly contaminates the inside of the furnace.

【0007】さらに原料として用いるZnSeでは、成
分蒸気であるZnとSeの分圧と拡散係数が異なるた
め、融液の組成はSe過剰の方にずれる傾向があり、こ
の融液組成の変動は育成中に組成的過冷却を引き起こ
し、単結晶化が困難になる上、得られた結晶にも多数の
点欠陥が発生し、電気的特性も悪化する要因となってい
た。
Further, in ZnSe used as a raw material, since the partial pressures and diffusion coefficients of Zn and Se, which are component vapors, are different, the composition of the melt tends to shift toward the excess of Se. This causes compositional supercooling therein, which makes it difficult to form a single crystal, and also many point defects occur in the obtained crystal, which is a factor of deteriorating electrical characteristics.

【0008】さらに構造的には、ルツボから見れば開管
系であることから、炉内を構成する材料物質により結晶
が汚染されたり、あるいはルツボ材そのものからの汚染
も避けられなかった。
Further, structurally, since it is an open tube system from the viewpoint of the crucible, the crystals are contaminated by the material constituting the furnace, or the crucible itself is unavoidable.

【0009】したがって本発明の目的は、ルツボからの
原料の飛散をおさえて原料の損失と融液組成の変動をな
くし、さらに炉内の材料物質やルツボからの汚染を防ぐ
ことにより、高純度で良質な単結晶にするとともに清浄
な炉内環境のもとで行うZnSeバルク単結晶の製造方
法を提供することにある。
Therefore, an object of the present invention is to suppress the scattering of the raw material from the crucible to eliminate the loss of the raw material and the fluctuation of the melt composition, and further to prevent the contamination from the raw material in the furnace and the crucible, thereby achieving high purity. It is an object of the present invention to provide a method for producing a ZnSe bulk single crystal that is made into a good quality single crystal and is performed under a clean furnace environment.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究した結果、垂直ブリッジマン法また
は垂直徐冷法によるZnSe融液からの単結晶の育成方
法において、無機フッ素化合物やB23 を封止剤とし
て用いれば、これらの封止剤がZnSe融液との相容
性、反応性を持たないことから、前述の課題を解決でき
ることを見いだし本発明に到達した。
Means for Solving the Problems As a result of intensive studies aimed at achieving the above object, the present inventors have found that in a method for growing a single crystal from a ZnSe melt by a vertical Bridgman method or a vertical annealing method, an inorganic fluorine compound or B When 2 O 3 is used as a sealant, these sealants have no compatibility or reactivity with the ZnSe melt, and therefore, they have found that the above-mentioned problems can be solved and reached the present invention.

【0011】すなわち本発明は第1に、垂直ブリッジマ
ン炉または垂直徐冷炉を用いて高圧溶融法により融液か
らZnSeバルク単結晶を製造する方法において、種結
晶上に、ZnSe原料、封止剤を順次充填したルツボを
高圧炉内で加熱処理することによって、該種結晶の上に
単結晶を育成することを特徴とするZnSeバルク単結
晶の製造方法;第2に、前記封止剤がB23 、CaF
2 、AlF3 、LiF、NaF、KFの1種もしくはこ
れらの共晶混合物から選ばれる上記第2に記載の方法を
提供するものである。
That is, first, the present invention relates to a method of producing a ZnSe bulk single crystal from a melt by a high pressure melting method using a vertical Bridgman furnace or a vertical annealing furnace, in which a ZnSe raw material and a sealant are placed on a seed crystal. A method for producing a ZnSe bulk single crystal, which comprises growing a single crystal on the seed crystal by heat-treating the crucibles sequentially filled in a high-pressure furnace; secondly, the sealing agent is B 2 O 3 , CaF
The present invention provides the method according to the second aspect, which is selected from the group consisting of 2 , AlF 3 , LiF, NaF and KF, or a eutectic mixture thereof.

【0012】[0012]

【作用】本発明の実施例で用いた装置は、加圧式単結晶
引上げ装置(国際電気社製)を一部改造して垂直ブリッ
ジマン法または垂直徐冷法による育成を可能にしたもの
である。
The apparatus used in the embodiments of the present invention is a pressurized single crystal pulling apparatus (manufactured by Kokusai Electric Co., Ltd.) partially modified to enable growth by the vertical Bridgman method or the vertical annealing method.

【0013】原料のZnSeとしては、純度6N以上の
多結晶体を用いるが、気相輸送法により合成したものや
化学蒸着(CVD)法によって得たオプティクス用素材
のものであっても構わない。
As the raw material ZnSe, a polycrystalline body having a purity of 6N or more is used, but it may be one synthesized by a vapor phase transport method or one used as a material for optics obtained by a chemical vapor deposition (CVD) method.

【0014】本発明方法における育成方法は、まず結晶
育成用にパイロリティック・ボロン・ナイトライド(P
BN)製ルツボの底から順に、種結晶、原料、封止剤を
充填し、次いで該ルツボをグラファイト製の容器に挿入
した状態で炉内のルツボ移動軸に取付けて、所定の炉内
位置に設置する。 設置後、炉内をAr、N2 などの不
活性ガスで置換し、所定の圧力までガスを導入する。次
いで炉内温度を封止剤の融点まで上げ、この封止剤のみ
を融解して原料の表面を覆うようにした。
In the growing method in the method of the present invention, first, a pyrolytic boron nitride (P
The BN) crucible is filled with seed crystals, raw materials, and a sealant in this order from the bottom, and then the crucible is inserted into a graphite container and attached to a crucible moving shaft in the furnace so that the crucible moves to a predetermined position in the furnace. Install. After installation, the inside of the furnace is replaced with an inert gas such as Ar or N 2, and the gas is introduced to a predetermined pressure. Next, the temperature inside the furnace was raised to the melting point of the sealant, and only this sealant was melted to cover the surface of the raw material.

【0015】次いで炉内温度をZnSeの融点付近まで
加熱して原料を融解するが、上記封止剤はZnSeとの
界面において安定な性質を示すことから、ZnSe融液
とも相容性、反応性を持たず、またZnSe融液よりも
比重が低いため、ZnSe融液上に浮かび融液表面を覆
うことになる。
Next, the temperature inside the furnace is heated to near the melting point of ZnSe to melt the raw material. However, since the above-mentioned sealing agent exhibits stable properties at the interface with ZnSe, it is compatible and reactive with the ZnSe melt. And has a specific gravity lower than that of the ZnSe melt, it floats on the ZnSe melt and covers the surface of the melt.

【0016】また、封止剤融液上からZnSe融液の蒸
気圧以上の圧力を加えることで、ZnSeの蒸発を防ぎ
ながら、この状態を維持して、種結晶の一部を融解させ
て種付けを行い、その後低温域へルツボ自体を降下させ
る(垂直ブリッジマン法)か、あるいはヒーター温度を
精密に制御しながら降下させる(垂直徐冷法)ことによ
り、単結晶を育成する。
Further, by applying a pressure not lower than the vapor pressure of the ZnSe melt from above the sealant melt, this state is maintained while the evaporation of ZnSe is prevented, and a part of the seed crystal is melted and seeded. Then, the crucible itself is lowered to the low temperature region (vertical Bridgman method) or lowered while controlling the heater temperature precisely (vertical gradual cooling method) to grow a single crystal.

【0017】なお、原料のZnSe全てが十分固化した
ら育成を終了し、炉内をゆっくり冷却しながら室温まで
下げた後、結晶をルツボから取り出す。
When all of the raw material ZnSe is sufficiently solidified, the growth is finished, the inside of the furnace is slowly cooled to room temperature, and then the crystal is taken out from the crucible.

【0018】本発明における育成条件を掲げると次の通
りである。 ルツボ:口径1インチのパイロリティック・ボロン・ナ
イトライド(PBN)製 原料融解温度:1650℃(炉内最高温度) 融解時間:3時間 育成速度:3mm/時間 融点付近の温度勾配:30℃/cm 炉内雰囲気:Arガス、3〜50kgf/cm2 原料重量:60〜90g 封止剤重量:30〜40g なお、封止剤としてはB23 の他、CaF2 、AlF
3 、LiF、NaF、KFの組み合わせからなる共晶混
合物でもよいことを確認している。
The raising conditions in the present invention are as follows. Crucible: Made of Pyrolytic Boron Nitride (PBN) with a diameter of 1 inch Raw material melting temperature: 1650 ° C (maximum furnace temperature) Melting time: 3 hours Growth rate: 3 mm / hour Temperature gradient near melting point: 30 ° C / cm Atmosphere in the furnace: Ar gas, 3 to 50 kgf / cm 2 Raw material weight: 60 to 90 g Sealant weight: 30 to 40 g As a sealant, in addition to B 2 O 3 , CaF 2 and AlF.
It has been confirmed that a eutectic mixture composed of a combination of 3 , LiF, NaF, and KF may be used.

【0019】以下実施例をもって詳細に説明するが、本
発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0020】[0020]

【実施例】図1および図2はいずれも本実施例と比較例
で育成されたZnSe単結晶のフォトルミネッセンス
スペクトルで試料の励起には超高圧水銀灯の365nm線
を用い、図1は測定温度15Kのもの、図2は77Kの
ものであって、これらをも参照して以下説明する。
EXAMPLES FIG. 1 and FIG. 2 are both photoluminescence of ZnSe single crystals grown in this example and a comparative example.
In the spectrum, the 365 nm line of an ultra-high pressure mercury lamp was used to excite the sample, FIG. 1 shows a measurement temperature of 15 K, and FIG. 2 shows a 77 K line, which will be described below with reference to these.

【0021】(1)口径1インチのパイロリティック・
ボロン・ナイトライド(PBN)製ルツボに種結晶(4
mmφ×30L)、ZnSe原料(オプティクス用素材)
87g、封止剤としてB23 34gを順次充填し、高
圧炉内に設置した後、該炉内をArガスで置換して、炉
内圧を9.5kgf/cm2 に加圧した。
(1) Pyrolytic with a diameter of 1 inch
Seed crystals (4) in a crucible made of boron nitride (PBN)
mmφ × 30L), ZnSe raw material (material for optics)
After 87 g and 34 g of B 2 O 3 as a sealant were sequentially charged and placed in a high-pressure furnace, the inside of the furnace was replaced with Ar gas and the furnace pressure was increased to 9.5 kgf / cm 2 .

【0022】(2)次いで炉内を加熱しながら、まず封
止剤が融解する温度(B23 420℃)で一旦加熱を
中断して封止剤を融解させ、これら融解した封止剤が下
に位置する原料のZnSe表面を覆うようにした。
(2) Next, while heating the inside of the furnace, first, heating is interrupted at a temperature (B 2 O 3 420 ° C.) at which the sealant melts to melt the sealant. Covers the surface of the raw material ZnSe.

【0023】(3)次に、再び昇温を始めて、原料を十
分に融解(炉内最高温度を1650℃に制御、融解時間
3時間)させてから種結晶の上端を融解して種付けを行
い、その後、ルツボを3mm/時の割合で降下させながら
単結晶を育成した。
(3) Next, the temperature is restarted to sufficiently melt the raw material (the maximum temperature in the furnace is controlled to 1650 ° C., the melting time is 3 hours), and the upper end of the seed crystal is melted to perform seeding. Then, a single crystal was grown while lowering the crucible at a rate of 3 mm / hour.

【0024】(4)この結果、結晶は99.9%の高収
率で得られ、炉内もほとんど汚れておらず、封止剤のB
23 によって原料の飛散が抑えられていることが確認
できた。
(4) As a result, crystals were obtained in a high yield of 99.9%, and the inside of the furnace was almost uncontaminated.
It was confirmed that the scattering of the raw material was suppressed by 2 O 3 .

【0025】得られた結晶の測定温度15Kにおけるフ
ォトルミネッセンス スペクトル(励起子発光領域)は
図1に示す通りで、束縛励起子によるI2 、I1 dなどの
発光が見られる他、2.801eV付近には自由励起子
(FE)による発光も明瞭に観察された。このことによ
り本実施例によって得られた結晶は非常に不純物濃度が
低く結晶性が良いことが判明した。
The photoluminescence spectrum (exciton emission region) of the obtained crystal at a measurement temperature of 15 K is as shown in FIG. 1, and emission of I 2 , I 1 d, etc. by the bound excitons is observed and 2.801 eV Light emission by free excitons (FE) was also clearly observed in the vicinity. From this, it was found that the crystals obtained in this example had a very low impurity concentration and good crystallinity.

【0026】また測定温度77Kにおけるフォトルミネ
ッセンス スペクトルを示す図2によっても、不純物や
欠陥に起因する深い準位からの発光も見られず、良好な
品質を有することが明らかである。
Further, according to FIG. 2 showing the photoluminescence spectrum at the measurement temperature of 77 K, it is clear that light emission from a deep level due to impurities and defects is not seen, and that it has good quality.

【0027】[0027]

【比較例】[Comparative example]

(1)比較のため封止剤を用いない従来の高圧溶融法で
結晶の育成を行った。すなわち口径1インチの焼結BN
製ルツボに種結晶、ZnSe原料(オプティクス用素
材)81gを充填し、高圧炉内に設置した後、炉内を4
0kgf/cm2 に加圧した。
(1) For comparison, crystals were grown by a conventional high pressure melting method without using a sealant. That is, sintered BN with a diameter of 1 inch
After filling the seed crucible with 81 g of ZnSe raw material (raw material for optics) and setting it in the high-pressure furnace,
Pressurized to 0 kgf / cm 2 .

【0028】(2)原料を十分に融解した後、種結晶の
上端を融解して種付けを行い、その後ルツボを3mm/時
で降下させながら単結晶を育成したところ、結晶の収率
は95%であり、高圧炉内にはルツボから飛散したZn
Seが付着堆積していた。
(2) After sufficiently melting the raw materials, the upper end of the seed crystal was melted to perform seeding, and then the single crystal was grown while lowering the crucible at 3 mm / hour. The crystal yield was 95%. In the high pressure furnace, Zn scattered from the crucible
Se was attached and deposited.

【0029】(3)得られた結晶のフォトルミネッセン
ス スペクトル(励起子発光領域)を求め図1に示した
が、この結果、束縛励起子によるI2 (あるいはI
3 )、I1 dが観察されたものの、その発光強度は実施例
に示すものと比べて弱い上、自由励起子(FE)による
発光も見られなかった。
(3) The photoluminescence spectrum (exciton emission region) of the obtained crystal was determined and shown in FIG. 1. As a result, I 2 (or I) due to bound excitons was obtained.
3 ) and I 1 d were observed, but the emission intensity was weaker than that shown in the examples, and no emission due to free excitons (FE) was observed.

【0030】(4)また、図2に示すように、2eV付
近に見られる深い準位からの発光が支配的であり、この
ことから結晶の純度が低いことがわかった。
(4) Further, as shown in FIG. 2, the light emission from the deep level observed near 2 eV is dominant, and it was found from this that the crystal purity is low.

【0031】[0031]

【発明の効果】以上説明したように、本発明の方法によ
れば、原料のZnSe融液と相容性、反応性を持たない
封止剤を用いることにより、ルツボ内からの原料の飛散
を防ぎ結晶収率を向上させる上、炉内の各原料から結晶
が汚染するのを防止できるので、高純度な単結晶が得ら
れる。
As described above, according to the method of the present invention, the use of a sealant having no compatibility or reactivity with the ZnSe melt as the raw material prevents the raw material from scattering from the crucible. In addition to improving the crystal yield, it is possible to prevent the crystals from being contaminated by the respective raw materials in the furnace, so that a high-purity single crystal can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例で育成されたZnSe単結
晶の測定温度15Kにおけるフォトルミネッセンス ス
ペクトルを示す図である。
FIG. 1 is a diagram showing a photoluminescence spectrum of ZnSe single crystals grown in Examples and Comparative Examples at a measurement temperature of 15K.

【図2】実施例および比較例で育成されたZnSe単結
晶の測定温度77Kにおけるフォトルミネッセンス ス
ペクトルを示す図である。
FIG. 2 is a diagram showing a photoluminescence spectrum of ZnSe single crystals grown in Examples and Comparative Examples at a measurement temperature of 77K.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/18 H01S 3/08 (72)発明者 永田 長寿 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H01S 3/18 H01S 3/08 (72) Inventor Nagatoshi Nagata 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Within Dowa Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 垂直ブリッジマン炉または垂直徐冷炉を
用いて、高圧溶融法により融液からZnSeバルク単結
晶を製造する方法において、種結晶上に、ZnSe原
料、封止剤を順次充填したルツボを高圧炉内で加熱処理
することによって、該種結晶の上に単結晶を育成するこ
とを特徴とするZnSeバルク単結晶の製造方法。
1. A method for producing a ZnSe bulk single crystal from a melt by a high-pressure melting method using a vertical Bridgman furnace or a vertical annealing furnace, wherein a crucible in which a ZnSe raw material and a sealant are sequentially filled on a seed crystal is used. A method for producing a ZnSe bulk single crystal, which comprises growing a single crystal on the seed crystal by heat treatment in a high-pressure furnace.
【請求項2】 前記封止剤がB23 、CaF2 、Al
3 、LiF、NaF、KFの1種もしくはこれらの共
晶混合物から選ばれたものであることを特徴とする請求
項2記載のZnSeバルク単結晶の製造方法。
2. The sealant is B 2 O 3 , CaF 2 , Al
The method for producing a ZnSe bulk single crystal according to claim 2, wherein the ZnSe bulk single crystal is selected from one of F 3 , LiF, NaF, and KF, or a eutectic mixture thereof.
JP21516595A 1995-08-01 1995-08-01 Method for producing ZnSe bulk single crystal Expired - Fee Related JP3617703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21516595A JP3617703B2 (en) 1995-08-01 1995-08-01 Method for producing ZnSe bulk single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21516595A JP3617703B2 (en) 1995-08-01 1995-08-01 Method for producing ZnSe bulk single crystal

Publications (2)

Publication Number Publication Date
JPH0948699A true JPH0948699A (en) 1997-02-18
JP3617703B2 JP3617703B2 (en) 2005-02-09

Family

ID=16667738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21516595A Expired - Fee Related JP3617703B2 (en) 1995-08-01 1995-08-01 Method for producing ZnSe bulk single crystal

Country Status (1)

Country Link
JP (1) JP3617703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637861A (en) * 2021-08-13 2021-11-12 湘潭大学 Zn-Se alloy and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637861A (en) * 2021-08-13 2021-11-12 湘潭大学 Zn-Se alloy and preparation method and application thereof
CN113637861B (en) * 2021-08-13 2022-05-27 湘潭大学 Zn-Se alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP3617703B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US7332028B2 (en) Method for manipulating a rare earth chloride or bromide or iodide in a crucible comprising carbon
US6989059B2 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
US5902396A (en) Ammonothermal growth of chalcogenide single crystal materials
Kutny et al. AlSb single-crystal grown by HPBM
JP4463730B2 (en) Method for producing metal fluoride single crystal
JP3617703B2 (en) Method for producing ZnSe bulk single crystal
US20080019896A1 (en) Inp Single Crystal Wafer and Method for Producing Inp Single Crystal
JPH10259100A (en) Production of garium-arsenic single crystal
US4299649A (en) Vapor transport process for growing selected compound semiconductors of high purity
US4439266A (en) Vapor transport process for growing selected compound semiconductors of high purity
JP2012046367A (en) Apparatus and method for producing group iii-v compound semiconductor polycrystal
JPS589799B2 (en) Zinc sulfide crystal growth method
JPH085753B2 (en) Terbium aluminate and its manufacturing method
RU2189405C1 (en) METHOD OF PREPARING COMPOUND LiInS2 MONOCRYSTALS
JP2003119095A (en) Method of producing fluoride single crystal
JP2000327496A (en) Production of inp single crystal
CN116791207A (en) Vapor phase transport method for growing nitride by taking flux alloy as source material
Capper et al. B1. 1 Growth of CdTe, CdZnTe and CdTeSe by bulk methods
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
KR20050010513A (en) Method for manipulating a rare earth chloride or bromide or iodide in a crucible comprising carbon
JPH1025192A (en) Crystal growing method
JPS589798B2 (en) Zinc selenide crystal growth method
JP2002241199A (en) METHOD FOR PRODUCING ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH11322489A (en) Production of semiconductor single crystal

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees