JPH0948666A - Carbon composite material and its production - Google Patents
Carbon composite material and its productionInfo
- Publication number
- JPH0948666A JPH0948666A JP8154938A JP15493896A JPH0948666A JP H0948666 A JPH0948666 A JP H0948666A JP 8154938 A JP8154938 A JP 8154938A JP 15493896 A JP15493896 A JP 15493896A JP H0948666 A JPH0948666 A JP H0948666A
- Authority
- JP
- Japan
- Prior art keywords
- expanded graphite
- composite material
- thermosetting resin
- resin
- graphite powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガス不透過性及び高導
電性を有する炭素複合材料と、その製造方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon composite material having gas impermeability and high conductivity, and a method for producing the same.
【0002】[0002]
【従来の技術】ガス不透過性を有する炭素材料は、主と
して熱交換器用部材、半導体製造用部材、燃料電池用部
品等の用途を有していて、従来より、安価で性能の優れ
たガス不透過性炭素材料が求められている。2. Description of the Related Art A carbon material having gas impermeability is mainly used as a heat exchanger member, a semiconductor manufacturing member, a fuel cell component, and the like. A permeable carbon material is required.
【0003】従来のガス不透過性炭素材料は、例えば、
ガラス状カーボン板或いは黒鉛等の炭素材料に熱硬化性
樹脂を含浸する方法(特開平02−153877号公報
参照)や、膨張黒鉛成形体に樹脂を塗布し、不活性ガス
中で2000℃程度まで焼成する方法(特開昭60−1
27284号公報参照)、或いは、膨張黒鉛成形体に熱
硬化性樹脂を含浸した後、熱圧成形する方法(特開昭6
0−12672号公報参照)により製造されているConventional gas-impermeable carbon materials include, for example,
A method in which a carbon material such as a glassy carbon plate or graphite is impregnated with a thermosetting resin (see Japanese Patent Application Laid-Open No. 02-153877) or a resin is applied to an expanded graphite compact, and the temperature is increased to about 2000 ° C. in an inert gas. Method of firing (JP-A-60-1)
No. 27284), or a method of impregnating an expanded graphite molded body with a thermosetting resin and then hot-pressing it (Japanese Patent Laid-Open No. Sho 6-62).
No. 0-12672).
【0004】しかしながら、ガラス状カーボン板には、
十分なガス不透過性と導電性はあるものの、焼成するの
に時間がかかるために高価となり、しかも複雑な形状を
作製することが困難という難点がある。又、膨張黒鉛表
面に熱硬化性樹脂を塗布し、不活性ガス中で焼成する方
法には、塗布工程が必要となって工程が複雑になるばか
りか、ピンホールのないカーボン層を形成することが非
常に困難であるため、十分なガス不透過性を得ることが
できないという問題点がある。更に、膨張黒鉛シートに
樹脂を含浸する方法には、含浸工程が必要となって工程
が複雑になり、しかも十分なガス不透過性を維持できな
いという問題がある。However, the glassy carbon plate has
Although it has sufficient gas impermeability and electrical conductivity, it has a drawback that it takes a long time to fire and thus becomes expensive, and it is difficult to form a complicated shape. In addition, the method of coating a thermosetting resin on the surface of expanded graphite and firing it in an inert gas not only requires a coating step but also complicates the step, and forms a carbon layer without pinholes. However, there is a problem that sufficient gas impermeability cannot be obtained. Further, the method of impregnating the expanded graphite sheet with a resin requires an impregnation step, which complicates the step and cannot maintain sufficient gas impermeability.
【0005】このような問題を解決するために、例えば
膨張黒鉛粉末と有機結合体とを溶液に混合し、これを乾
燥、粉砕することにことによって膨張黒鉛粉末と有機結
合体よりなる二次粒子を作製し、これを成形することに
よって膨張黒鉛成形体を作成する方法(特開昭54−3
2517号公報参照)や、膨張黒鉛と有機結合材とを混
合、成形する方法が提案されている(特開昭58−49
656号公報、特開昭62−254363号公報及び特
開平1−154467号公報参照)。In order to solve such a problem, for example, expanded graphite powder and an organic binder are mixed with a solution, which is dried and pulverized to form secondary particles of the expanded graphite powder and the organic binder. And producing an expanded graphite compact by molding the same (JP-A-54-3
No. 2517) or a method of mixing and molding expansive graphite and an organic binder (Japanese Patent Laid-Open No. 58-49).
656, JP-A-62-254363 and JP-A-1-154467).
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来よ
り一般的に使用されている膨張黒鉛は、有機結合材との
混合性が良好ではなく、導電性を高めるために膨張黒鉛
量を多くすると十分なガス不透過性が得られず、逆にガ
ス不透過性を高めるために膨張黒鉛量を少なくすると十
分な導電性が得られないため、高いガス不透過性及び導
電性を併有する炭素材の開発が望まれていた。However, the expansive graphite generally used in the past is not well mixed with the organic binder, and it is sufficient to increase the amount of the expansive graphite in order to enhance conductivity. Since gas impermeability cannot be obtained, conversely, if the amount of expanded graphite is reduced to increase gas impermeability, sufficient conductivity cannot be obtained, so development of a carbon material that has both high gas impermeability and conductivity Was desired.
【0007】本発明は、上記課題を解決して、ガス不透
過性と高導電性を併せ持つ炭素複合材料及びその製造方
法を提供することを目的としてなされた。The present invention has been made for the purpose of solving the above problems and providing a carbon composite material having both gas impermeability and high conductivity and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】上記目的を解決するため
に本発明が採用した炭素複合材料の構成は、膨張黒鉛粉
末と、熱可塑性樹脂、或いは、熱硬化性樹脂又はその焼
成物よりなり、熱可塑性樹脂、或いは、熱硬化性樹脂、
又はその焼成物中に膨張黒鉛粉末が分散されている成形
物であって、前記膨張黒鉛粉末が、その平均粒径が5μ
m〜12μm、粉末全粒子の内の80%以上の粒径が
0.1μm〜20μmの範囲に属するものであることを
特徴とするものである。The structure of the carbon composite material adopted by the present invention to solve the above-mentioned object is composed of expanded graphite powder and a thermoplastic resin, or a thermosetting resin or a fired product thereof, Thermoplastic resin or thermosetting resin,
Or a molded product in which expanded graphite powder is dispersed in the fired product, wherein the expanded graphite powder has an average particle size of 5 μm.
m to 12 μm, and 80% or more of all powder particles have a particle diameter of 0.1 to 20 μm.
【0009】同じく上記目的を解決するために本発明が
採用した炭素複合材料の製造方法の構成は、平均粒径が
5μm〜12μm、粉末全粒子の内の80%以上の粒径
が0.1μm〜20μmの範囲に属する膨張黒鉛粉末
と、熱可塑性樹脂又は熱硬化性樹脂を混合分散し、常温
〜400℃の温度下で加圧成形することを特徴とする
か、或いは、平均粒径が5μm〜12μm、粉末全粒子
の内の80%以上の粒径が0.1μm〜20μmの範囲
に属する膨張黒鉛粉末と、熱硬化性樹脂を混合分散し、
常温〜400℃の温度下で加圧成形した後、該成形物
を、非酸化性雰囲気下、700℃〜3000℃で焼成す
ることを特徴とするものである。Similarly, in order to solve the above-mentioned object, the method of producing a carbon composite material according to the present invention has an average particle size of 5 μm to 12 μm and 80% or more of all powder particles have a particle size of 0.1 μm. To 20 μm, expanded graphite powder and thermoplastic resin or thermosetting resin are mixed and dispersed, and press-molded at a temperature of room temperature to 400 ° C., or an average particle diameter of 5 μm. ˜12 μm, 80% or more of all particles in the powder have a particle size of 0.1 μm to 20 μm, and the expanded graphite powder is mixed and dispersed.
It is characterized in that after pressure molding at a temperature of room temperature to 400 ° C., the molded product is fired at 700 ° C. to 3000 ° C. in a non-oxidizing atmosphere.
【0010】即ち、本発明者らは、上記目的を達成する
ために鋭意研究の結果、特定の粒径を有する膨張黒鉛
を、熱可塑性樹脂又は熱硬化性樹脂と混合分散した場
合、非常に優れた樹脂との混合性を与えるために、成形
あるいは賦形した際、優れたガス不透過性と導電性をも
たらすのではないかという着想を得、更に研究を重ねた
結果、本発明を完成したものである。That is, the inventors of the present invention have made extensive studies as a result of achieving the above object, and when expanded graphite having a specific particle size is mixed and dispersed with a thermoplastic resin or a thermosetting resin, it is very excellent. The present invention has been completed as a result of further research, based on the idea that it may provide excellent gas impermeability and conductivity when molded or shaped to give it compatibility with other resins. It is a thing.
【0011】以下に本発明を説明する。The present invention will be described below.
【0012】本発明で使用する膨張黒鉛について、その
原料については特に制限されることはなく、例えば天然
黒鉛、熱分解黒鉛、キッシュ黒鉛等、通常の膨張黒鉛の
製造に用いられるあらゆるものを使用することができ
る。With respect to the expanded graphite used in the present invention, the raw material is not particularly limited and, for example, natural graphite, pyrolytic graphite, quiche graphite, or any other material that is commonly used in the production of expanded graphite can be used. be able to.
【0013】上記原料黒鉛から膨張黒鉛を製造するに
は、従来周知の方法によることができ、例えば濃硫酸と
過酸化水素とを混合することによりペルオキソ一硫酸を
生成させた後、このようにして調製された混合液を撹拝
しながら原料黒鉛を投入し、約1時間から1日反応さ
せ、この反応させた黒鉛を、不活性ガス中で500℃〜
1000℃に加熱すればよいのである。Expanded graphite can be produced from the above-mentioned raw material graphite by a conventionally known method, for example, after peroxomonosulfuric acid is produced by mixing concentrated sulfuric acid and hydrogen peroxide, While stirring the prepared mixed liquid, the raw material graphite was charged and allowed to react for about 1 hour to 1 day, and the reacted graphite was heated in an inert gas at 500 ° C to
It may be heated to 1000 ° C.
【0014】尚、本発明で使用する膨張黒鉛としては、
上記のように濃硫酸と過酸化水素により膨張黒鉛を製造
する際に、酸化剤として、過塩素酸、過塩素酸塩、ペル
オキソ二硫酸水素アンモニウムから選ばれる少なくとも
1種類を添加して処理することにより得られたもの(特
開平6−16406号公報参照)であってもよい。具体
的には、95wt%の濃硫酸320重量部と62%の過
酸化水素4重量部との混合物にペルオキソ二硫酸水素ア
ンモニウム15%を添加して、20℃以下に冷却しなが
ら混合し、この混合液に天然黒鉛を投入した後、24時
間反応させ、この反応物を窒素ガス中1000℃まで焼
成して得た膨張黒鉛である。As the expanded graphite used in the present invention,
When producing expanded graphite from concentrated sulfuric acid and hydrogen peroxide as described above, at least one selected from perchloric acid, perchlorate, and ammonium hydrogen peroxodisulfate is added as an oxidizing agent for treatment. It may be obtained by the method described in JP-A-6-16406. Specifically, 15% ammonium hydrogen peroxodisulfate was added to a mixture of 320 parts by weight of 95 wt% concentrated sulfuric acid and 4 parts by weight of 62% hydrogen peroxide, and the mixture was mixed while cooling to 20 ° C. or lower. Expanded graphite obtained by adding natural graphite to a mixed solution, reacting it for 24 hours, and calcining this reaction product up to 1000 ° C. in nitrogen gas.
【0015】上記のようにして得られた膨張黒鉛は粉砕
され、必要に応じ所定の粒度分布及び粒径にそろえられ
るのであり、本発明で使用される膨張黒鉛は、平均粒径
が5μm〜12μmで、しかも粉末全粒子の内の80%
以上の粒径が0.1μm〜20μmの範囲に属するもの
でなければならない。The expanded graphite obtained as described above is crushed and adjusted to have a predetermined particle size distribution and particle size if necessary, and the expanded graphite used in the present invention has an average particle size of 5 μm to 12 μm. And 80% of all powder particles
The above particle size must belong to the range of 0.1 μm to 20 μm.
【0016】本発明で使用される膨張黒鉛の平均粒径が
5μmより小さい場合には、後述する混合工程におい
て、熱可塑性樹脂又は熱硬化性樹脂が膨張黒鉛の粒子間
に行き渡ることが困難となり、そのために得られる複合
材料のガス不透過性が大きく損なわれてしまい、逆に平
均粒径が12μmより大きい場合には、熱可塑性樹脂又
は熱硬化性樹脂が膨張黒鉛の粒子間を埋めることが困難
となり、やはりガス不透過性が大きく損なわれてしまう
ばかりか、重填密度が落ちて電気的接続が十分でなくな
り、導電性が低下してしまう。When the average particle size of the expanded graphite used in the present invention is smaller than 5 μm, it becomes difficult for the thermoplastic resin or the thermosetting resin to spread among the expanded graphite particles in the mixing step described later. As a result, the gas impermeability of the resulting composite material is greatly impaired, and conversely, when the average particle size is greater than 12 μm, it is difficult for the thermoplastic resin or thermosetting resin to fill the spaces between the expanded graphite particles. In addition, not only the gas impermeability is greatly impaired, but also the packing density is lowered and the electrical connection becomes insufficient, resulting in a decrease in conductivity.
【0017】更に、本発明で使用される膨張黒鉛は、粉
末全粒子の内の80%以上の粒径が0.1μm〜20μ
mの範囲に属する必要がある。即ち、粉砕され、必要に
応じ所定の粒度及び粒径にそろえられた膨張黒鉛は、一
般的には平均粒径をピークとする粒度分布を有している
が、本発明では、粉末全粒子の粒度を測定した場合に、
その80%以上が0.1μm〜20μmの範囲に属し、
0.1μm未満及び20μm超の範囲に属する粒子が2
0%未満となっている必要があるのである。Further, in the expanded graphite used in the present invention, 80% or more of all the powder particles have a particle size of 0.1 μm to 20 μm.
It must belong to the range of m. That is, the expanded graphite, which has been pulverized and aligned to have a predetermined particle size and particle size as necessary, generally has a particle size distribution having a peak at the average particle size. When measuring the particle size,
80% or more belongs to the range of 0.1 μm to 20 μm,
2 particles belonging to the range of less than 0.1 μm and more than 20 μm
It must be less than 0%.
【0018】もちろん、本発明で使用される膨張黒鉛粉
末は、粉末全粒子の100%の粒径が0.1μm〜20
μmの範囲に分布していてもよく、0.1μm〜20μ
mの範囲内で、更に狭い範囲内に分布していてもよい。Of course, in the expanded graphite powder used in the present invention, 100% of all the powder particles have a particle size of 0.1 μm to 20 μm.
It may be distributed in the range of 0.1 μm, and is 0.1 μm to 20 μm.
It may be distributed within a narrower range within the range of m.
【0019】粒度分布のピークが低くなったり、いずれ
かの方向に移動すると、0.1μm未満及び20μm超
の範囲に属する粒子の双方(前者の場合)或いは一方
(後者の場合)の数が増加するが、0.1μmより小さ
い粒子の数が増加すると、膨張黒鉛粉末の表面積が増加
し、これにより膨張黒鉛粉末間の樹脂の厚みが小さくな
るので、得られる複合材料のガス不透過性が低下してし
まい、20μmより大きい粒子の数が増加すると、粒子
の一部が得られる複合材料の表面に露出してしまう可能
性が生じるばかりか、膨張黒鉛粉末間に形成される樹脂
の層の数が少なくなるので、やはり複合材料のガス不透
過性が低下してしまい、いずれも好ましくない。When the peak of the particle size distribution is lowered or moved in either direction, the number of particles (in the former case) or one (in the latter case) belonging to the range of less than 0.1 μm and over 20 μm increases. However, when the number of particles smaller than 0.1 μm increases, the surface area of the expanded graphite powder increases, which reduces the thickness of the resin between the expanded graphite powders, thus reducing the gas impermeability of the resulting composite material. Therefore, when the number of particles larger than 20 μm increases, not only the possibility that some of the particles are exposed on the surface of the obtained composite material, but also the number of resin layers formed between the expanded graphite powders is increased. Since the gas content is reduced, the gas impermeability of the composite material is also reduced, which is not preferable.
【0020】尚、上記膨張黒鉛を粉砕する方法は、従来
公知のいずれの方法によってもよく、例えば、ミキサ
ー、ジェットミル、ボールミル、ピンミル、凍結粉砕等
の粉砕方法を挙げることができ、前記所定の粒度分布、
粒径にそろえる方法としては、振動ふるい、ローステク
スクリーナー、音波ふるい、マイクロクラシファイア
ー、スペディッククラシファイアー等の分級方法を挙げ
ることができる。The expanded graphite may be pulverized by any conventionally known method, for example, a pulverizing method such as a mixer, a jet mill, a ball mill, a pin mill and a freeze pulverizing method. Particle size distribution,
Examples of the method for adjusting the particle diameter include classification methods such as a vibration sieve, a low tex cleaner, a sonic sieve, a micro classifier, and a spedic classifier.
【0021】又、本発明で用いられる熱可塑性樹脂とし
ては、ポリエチレン、ポリスチレン、ポリプロピレン、
ポリメタクリル酸メチル、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリエーテルスルフ
ォン、ポリカーボネート、ポリオキサメチレン、ポリア
ミド、ポリイミド、ポリアミドイミド、ポリビニルアル
コール、ポリビニルクロライド、フッ素樹脂、ポリフェ
ニールサルフォン、ポリエーテルエーテルケトン、ポリ
スルフォン、ポリエーテルケトン、ポリアリレート、ポ
リエーテルイミドやポリメチルペンテン等の周知の樹指
を挙げることができ、特に限定はされない。The thermoplastic resin used in the present invention includes polyethylene, polystyrene, polypropylene,
Polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, polyoxamethylene, polyamide, polyimide, polyamide imide, polyvinyl alcohol, polyvinyl chloride, fluororesin, polyphenyl sulfone, polyether ether ketone, polysulfone Well-known resins such as polyetherketone, polyarylate, polyetherimide, polymethylpentene, etc. can be mentioned, without any particular limitation.
【0022】一方、本発明で用いられる熱硬化性樹脂と
しては、ポリカルボジイミド樹脂、フェノール樹脂、フ
ルフリルアルコール樹脂、セルロース、エポキシ樹脂、
尿素樹脂、メラミン樹脂等の周知の樹脂を挙げることが
でき、特に限定はされない。On the other hand, as the thermosetting resin used in the present invention, polycarbodiimide resin, phenol resin, furfuryl alcohol resin, cellulose, epoxy resin,
Well-known resins such as a urea resin and a melamine resin can be mentioned, and there is no particular limitation.
【0023】上記の熱可塑性樹指又は熱硬化性樹脂は、
粉末状のまま、又は、適当な溶媒に溶かして溶液状にし
て使用してもよい。The above-mentioned thermoplastic resin or thermosetting resin is
The powder may be used as it is, or may be dissolved in an appropriate solvent to be used as a solution.
【0024】本発明の炭素複合材料は、以下に説明する
方法によってその主成分たる膨張黒鉛粉末と樹脂を複合
することにより製造される。即ち、まず、前記膨張黒鉛
粉末と樹脂とを混合分散して混合物を得るのであり、こ
の混合工程は、通常の工業的な混合方法、例えば、撹拝
棒、ニ−ダー、ボールミル、サンプルミル、ミキサー、
スタティックミキサー、リボンミキサ一等による方法を
採用することができる。The carbon composite material of the present invention is produced by combining expanded graphite powder, which is the main component thereof, and a resin by the method described below. That is, first, the expanded graphite powder and the resin are mixed and dispersed to obtain a mixture. This mixing step is carried out by an ordinary industrial mixing method, for example, a stirring rod, a kneader, a ball mill, a sample mill, mixer,
A method using a static mixer, a ribbon mixer or the like can be adopted.
【0025】上記膨張黒鉛と樹脂との量比は、目的とす
る炭素複合材料の物性等により決定すればよいが、例え
ば、膨張黒鉛粉末100重量部に対して、樹脂10重量
部〜1000重量部という範囲を挙げることができる。
尚、樹脂がこの範囲より小さい場合には、複合材料の強
度が弱くなったり、ガス不透過性が低下するという問題
が起き、又、この範囲より大きい場合には、導電性が不
足するという問題が起こる。The amount ratio of the expanded graphite to the resin may be determined according to the physical properties of the intended carbon composite material and the like. For example, 10 parts by weight to 1000 parts by weight of the resin per 100 parts by weight of the expanded graphite powder. The range can be mentioned.
If the resin is smaller than this range, the strength of the composite material will be weakened, and gas impermeability will be reduced. If it is larger than this range, the conductivity will be insufficient. Happens.
【0026】次に、この混合物に圧力を加え、樹脂を膨
張黒鉛粉末間に行き渡らせることによって成形し、本発
明の炭素複合材料とするのであって、この成形工程は、
加圧成形、静水圧成形、押し出し成形、射出成形、ベル
トプレス、プレス加熱、ロールプレス等の従来公知の方
法によって行うことができる。尚、この時点で所望の形
状に成形しても、この成形工程の前に、前記混合物に溶
媒を加えることにより、例えば、20μm〜2mmの径
に造粒し、成形性を高めてもよい。Next, pressure is applied to the mixture to spread the resin between the expanded graphite powders to form a carbon composite material of the present invention.
It can be carried out by a conventionally known method such as pressure molding, hydrostatic molding, extrusion molding, injection molding, belt pressing, press heating, roll pressing and the like. In addition, even if it shape | molds in a desired shape at this time, you may improve a moldability by adding a solvent to the said mixture, for example, to granulate to a diameter of 20 micrometers-2 mm before this shaping | molding process.
【0027】成形工程における温度については、使用す
る樹脂に応じて選択すればよいが、例えば常温〜400
℃という範囲を挙げることができる。尚、この成形物を
化学的に安定化させるために、さらに成形後に熱処理を
おこなってもよい。The temperature in the molding step may be selected according to the resin used, but is, for example, room temperature to 400.
A range of ° C can be mentioned. In addition, in order to chemically stabilize the molded product, a heat treatment may be further performed after the molding.
【0028】上記混合物の内、膨張黒鉛と熱硬化性樹脂
の混合物に関しては、これを非酸化性雰囲気下で焼成す
ることができる。焼成温度は、700℃〜3000℃、
好ましくは1000℃〜2500℃であり、700℃よ
り低い焼成温度では、前述の非焼成形成形体と比べて導
電性が飛躍的に向上しないという問題があり、3000
℃より高い温度は、焼成炉の消耗が著しくなり現実的な
生産に適さないという問題点がある。Among the above mixtures, the mixture of expanded graphite and thermosetting resin can be fired in a non-oxidizing atmosphere. The firing temperature is 700 ° C to 3000 ° C,
The temperature is preferably 1000 ° C. to 2500 ° C., and there is a problem that the conductivity is not drastically improved at a firing temperature lower than 700 ° C. as compared with the above-mentioned non-fired formed body.
If the temperature is higher than 0 ° C, the firing furnace will be significantly consumed, which is not suitable for practical production.
【0029】[0029]
【実施例】以下、実施例により本発明を更に詳細に説明
する。The present invention will be described in more detail with reference to the following examples.
【0030】実施例1 平均粒径が5μmで、粉末全粒子の内の80%以上の粒
径が0.1μm〜20μmの範囲に属する膨張黒鉛とポ
リカルボジイミド樹脂を表1に示す組み合わせで混合分
散し、150℃、100kg/cm2の圧力で成形物を
作った。この成形物から40mm角、厚さ2mmの板材
を切り出し、4端子法により固有抵抗を測定した。又、
120mm角、厚さ1mmの板材を切り出し、JIS7
126の差圧法によって、窒素ガスのガス不透過性を測
定した。結果を表1に示す。Example 1 Expanded graphite and polycarbodiimide resin having an average particle diameter of 5 μm and 80% or more of all powder particles having a particle diameter in the range of 0.1 μm to 20 μm were mixed and dispersed in a combination shown in Table 1. Then, a molded product was produced at 150 ° C. and a pressure of 100 kg / cm 2 . A plate material having a size of 40 mm square and a thickness of 2 mm was cut out from this molded product, and the specific resistance was measured by the 4-terminal method. or,
Cut out a 120 mm square, 1 mm thick plate material and JIS7
The gas impermeability of nitrogen gas was measured by the 126 differential pressure method. The results are shown in Table 1.
【表1】 [Table 1]
【0031】実施例2 実施例1と同様の膨張黒鉛とフェノール樹脂を表2に示
す組み合わせで混合分散し、150℃、100kg/c
m2の圧力で成形物を作った。この成形物を用いて、実
施例1と同様にして固有抵抗及び窒素ガスのガス不透過
性を測定した。結果を表2に示す。Example 2 The same expanded graphite and phenolic resin as in Example 1 were mixed and dispersed in the combinations shown in Table 2, 150 ° C., 100 kg / c
Moldings were made with a pressure of m 2 . Using this molded product, the specific resistance and the gas impermeability of nitrogen gas were measured in the same manner as in Example 1. Table 2 shows the results.
【表2】 [Table 2]
【0032】実施例3 実施例1と同様の膨張黒鉛とポリプロピレンを表3に示
す組み合わせで混合分散し、180℃、100kg/c
m2の圧力で成形物を作った。この成形物を用いて、実
施例1と同様にして固有抵抗及び窒素ガスのガス不透過
性を測定した。結果を表3に示す。Example 3 The same expanded graphite and polypropylene as in Example 1 were mixed and dispersed in the combinations shown in Table 3, 180 ° C., 100 kg / c.
Moldings were made with a pressure of m 2 . Using this molded product, the specific resistance and the gas impermeability of nitrogen gas were measured in the same manner as in Example 1. The results are shown in Table 3.
【表3】 [Table 3]
【0033】実施例4 実施例1と同様の膨張黒鉛とポリテトラフロロエチレン
を表4に示す組み合わせで混合分散し、330℃、10
0kg/cm2の圧力で成形物を作った。この成形物を
用いて、実施例1と同様にして固有抵抗及び窒素ガスの
ガス不透過性を測定した。結果を表4に示す。Example 4 The same expanded graphite and polytetrafluoroethylene as those in Example 1 were mixed and dispersed in the combinations shown in Table 4 at 330 ° C. and 10 ° C.
Moldings were made with a pressure of 0 kg / cm 2 . Using this molded product, the specific resistance and the gas impermeability of nitrogen gas were measured in the same manner as in Example 1. The results are shown in Table 4.
【表4】 [Table 4]
【0034】実施例5 実施例1のうち、実施例1−2に示される組成(膨張黒
鉛/ポリカルボジイミド樹脂=100重量部/100重
量部)を実施例1と同条件で成形し、これを表5に示す
温度まで不活性ガス雰囲気下で焼成した。この焼成品を
用いて、実施例1と同様にして固有抵抗及び窒素ガスの
ガス不透過性を測定した。結果を表5に示す。Example 5 Of Example 1, the composition shown in Example 1-2 (expanded graphite / polycarbodiimide resin = 100 parts by weight / 100 parts by weight) was molded under the same conditions as in Example 1, and this was molded. Firing was performed under an inert gas atmosphere up to the temperatures shown in Table 5. Using this fired product, the specific resistance and the gas impermeability of nitrogen gas were measured in the same manner as in Example 1. Table 5 shows the results.
【表5】 [Table 5]
【0035】比較例1 平均粒径が100μm、粉末全粒子の内の20%の粒径
が0.1μm〜20μmの範囲に属する膨張黒鉛とポリ
カルボジイミド樹脂とを表6に示す組み合わせで混合分
散し、150℃、100kg/cm2の圧力で成形物を
作った。この成形物を用いて、実施例1と同様にして固
有抵抗及び窒素ガスのガス不透過性を測定した。結果を
表6に示す。Comparative Example 1 Expanded graphite and polycarbodiimide resin having an average particle size of 100 μm and 20% of all powder particles having a particle size of 0.1 μm to 20 μm were mixed and dispersed in a combination shown in Table 6. A molded product was produced at 150 ° C. and a pressure of 100 kg / cm 2 . Using this molded product, the specific resistance and the gas impermeability of nitrogen gas were measured in the same manner as in Example 1. Table 6 shows the results.
【0036】比較例2 比較例1で使用した成形物を窒素ガス中で1000℃ま
で焼成した。この焼成品を用いて、実施例1と同様にし
て固有抵抗及び窒素ガスのガス不透過性を測定した。結
果を表6に示す。Comparative Example 2 The molded product used in Comparative Example 1 was fired up to 1000 ° C. in nitrogen gas. Using this fired product, the specific resistance and the gas impermeability of nitrogen gas were measured in the same manner as in Example 1. Table 6 shows the results.
【0037】比較例3 平均粒径が0.5μm、粉末全粒子の内の20%の粒径
が0.1μm〜20μmの範囲に属する膨張黒鉛とポリ
カルボジイミド樹脂とを表6に示す組み合わせで混合分
散し、150℃、100kg/cm2の圧力で成形物を
作った。この成形物を用いて、実施例1と同様にして固
有抵抗及び窒素ガスのガス不透過性を測定した。結果を
表6に示す。COMPARATIVE EXAMPLE 3 Expanded graphite and polycarbodiimide resin having an average particle size of 0.5 μm and 20% of all powder particles having a particle size of 0.1 μm to 20 μm were mixed in a combination shown in Table 6. Dispersed and molded at 150 ° C. under a pressure of 100 kg / cm 2 . Using this molded product, the specific resistance and the gas impermeability of nitrogen gas were measured in the same manner as in Example 1. Table 6 shows the results.
【0038】[0038]
【表6】 [Table 6]
【0039】[0039]
【発明の効果】本発明の炭素複合材料は、膨張黒鉛粉末
と、熱可塑性樹脂、或いは、熱硬化性樹脂又はその焼成
物よりなり、熱可塑性樹脂、或いは、熱硬化性樹脂、又
はその焼成物中に膨張黒鉛粉末が分散されている成形物
であって、前記膨張黒鉛粉末が、その平均粒径が5μm
〜12μm、粉末全粒子の内の80%以上の粒径が0.
1μm〜20μmの範囲に属するものであり、ガス不透
過性と高導電性を併せ持つ優れたものである。The carbon composite material of the present invention comprises expanded graphite powder and a thermoplastic resin, or a thermosetting resin or a fired product thereof. The thermoplastic resin, the thermosetting resin, or a fired product thereof. A molded product in which expanded graphite powder is dispersed, wherein the expanded graphite powder has an average particle size of 5 μm.
.About.12 .mu.m, and 80% or more of all powder particles have a particle size of 0.
It belongs to the range of 1 μm to 20 μm and is excellent in having both gas impermeability and high conductivity.
Claims (6)
は、熱硬化性樹脂又はその焼成物よりなり、熱可塑性樹
脂、或いは、熱硬化性樹脂又はその焼成物中に膨張黒鉛
粉末が分散されている成形物であって、前記膨張黒鉛粉
末が、その平均粒径が5μm〜12μm、粉末全粒子の
内の80%以上の粒径が0.1μm〜20μmの範囲に
属するものであることを特徴とする炭素複合材料。1. An expanded graphite powder and a thermoplastic resin, or a thermosetting resin or a fired product thereof, wherein the expanded graphite powder is dispersed in the thermoplastic resin, the thermosetting resin or a fired product thereof. The expanded graphite powder has an average particle size of 5 μm to 12 μm, and 80% or more of all powder particles have a particle size of 0.1 μm to 20 μm. And carbon composite material.
子の内の80%以上の粒径が0.1μm〜20μmの範
囲に属する膨張黒鉛粉末と、熱可塑性樹脂又は熱硬化性
樹脂を混合分散し、常温〜400℃の温度下で加圧成形
することを特徴とする炭素複合材料の製造方法。2. An expanded graphite powder having an average particle size of 5 μm to 12 μm and 80% or more of all powder particles having a particle size of 0.1 μm to 20 μm mixed with a thermoplastic resin or a thermosetting resin. A method for producing a carbon composite material, which comprises dispersing and press-molding at a temperature of room temperature to 400 ° C.
性樹脂の割合が、膨張黒鉛粉末100重量部に対し、熱
可塑性樹脂又は熱硬化性樹脂10乃至1000重量部で
ある請求項2に記載の炭素複合材料の製造方法。3. The ratio of expanded graphite powder to thermoplastic resin or thermosetting resin is 10 to 1000 parts by weight of thermoplastic resin or thermosetting resin to 100 parts by weight of expanded graphite powder. Of manufacturing carbon composite material of.
子の内の80%以上の粒径が0.1μm〜20μmの範
囲に属する膨張黒鉛粉末と、熱硬化性樹脂を混合分散
し、常温〜400℃の温度下で加圧成形した後、該成形
物を、非酸化性雰囲気下、700℃〜3000℃で焼成
することを特徴とする炭素複合材料の製造方法。4. An expanded graphite powder having an average particle diameter of 5 μm to 12 μm, 80% or more of all powder particles having a particle diameter of 0.1 μm to 20 μm, and a thermosetting resin are mixed and dispersed at room temperature. A method for producing a carbon composite material, which comprises press-molding at a temperature of 400 ° C to 400 ° C and then firing the molded product at 700 ° C to 3000 ° C in a non-oxidizing atmosphere.
性樹脂の割合が、膨張黒鉛粉末100重量部に対し、熱
可塑性樹脂又は熱硬化性樹脂10乃至1000重量部で
ある請求項4に記載の炭素複合材料の製造方法。5. The ratio of the expanded graphite powder to the thermoplastic resin or the thermosetting resin is 10 to 1000 parts by weight of the thermoplastic resin or the thermosetting resin with respect to 100 parts by weight of the expanded graphite powder. Of manufacturing carbon composite material of.
℃〜2500℃で行う請求項4に記載の炭素複合材料の
製造方法。6. The firing in a non-oxidizing atmosphere is performed at 1000
The method for producing a carbon composite material according to claim 4, wherein the method is performed at a temperature of from ℃ to 2,500 ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15493896A JP3600690B2 (en) | 1995-05-29 | 1996-05-27 | Carbon composite material and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15519095 | 1995-05-29 | ||
JP7-155190 | 1995-05-29 | ||
JP15493896A JP3600690B2 (en) | 1995-05-29 | 1996-05-27 | Carbon composite material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0948666A true JPH0948666A (en) | 1997-02-18 |
JP3600690B2 JP3600690B2 (en) | 2004-12-15 |
Family
ID=26483076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15493896A Expired - Fee Related JP3600690B2 (en) | 1995-05-29 | 1996-05-27 | Carbon composite material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3600690B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002114572A (en) * | 2000-10-05 | 2002-04-16 | Mitsui Mining Co Ltd | Graphite compound and method for manufacturing the same |
JP2005119923A (en) * | 2003-10-17 | 2005-05-12 | Ibiden Co Ltd | Hydrophilic porous carbon material, humidifying member for polymer electrolyte type fuel cell and separator for polymer electrolyte type fuel cell |
KR20180107039A (en) * | 2018-09-11 | 2018-10-01 | 한서대학교 산학협력단 | Method for manufacturing temperature-controlling decorative flooring composition using expanded graphite with thermal conductivity, and temperature-controlling decorative flooring using expanded graphite with thermal conductivity manufactured thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4999986A (en) * | 1973-01-31 | 1974-09-20 | ||
JPS63270138A (en) * | 1987-04-30 | 1988-11-08 | Kobe Steel Ltd | Composite carbonic member and its manufacture |
JPH02172809A (en) * | 1988-12-23 | 1990-07-04 | Koa Oil Co Ltd | Production of elastic graphite molded body |
-
1996
- 1996-05-27 JP JP15493896A patent/JP3600690B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4999986A (en) * | 1973-01-31 | 1974-09-20 | ||
JPS63270138A (en) * | 1987-04-30 | 1988-11-08 | Kobe Steel Ltd | Composite carbonic member and its manufacture |
JPH02172809A (en) * | 1988-12-23 | 1990-07-04 | Koa Oil Co Ltd | Production of elastic graphite molded body |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002114572A (en) * | 2000-10-05 | 2002-04-16 | Mitsui Mining Co Ltd | Graphite compound and method for manufacturing the same |
JP2005119923A (en) * | 2003-10-17 | 2005-05-12 | Ibiden Co Ltd | Hydrophilic porous carbon material, humidifying member for polymer electrolyte type fuel cell and separator for polymer electrolyte type fuel cell |
KR20180107039A (en) * | 2018-09-11 | 2018-10-01 | 한서대학교 산학협력단 | Method for manufacturing temperature-controlling decorative flooring composition using expanded graphite with thermal conductivity, and temperature-controlling decorative flooring using expanded graphite with thermal conductivity manufactured thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3600690B2 (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6024900A (en) | Process for production of a carbon composite material | |
JP4028890B2 (en) | Separator for solid polymer electrolyte fuel cell and method for producing the same | |
US6242124B1 (en) | Separator for polymer electrolyte fuel cells and processes for production thereof | |
US4388255A (en) | Method for producing pre-shaped α-silicon nitride whisker compacts and loose whiskers for composite material reinforcement | |
IE43834B1 (en) | Sintered silicon carbide ceramic body | |
US5441799A (en) | Porous silicon carbide | |
US4293533A (en) | Method for producing solid carbon material having high flexural strength | |
US4579699A (en) | Method for making α-Si3 N4 whiskers and articles therefrom | |
JP2001126744A (en) | Separator for fuel cell and fabricating method therefor | |
EP0364297A2 (en) | Porous carbon electrode substrates for fuel cells | |
CN1259281C (en) | Silicon nitride - boron nitride- silicon dioxide ceramic wave-transparent material and preparation process thereof | |
US20060125131A1 (en) | Carbonaceous porous material and method of manufacturing same | |
JPH0948666A (en) | Carbon composite material and its production | |
JPH0131445B2 (en) | ||
JPS5831729A (en) | Manufacture of composite material and composite material obtained through said method | |
CN108706979A (en) | A kind of Silica hydrogel is modified the preparation method of wooden base silicon carbide ceramic material | |
JP2000331690A (en) | Manufacture of separator for fuel cell | |
CN117466644B (en) | High-heat-conductivity flexible graphite plate and preparation method thereof | |
JPS59232906A (en) | Manufacture of gas impermeable carbonaceous material | |
JPS60264315A (en) | Impermeable composite molded carbon article and production thereof | |
JPH0127969B2 (en) | ||
JPS62278111A (en) | Impermeable formed carbon and production thereof | |
Thomas et al. | Improvements in or relating to thermal insulator materials | |
JPH02199010A (en) | Production of thin sheetlike carbon material | |
JPH05270938A (en) | Production of porous carbon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040917 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |