JPH0943587A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0943587A
JPH0943587A JP7193806A JP19380695A JPH0943587A JP H0943587 A JPH0943587 A JP H0943587A JP 7193806 A JP7193806 A JP 7193806A JP 19380695 A JP19380695 A JP 19380695A JP H0943587 A JPH0943587 A JP H0943587A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
display device
crystal display
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7193806A
Other languages
Japanese (ja)
Other versions
JP2980830B2 (en
Inventor
Kenjiro Hamanaka
賢二郎 浜中
Daisuke Arai
大介 新井
Satoshi Taniguchi
敏 谷口
Atsunori Matsuda
厚範 松田
Kenichi Nakama
健一 仲間
Kenji Morio
健二 森尾
Takashi Kishimoto
隆 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP7193806A priority Critical patent/JP2980830B2/en
Publication of JPH0943587A publication Critical patent/JPH0943587A/en
Application granted granted Critical
Publication of JP2980830B2 publication Critical patent/JP2980830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To avoid the concentration of light for irradiation to a liquid crystal layer and to avert the exertion of an adverse influence on liquid crystals without attaining a high temp. by specifying the relation between the thickness of the glass substrate on a liquid crystal layer side of glass substrates constituting flat plate type microlenses and a focal length to an adequate relation. SOLUTION: This liquid crystal display device is provided with the liquid crystal layer 4 between a pair of translucent panels 2, 3. Light opaque parts 6 and pixel apertures 7 to be transmitted with light are formed on one surface side of the liquid crystal layer 4. The translucent panel 2 is constituted by joining two sheets of the glass substrates 8, 9. Many recessed parts 10 are regularly formed on the joint surface of two sheets of the glass substrates 8, 9. A high-refractive index material is packed into these recessed parts 10, by which planoconvex lenses 11 are formed. These lenses are so formed as to satisfy 0.6/t<=(1/r)(n2 -n1 )/n3 <1/t when the refractive index of the glass substrate 8 is defined as n1 , the refractive index of the high-refractive index material as n2 , the refractive index of the glass substrate 9 as n3 , the radius of curvature of the recessed parts 10 as (r) and the thickness of the glass substrate 9 as (t).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス基板に形成
した凹部に高屈折率の透明樹脂等を充填してなる平板型
マイクロレンズをその一部とした液晶表示装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, a part of which is a flat plate type microlens formed by filling a recess formed in a glass substrate with a transparent resin having a high refractive index.

【0002】[0002]

【従来の技術】透過型の液晶表示装置を用いたプロジェ
クタテレビジョン(PTV)が、実用化されている。こ
のプロジェクタテレビジョンの概略構成は、図4に示す
ように、液晶表示装置100を照射光源とコンデンサレ
ンズ101との間に配置し、液晶表示装置100を透過
した光をコンデンサレンズ101及び投影レンズ102
を介して壁等のスクリーンに映し出すようにしている。
尚、液晶表示装置100をコンデンサレンズ101の図
4において右側に配置する構造のものもある。
2. Description of the Related Art A projector television (PTV) using a transmissive liquid crystal display device has been put into practical use. As shown in FIG. 4, the projector television has a schematic configuration in which the liquid crystal display device 100 is arranged between an irradiation light source and a condenser lens 101, and light transmitted through the liquid crystal display device 100 is condensed by the condenser lens 101 and the projection lens 102.
It is designed to be projected on a screen such as a wall via.
There is also a structure in which the liquid crystal display device 100 is arranged on the right side of the condenser lens 101 in FIG.

【0003】従来の液晶表示装置100は2枚の透明パ
ネル103,104間に液晶層105を保持し、この液
晶層105のうち、5〜7割程度が配線やTFT(薄膜
トランジスタ)、ブラックマトリクス等によって照射光
の透過が阻止される部分で、残りの5〜3割程度が照射
光が透過する画素開口部105aとなっている。
A conventional liquid crystal display device 100 holds a liquid crystal layer 105 between two transparent panels 103 and 104, and about 50 to 70% of the liquid crystal layer 105 is wiring, TFT (thin film transistor), black matrix, or the like. The remaining 50 to 30% is a pixel opening portion 105a through which the irradiation light is transmitted.

【0004】従来のPTVにあっては、平行な照射光の
うち約5〜7割が液晶層105の部分でその透過を阻止
されるので、画面が暗くなってしまう。一方、画面を明
るくするために照射光の強度を上げると、温度が上昇
し、液晶層に悪影響を及ぼす。
In the conventional PTV, about 50 to 70% of the parallel irradiation light is blocked from passing through the liquid crystal layer 105, so that the screen becomes dark. On the other hand, when the intensity of the irradiation light is increased to make the screen brighter, the temperature rises, which adversely affects the liquid crystal layer.

【0005】そこで、特開平3−214101号公報、
特開平3−214121号公報、特開平4−50817
号公報、特開平5−346577号公報等に平板型マイ
クロレンズを用いて上記の不利を解消する提案がなされ
ている。これら先行例に記載される内容は、図5に示す
ように、液晶表示装置100を構成する2枚の透明パネ
ルの一方のパネル103を2枚のガラス基板103a、
103bで構成し、この2枚のガラス基板の少なくとも
一方を平板型マイクロレンズ106とし、照射光を画素
開口部105aに集光し、照射光の殆どが画素開口部1
05aを通過するようにして画面が暗くなるのを防止し
ている。
Therefore, Japanese Patent Application Laid-Open No. 3-214101,
JP-A-3-214121, JP-A-4-50817
Japanese Patent Laid-Open No. 5-346577 and the like propose proposals for eliminating the above disadvantages by using a flat plate type microlens. As shown in FIG. 5, one of the two transparent panels constituting the liquid crystal display device 100 is one of the panels 103 and two glass substrates 103a.
103b, at least one of the two glass substrates is used as a flat plate type microlens 106, and the irradiation light is focused on the pixel opening 105a.
The screen is prevented from becoming dark by passing through 05a.

【0006】[0006]

【発明が解決しようとする課題】上述したように、平板
型マイクロレンズ106をその一部に組込んだ液晶表示
装置は、レンズの焦点が画素開口部105aに一致する
ように設計している。しかしながら、画素開口部の1点
に照射光を集光せしめると、集光した1点が高温になり
液晶層に悪影響を及ぼす。
As described above, the liquid crystal display device in which the flat plate type microlens 106 is incorporated in a part thereof is designed so that the focus of the lens coincides with the pixel opening 105a. However, if the irradiation light is condensed at one point of the pixel opening, the condensed point becomes a high temperature, which adversely affects the liquid crystal layer.

【0007】また、平板型マイクロレンズ106の焦点
を液晶面に設定すると、投影レンズの大口径化及びコス
トアップにつながる。即ち、レンズのFNo.は(空気中
での焦点距離/レンズ最大径)で定義され、平板型マイ
クロレンズの焦点を液晶面に設定すると、焦点距離が短
くなるので平板型マイクロレンズのFNo.が小さくな
り、この平板型マイクロレンズのFNo.に対応して投影
レンズのFNo.も小さくしなければならず、その結果投
影レンズの口径を大きくしなければならない。
If the focus of the flat plate type microlens 106 is set on the liquid crystal surface, the diameter of the projection lens is increased and the cost is increased. That is, the FNo. Of the lens is defined by (focal length in air / maximum lens diameter), and if the focus of the flat microlens is set on the liquid crystal surface, the focal length becomes shorter, so the FNo. It becomes smaller, and the FNo. Of the projection lens must be reduced corresponding to the FNo. Of the flat plate type microlens, and as a result, the aperture of the projection lens must be increased.

【0008】尚、平板型マイクロレンズを構成する基板
のうち、液晶層側の基板の厚みを厚くして焦点を液晶面
に設定すれば、平板型マイクロレンズのFNo.は大きく
なるのであるが、照射光として完全に平行でなく3〜6
°傾いたまま入射する照射光もある。このような平行光
でない照射光を想定すると、液晶層側の基板の厚みを厚
くして焦点を液晶面に設定した場合には、液晶面におけ
る照射光のずれが大きくなり、照射光の多くの部分が画
素開口部から外れ、画素開口部を透過する光量が低下す
る。
Of the substrates constituting the flat plate type microlens, if the thickness of the substrate on the liquid crystal layer side is increased and the focal point is set on the liquid crystal surface, the FNo. Of the flat plate type microlens increases. Irradiation light is not perfectly parallel but 3-6
There is also irradiation light that is incident while tilted. Assuming such irradiation light that is not parallel light, when the thickness of the substrate on the liquid crystal layer side is increased and the focus is set on the liquid crystal surface, the deviation of the irradiation light on the liquid crystal surface becomes large, and most of the irradiation light is The part is separated from the pixel opening, and the amount of light transmitted through the pixel opening is reduced.

【0009】そこで、画素開口部の位置から焦点をずら
すことが考えられる。しかしながら焦点の位置を画素開
口部よりも照射光源側(図5において左側)にずらした
場合には、光の広がり角θが大きくなるので、コンデン
サレンズ及び投影レンズの径を更に大きくしなければな
らず、逆にコンデンサレンズ側(図5において右側)に
ずらした場合には、光の広がり角θは小さくなるもの
の、あまりずらすと照射光の一部が光の不透過部分にか
かってしまう。
Therefore, it is conceivable to shift the focus from the position of the pixel opening. However, when the focus position is shifted to the irradiation light source side (left side in FIG. 5) with respect to the pixel aperture, the spread angle θ of the light becomes large, so that the diameters of the condenser lens and the projection lens must be further increased. On the contrary, when the light is diverged toward the condenser lens side (right side in FIG. 5), the spread angle θ of the light becomes small, but if it is shifted too much, a part of the irradiation light impinges on the light opaque portion.

【0010】[0010]

【課題を解決するための手段】本発明は、液晶表示装置
に組込まれる平板型マイクロレンズを構成するガラス基
板の屈折率、レンズとなる高屈折率材料の屈折率、高屈
折率材料が充填される凹部の曲率半径、平板型マイクロ
レンズを構成するガラス基板のうち液晶層側のガラス基
板の厚みと焦点距離との関係に着目してなしたものであ
る。
According to the present invention, the refractive index of a glass substrate constituting a flat plate type microlens incorporated in a liquid crystal display device, the refractive index of a high refractive index material to be a lens, and a high refractive index material are filled. This is done by focusing on the relationship between the radius of curvature of the concave portion, the thickness of the glass substrate on the liquid crystal layer side of the glass substrates forming the flat plate type microlens, and the focal length.

【0011】即ち、一対の透光性パネルの間に液晶層を
設けてなる液晶表示装置の、前記一対の透光性パネルの
うち照射光が入射する側の透光性パネルを2枚のガラス
基板を接合して構成し、この2枚のガラス基板のうち一
方のガラス基板の他方のガラス基板との接合面に多数の
凹部を規則的に形成し、この凹部に高屈折率材料を充填
して平凸レンズとした液晶表示装置の場合には、平凸レ
ンズが形成される一方のガラス基板の屈折率をn1、平
凸レンズとなる高屈折率材料の屈折率をn2、他方のガ
ラス基板の屈折率をn3、高屈折率材料が充填される凹
部の曲率半径をr、前記2枚のガラス基板のうち液晶層
側のガラス基板の厚みをt、焦点距離をfとすると、1
/f=(1/r)(n2−n1)/n3で表わされる。そ
して、f=tのときに焦点が液晶面に位置していること
なので、前記したようにf>tでなければならない、ま
たf>tとした場合でも焦点位置が液晶面から離れ過ぎ
ると照射光の一部が光の不透過部分にかかってしまう。
効率よく照射が行われるのは0.6f=tまでであるこ
とが実験の結果判明した。したがって、0.6/t≦
(1/r)(n2−n1)/n3<1/tとする。
That is, in a liquid crystal display device in which a liquid crystal layer is provided between a pair of translucent panels, two translucent panels on the side of the pair of translucent panels on which irradiation light enters are made of two glass plates. The substrates are bonded together, and a large number of concave portions are regularly formed on the bonding surface of one of the two glass substrates with the other glass substrate, and the concave portions are filled with a high refractive index material. In the case of a liquid crystal display device in which a plano-convex lens is used as the plano-convex lens, the refractive index of one glass substrate on which the plano-convex lens is formed is n 1 , the refractive index of the high-refractive-index material to be the plano-convex lens is n 2 , and the other glass substrate is formed. If the refractive index is n 3 , the radius of curvature of the concave portion filled with the high refractive index material is r, the thickness of the glass substrate on the liquid crystal layer side of the two glass substrates is t, and the focal length is f, then 1
/ F = represented by (1 / r) (n 2 -n 1) / n 3. Since the focus is located on the liquid crystal surface when f = t, f> t must be satisfied as described above. Even if f> t, the irradiation is performed if the focus position is too far from the liquid crystal surface. Part of the light falls on the opaque part of the light.
As a result of the experiment, it was found out that the efficient irradiation is up to 0.6f = t. Therefore, 0.6 / t ≦
(1 / r) (n 2 −n 1 ) / n 3 <1 / t.

【0012】また、図6に示すように平板型マイクロレ
ンズの平凸レンズ106で絞られた照射光は液晶層10
5を通過した後、発散光となって投影レンズ102に入
射するが、平凸レンズ106のFNo.(f/n3・p)が投
影レンズ102のFNo.(f0/p0)よりも大きくなる
と、発散光が投影レンズでケラれてしまう。ここで、図
6ではコンデンサレンズを省略しているが、上記の関係
はコンデンサレンズがある場合でも成立する。また、平
凸レンズ106のFNo.=f/n3・pとしたのは空気中で
の焦点距離に換算するためであり、またpは稠密状に配
列された互いに隣接する凹部の中心間の最長距離をい
う。例えば図7に示すような場合には凹部の中心間距離
が2種類あるが、長い方を指す。
Further, as shown in FIG. 6, the irradiation light focused by the plano-convex lens 106 of the flat plate type micro lens is the liquid crystal layer 10.
After passing through 5, the light enters the projection lens 102 as divergent light, but the FNo. (F / n 3 · p) of the plano-convex lens 106 is larger than the FNo. (F 0 / p 0 ) of the projection lens 102. In that case, the diverging light will be eclipsed by the projection lens. Here, although the condenser lens is omitted in FIG. 6, the above relationship holds even when there is a condenser lens. Further, the FNo. Of the plano-convex lens 106 is set to f / n3 · p in order to convert it to the focal length in the air, and p is the longest distance between the centers of mutually adjacent concave portions arranged densely. Say. For example, in the case as shown in FIG. 7, there are two types of center-to-center distances of the concave portions, but the longer distance is indicated.

【0013】そして、p(1/r)(n2−n1)は平凸
レンズのFNo.の逆数を表わしており、一方投影レンズ
としてはFNo.は1.8〜8の間である。即ちFNo.=
1.8以下のレンズは製作困難であり、FNo.=8以上
はNAが小さいことを意味し、集光効果が不十分とな
る。まとめると、平凸レンズのFNo.は投影レンズのFN
o.より小さく、投影レンズのFNo.は1.8〜8の間
で、しかも平凸レンズのFNo.の逆数はp(1/r)
(n2−n1)であるので、1/8≦p(1/r)(n2
−n1)≦1/1.8で表わされる関係式を満足するこ
とが好ましい。
Then, p (1 / r) (n 2 −n 1 ) represents the reciprocal of the FNo. Of the plano-convex lens, while the FNo. Of the projection lens is between 1.8 and 8. That is, FNo. =
A lens of 1.8 or less is difficult to manufacture, and FNo. = 8 or more means that the NA is small, and the light-collecting effect is insufficient. In summary, the plano-convex lens FNo. Is the projection lens FN.
smaller than o., the FNo. of the projection lens is between 1.8 and 8, and the reciprocal of the FNo. of the plano-convex lens is p (1 / r)
Since (n 2 −n 1 ), 1/8 ≦ p (1 / r) (n 2
It is preferable that the relational expression expressed by −n 1 ) ≦ 1 / 1.8 is satisfied.

【0014】図8〜図13は平板型マイクロレンズを形
成する手順を示したものであり、このうち図12は図9
の平面図、図13は図10の平面図である。先ず、図8
に示すようにガラス基板の一面側にCr等を蒸着して成
膜し、このCr膜にパターニング(穴開け)を施してマ
スクとし、ガラス基板をフッ酸等のエッチャントに浸漬
しエッチングする。すると、マスクの穴からエッチャン
トが侵入して等方性エッチングがなされ、略半球状の凹
部が形成される。
8 to 13 show a procedure for forming a flat plate type microlens, of which FIG. 12 is shown in FIG.
FIG. 13 is a plan view of FIG. First, FIG.
As shown in FIG. 3, Cr or the like is deposited on one surface of the glass substrate to form a film, and the Cr film is patterned (opened) to serve as a mask. The glass substrate is immersed in an etchant such as hydrofluoric acid for etching. Then, the etchant enters from the hole of the mask and isotropic etching is performed to form a substantially hemispherical recess.

【0015】ここで、凹部の形状が半球に近くなるまで
エッチングを行おうとすると、マスクを支持している部
分の面積が小さくなり、Cr膜が割れて均一な球面状の
エッチングができなくなったり、エッチングの際の生成
物である金属フッ化物の沈殿が凹部内に堆積し、エッチ
ング面が荒れてしまう。このような不利が生じないエッ
チング深さは60μm以下であった。
Here, if etching is attempted until the shape of the recess becomes close to a hemisphere, the area of the portion supporting the mask becomes small, and the Cr film is cracked and uniform spherical etching cannot be performed. Precipitation of metal fluoride, which is a product of etching, is deposited in the recesses, and the etched surface becomes rough. The etching depth without causing such a disadvantage was 60 μm or less.

【0016】また、図9に示すようにエッチングによっ
て略半球状の凹部を形成した後に、Cr膜を除去し、更
にエッチングの際の生成物も取り除く。この後図10に
示すように、再度エッチングを施し、更に図11に示す
ように凹部に高屈折率材料を充填してレンズ部にする。
前記の2回目のエッチングによってガラス基板表面は均
等にエッチングされ、図12に示すように、平面視で三
角形状をしていた支持部はなくなり、図13に示す稠密
状態となり、更に最初のエッチングでは略半球状をなし
ていた凹部はその曲率半径が大きくなる。
Further, as shown in FIG. 9, after forming a substantially hemispherical recess by etching, the Cr film is removed, and further the products produced during the etching are removed. After this, as shown in FIG. 10, etching is performed again, and as shown in FIG. 11, the concave portion is filled with a high refractive index material to form a lens portion.
By the second etching described above, the surface of the glass substrate is uniformly etched, and as shown in FIG. 12, the supporting portion having a triangular shape in plan view disappears, and the dense state shown in FIG. 13 is obtained. The radius of curvature of the substantially hemispherical recess becomes large.

【0017】ところで、前記凹部の深さをhとすると、
h=r−(r2−p2/4)1/2となる。そして、前記し
たように2回目のエッチングでは均一な厚さでエッチン
グがなされるのであるから、h=r−(r2−p2/4)
1/2≦60μmとなるようにするのが好ましい。
By the way, if the depth of the recess is h,
h = r- (r 2 -p 2 /4) is 1/2. And because in the second etching as described above is the etching with a uniform thickness is made, h = r- (r 2 -p 2/4)
It is preferable that 1/2 ≦ 60 μm.

【0018】また、凹部(レンズ)が完全な半球の場
合、つまりh=0.5pの場合には、レンズ面への入射
角が大きくなり過ぎ、境界面での反射が大きくなった
り、球面収差が大きくなって、液晶層の開口部に集光す
る光が減少してしまう。このような不利を解消するため
には、h=r−(r2−p2/4)1/2≦0.45pとす
るのが好ましい。
When the concave portion (lens) is a complete hemisphere, that is, when h = 0.5p, the angle of incidence on the lens surface becomes too large, reflection at the boundary surface becomes large, and spherical aberration occurs. Becomes larger, and the light condensed at the opening of the liquid crystal layer decreases. Such in order to eliminate the disadvantage, h = r- (r 2 -p 2/4) preferably set to 1/20.45p.

【0019】以上の条件は、平板型マイクロレンズとし
て両凸レンズを形成した場合にも当てはまる。即ち、一
対の透光性パネルの間に液晶層を設けてなる液晶表示装
置の、前記一対の透光性パネルのうち照射光が入射する
側の透光性パネルを2枚のガラス基板を接合して構成
し、これら2枚のガラス基板の接合面に互いに一致する
凹部を規則的に形成し、これら凹部に高屈折率材料を充
填して両凸レンズとした液晶表示装置の場合には、前記
ガラス基板の屈折率をn1、両凸レンズとなる高屈折率
材料の屈折率をn2、前記2枚のガラス基板のうちの一
方のガラス基板に形成された凹部の曲率半径をr1、前
記2枚のガラス基板のうちの他方のガラス基板に形成さ
れた凹部の曲率半径をr2、前記2枚のガラス基板のう
ち液晶層側のガラス基板の厚みをtとするとき、1/f
=(1/r1+1/r2)(n2−n1)/n3で表わされ
る。したがって、前記と同様の理由により、0.6/t
≦(1/r1+1/r2)(n2−n1)/n1<1/tを
満足するようにする。
The above conditions also apply when a biconvex lens is formed as a flat plate type microlens. That is, in a liquid crystal display device in which a liquid crystal layer is provided between a pair of translucent panels, one of the pair of translucent panels on the side on which the irradiation light is incident is joined to two glass substrates. In the case of a liquid crystal display device in which concave portions corresponding to each other are regularly formed on the bonding surface of these two glass substrates and these concave portions are filled with a high refractive index material to form a biconvex lens, The refractive index of the glass substrate is n1, the refractive index of the high-refractive-index material to be a biconvex lens is n2, the radius of curvature of the concave portion formed in one of the two glass substrates is r1, and the two When the radius of curvature of the concave portion formed in the other glass substrate of the glass substrates is r2 and the thickness of the glass substrate on the liquid crystal layer side of the two glass substrates is t, 1 / f
= (1 / r 1 + 1 / r 2 ) (n 2 −n 1 ) / n 3 Therefore, for the same reason as above, 0.6 / t
≦ (1 / r 1 + 1 / r 2 ) (n 2 −n 1 ) / n 1 <1 / t.

【0020】また、両凸レンズの場合には、FNo.と投
影レンズのFNo.との関係から、1/8≦p(1/r1
1/r2)(n2−n1)≦1/1.8を満足することが
好ましい。
Also, in the case of a biconvex lens, from the relationship between the FNo. And the FNo. Of the projection lens, 1 / 8≤p (1 / r 1 +
It is preferable that 1 / r 2 ) (n 2 −n 1 ) ≦ 1 / 1.8 is satisfied.

【0021】また、両凸レンズの場合には、エッチング
深さとの関係は、r1−(r1 2−p2/4)1/2≦60μ
m且つr2−(r2 2−p2/4)1/2≦60μmを満足す
ることが好ましい。
Further, in the case of the double-convex lens, the relationship between the etching depth, r 1 - (r 1 2 -p 2/4) 1/2 ≦ 60μ
m and r 2 - (r 2 2 -p 2/4) is preferably satisfied 1/2 ≦ 60 [mu] m.

【0022】更に、両凸レンズの場合には、凹部の中心
間の最長距離pとの関係は、r1−(r1 2−p2/4)
1/2≦0.45p且つr2−(r2 2−p2/4)1/2≦0.
45pの関係を満足することが好ましい。
Furthermore, in the case of the double-convex lens, the relationship between the longest distance p between the centers of the recess, r 1 - (r 1 2 -p 2/4)
1/20.45p and r 2 - (r 2 2 -p 2/4) 1/2 ≦ 0.
It is preferable to satisfy the relationship of 45p.

【0023】[0023]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明に係る
液晶表示装置を組込んだプロジェクタテレビジョン(P
TV)の概念図、図2は同液晶表示装置の拡大断面図で
あり、プロジェクタテレビジョン(PTV)は本発明に
係る液晶表示装置1を照射光源とコンデンサレンズ21
との間に配置し、液晶表示装置1を透過した光をコンデ
ンサレンズ21及び投影レンズ22を介して壁等のスク
リーンに映し出すようにしている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 shows a projector television (P) incorporating the liquid crystal display device according to the present invention.
2 is an enlarged cross-sectional view of the liquid crystal display device, and a projector television (PTV) uses the liquid crystal display device 1 according to the present invention as an irradiation light source and a condenser lens 21.
The light transmitted through the liquid crystal display device 1 is projected on the screen such as a wall through the condenser lens 21 and the projection lens 22.

【0024】液晶表示装置1は一対の透光性パネル2,
3の間に液晶層4を設けている。液晶層4の一面側(入
射側)には透明電極5が設けられ、他面側(出射側)に
は配線やTFT等からなる光不透過部6と光が透過する
画素開口部7が形成されている。
The liquid crystal display device 1 comprises a pair of translucent panels 2,
The liquid crystal layer 4 is provided between the two. A transparent electrode 5 is provided on one surface side (incident side) of the liquid crystal layer 4, and a light non-transmissive portion 6 including wiring and TFTs and a pixel opening portion 7 through which light is transmitted are formed on the other surface side (emission side). Has been done.

【0025】一方、透光性パネル2は2枚のガラス基板
8,9を接合して構成され、この2枚のガラス基板8,
9のうち一方のガラス基板8の他方のガラス基板9との
接合面には多数の凹部10が規則的に形成され、この凹
部10には高屈折率材料が充填されて平凸レンズ11と
なっている。
On the other hand, the translucent panel 2 is constructed by joining two glass substrates 8 and 9 together.
A large number of concave portions 10 are regularly formed on the bonding surface of one glass substrate 8 of the other 9 and the other glass substrate 9, and the concave portions 10 are filled with a high refractive index material to form a plano-convex lens 11. There is.

【0026】ここで、前記した各部材の材質、寸法、特
性(屈折率)などは以下の通りである。 (ガラス基板8) 材質:無アルカリガラス(ボロシリケート系ガラス) 厚み:1.1mm 屈折率n1:1.52 (凹部10) 中心間の最長距離:112μm 深さ:40μm 配列:デルタ配列(六角稠密アレイ) 配列ピッチ:X方向100μm、Y方向100μm 曲率半径r:59.2μm (レンズ11) 材質:熱硬化性樹脂 屈折率n2:1.66 (ガラス基板9) 材質:無アルカリガラス(ボロシリケート系ガラス) 厚み:400μm 屈折率n3:1.52 (画素開口部7) 開口寸法:□60μm 画素面積に対する開口部面積の比:36% (透光性パネル3) 材質:無アルカリガラス(コーニング社 #7059) 厚み:1.1mm
Here, the materials, dimensions, characteristics (refractive index), etc. of the above-mentioned members are as follows. (Glass substrate 8) Material: Alkali-free glass (borosilicate glass) Thickness: 1.1 mm Refractive index n 1 : 1.52 (recess 10) Longest distance between centers: 112 μm Depth: 40 μm Array: Delta array (hexagonal) Dense array) Arrangement pitch: 100 μm in X direction, 100 μm in Y direction Curvature radius r: 59.2 μm (lens 11) Material: Thermosetting resin Refractive index n 2 : 1.66 (glass substrate 9) Material: Alkali-free glass (boro Silicate glass) Thickness: 400 μm Refractive index n 3 : 1.52 (pixel aperture 7) Aperture size: □ 60 μm Ratio of aperture area to pixel area: 36% (transparent panel 3) Material: Alkali glass ( Corning Inc. # 7059) Thickness: 1.1 mm

【0027】以上において、平凸レンズ11に入射した
照射光はある程度絞られて画素開口部7を透過し、コン
デンサレンズ21及び投影レンズ22を介して壁等のス
クリーンに投影される。
In the above, the irradiation light incident on the plano-convex lens 11 is narrowed down to some extent, passes through the pixel opening 7, and is projected onto the screen such as a wall through the condenser lens 21 and the projection lens 22.

【0027】図3は液晶表示装置の別実施例を示す断面
図であり、この液晶表示装置は、液晶層4を保持する一
対の透光性パネル40,3のうち透光性パネル3につい
ては前記と同じであるが、透光性パネル40を構成する
2枚のガラス基板41,42は互いの接合面に1対1で
対応する凹部43,44を形成し、これら凹部43,4
4に高屈折率材料が充填され、ガラス基板41,42を
突き合せて接合することで、凹部43,44の部分が両
凸レンズ45になるように構成されている。
FIG. 3 is a sectional view showing another embodiment of the liquid crystal display device. In this liquid crystal display device, of the pair of translucent panels 40, 3 holding the liquid crystal layer 4, the translucent panel 3 is Same as the above, but the two glass substrates 41, 42 constituting the translucent panel 40 have concave portions 43, 44 corresponding to each other on their joint surfaces in a one-to-one manner.
4 is filled with a high refractive index material, and the glass substrates 41 and 42 are abutted and joined to each other, so that the concave portions 43 and 44 become the biconvex lens 45.

【0028】ここで、前記した各部材の材質、寸法、特
性(屈折率)などは以下の通りである。 (ガラス基板41) 材質:無アルカリガラス(ボロシリケート系ガラス) 厚み:1.1mm 屈折率n1:1.52 (ガラス基板42) 材質:無アルカリガラス(ボロシリケート系ガラス) 厚み:500μm 屈折率n1:1.52 (凹部43) 中心間の最長距離:112μm 深さ:40μm 曲率半径r1:59.2μm (凹部44) 中心間の最長距離:112μm 深さ:40μm 曲率半径r2:59.2μm (レンズ45) 材質:光硬化性樹脂 屈折率n2:1.595
Here, the materials, dimensions, characteristics (refractive index), etc. of the above-mentioned members are as follows. (Glass substrate 41) Material: Alkali-free glass (borosilicate glass) Thickness: 1.1 mm Refractive index n 1 : 1.52 (Glass substrate 42) Material: Alkali-free glass (borosilicate glass) Thickness: 500 μm Refractive index n 1 : 1.52 (recess 43) Longest distance between centers: 112 μm Depth: 40 μm Radius of curvature r 1 : 59.2 μm (recess 44) Longest distance between centers: 112 μm Depth: 40 μm Radius of curvature r 2 : 59 .2 μm (lens 45) Material: Photocurable resin Refractive index n 2 : 1.595

【0029】尚、液晶層及び透明電極の厚みは極めて薄
いので、本発明の説明では液晶層側のガラス基板の厚み
tの中にこれらを含めた。
Since the liquid crystal layer and the transparent electrode are extremely thin, they are included in the thickness t of the glass substrate on the liquid crystal layer side in the description of the present invention.

【0030】また、平板型マイクロレンズのレンズ部と
なる凹部の形状については、平面視でその輪郭形状は正
方形、長方形、正六角形、六角形あるいは帯状(レンチ
キュラータイプ)等液晶層の画素開口部の形状に合せて
選定することができる。尚、レンチキュラータイプにあ
っては、曲率半径rは帯状凹部の幅方向に沿った断面を
基準として測定する。
Further, regarding the shape of the concave portion which becomes the lens portion of the flat plate type microlens, the contour shape is square, rectangular, regular hexagonal, hexagonal or strip-shaped (lenticular type) in the pixel opening of the liquid crystal layer in plan view. It can be selected according to the shape. In the lenticular type, the radius of curvature r is measured with reference to the cross section along the width direction of the band-shaped recess.

【0031】尚、図示例にあっては平板型マイクロレン
ズを構成する2枚のガラス基板の凹部に予め樹脂を充填
し、研磨、ラミネート処理を施して平滑面とし、この
後、他方のガラス基板を接着するか、或いは高屈折率樹
脂を接着剤として用い、充填と同時に2枚のガラス基板
を接着してもよい。
In the illustrated example, the resin is previously filled in the concave portions of the two glass substrates forming the flat plate type microlens, and the glass substrate is polished and laminated to have a smooth surface, and then the other glass substrate is used. Alternatively, the two glass substrates may be adhered at the same time as the filling, using a high refractive index resin as an adhesive.

【0032】[0032]

【発明の効果】以上に説明したように本発明によれば、
液晶表示装置に組込まれる平板型マイクロレンズを構成
するガラス基板の屈折率、レンズとなる高屈折率材料の
屈折率、高屈折率材料が充填される凹部の曲率半径、平
板型マイクロレンズを構成するガラス基板のうち液晶層
側のガラス基板の厚みと焦点距離との関係を適切なもの
としたので、液晶層に照射光が集中せず、高温にならな
いので液晶に液影響を与えない。しかも、照射光の殆ん
どが画素開口部を通るので画面が暗くなることもない。
According to the present invention as described above,
The refractive index of the glass substrate that constitutes the flat plate type microlens incorporated in the liquid crystal display device, the refractive index of the high refractive index material that becomes the lens, the radius of curvature of the recess filled with the high refractive index material, and the flat plate type microlens Since the relationship between the thickness of the glass substrate on the liquid crystal layer side of the glass substrate and the focal length is made appropriate, the irradiation light is not concentrated on the liquid crystal layer and the temperature does not rise, so the liquid crystal is not affected by the liquid. Moreover, since most of the irradiation light passes through the pixel opening, the screen does not become dark.

【0033】即ち、従来のように平板型マイクロレンズ
の焦点を液晶面からFNo.が大きくなる側にずらすこと
で投影レンズの口径を大きくすることもなく、照射光の
殆んどを有効利用でき、また照射光が多少傾いている場
合であっても画素開口部を透過する光量がそれほど低減
することがなくなる。
That is, most of the irradiation light can be effectively used without shifting the focus of the flat plate type microlens from the liquid crystal surface to the side where the FNo. Further, even when the irradiation light is slightly inclined, the amount of light transmitted through the pixel opening is not reduced so much.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る液晶表示装置を組込んだプロジェ
クタテレビジョンの概念図
FIG. 1 is a conceptual diagram of a projector television incorporating a liquid crystal display device according to the present invention.

【図2】同液晶表示装置の拡大断面図FIG. 2 is an enlarged sectional view of the liquid crystal display device.

【図3】液晶表示装置の別実施例を示す断面図FIG. 3 is a sectional view showing another embodiment of the liquid crystal display device.

【図4】従来のプロジェクタテレビジョンの概念図FIG. 4 is a conceptual diagram of a conventional projector television.

【図5】液晶表示装置に平板型マイクロレンズを組み合
わせた従来例の断面図
FIG. 5 is a sectional view of a conventional example in which a flat plate type microlens is combined with a liquid crystal display device.

【図6】凸レンズのFNo.と投影レンズのFNo.との関係
を説明した図
FIG. 6 is a diagram for explaining the relationship between the FNo. Of the convex lens and the FNo. Of the projection lens.

【図7】凹部の中心間距離の概念図FIG. 7 is a conceptual diagram of a distance between centers of recesses.

【図8】Cr膜にて最初のエッチングを施している状態
を示す拡大断面図
FIG. 8 is an enlarged cross-sectional view showing a state where the Cr film is initially etched.

【図9】最初のエッチング後の状態を示す拡大断面図FIG. 9 is an enlarged sectional view showing a state after the first etching.

【図10】2回目のエッチング後の状態を示す拡大断面
FIG. 10 is an enlarged cross-sectional view showing a state after the second etching.

【図11】凹部に高屈折率材料を充填した状態の拡大断
面図
FIG. 11 is an enlarged cross-sectional view showing a state in which a concave portion is filled with a high refractive index material.

【図12】図9の状態の平面図FIG. 12 is a plan view of the state of FIG.

【図13】図10の状態の平面図13 is a plan view of the state of FIG.

【符号の説明】 1…液晶表示装置、2,3,30,40…透光性パネ
ル、4…液晶層、5…透明電極、6…光不透過部、7…
画素開口部、8,9,31,32,41,42…ガラス
基板、10,33,43,44…凹部、11,34…平
凸レンズ、45…両凸レンズ。
[Description of Reference Signs] 1 ... Liquid crystal display device, 2, 3, 30, 40 ... Translucent panel, 4 ... Liquid crystal layer, 5 ... Transparent electrode, 6 ... Light non-transmissive portion, 7 ...
Pixel aperture, 8, 9, 31, 32, 41, 42 ... Glass substrate, 10, 33, 43, 44 ... Recess, 11, 34 ... Plano-convex lens, 45 ... Bi-convex lens.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 厚範 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 仲間 健一 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 森尾 健二 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 (72)発明者 岸本 隆 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsunori Matsuda 3-5-11 Doshumachi, Chuo-ku, Osaka-shi, Osaka Prefecture Nippon Sheet Glass Co., Ltd. (72) Inventor Kenichi 3 Dosho-machi, Chuo-ku, Osaka-shi, Osaka Chome 5-11 Nippon Sheet Glass Co., Ltd. (72) Inventor Kenji Morio 3-5-11 Doshumachi, Chuo-ku, Osaka City, Osaka Prefecture (chome) Nippon Sheet Glass Co., Ltd. (72) Takashi Kishimoto, Dou-cho, Osaka City, Osaka Prefecture 3-5-11, Machi Within Nippon Sheet Glass Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一対の透光性パネルの間に液晶層を設け
てなる液晶表示装置において、前記一対の透光性パネル
のうち照射光が入射する側の透光性パネルは2枚のガラ
ス基板を接合して構成され、この2枚のガラス基板のう
ち一方のガラス基板の他方のガラス基板との接合面には
多数の凹部が規則的に形成され、この凹部には高屈折率
材料が充填されて平凸レンズとなっており、更に前記2
枚のガラス基板のうち平凸レンズが形成される一方のガ
ラス基板の屈折率をn1、平凸レンズとなる高屈折率材
料の屈折率をn2、他方のガラス基板の屈折率をn3、高
屈折率材料が充填される凹部の曲率半径をr、前記2枚
のガラス基板のうち液晶層側のガラス基板の厚みをtと
するとき、これらは以下の関係式(1a)を満足するこ
とを特徴とする液晶表示装置。 0.6/t≦(1/r)(n2−n1)/n3<1/t・・・・・・(1a)
1. A liquid crystal display device comprising a liquid crystal layer provided between a pair of translucent panels, wherein the translucent panel on the side on which the irradiation light is incident is made of two glass plates. A plurality of concave portions are regularly formed on a bonding surface of one glass substrate of the two glass substrates with the other glass substrate, and the high refractive index material is formed in the concave portions. It is filled with a plano-convex lens, and further 2
One of the glass substrates on which the plano-convex lens is formed has a refractive index of n 1 , the high-refractive-index material serving as the plano-convex lens has a refractive index of n 2 , and the other glass substrate has a refractive index of n 3 . When the radius of curvature of the concave portion filled with the refractive index material is r and the thickness of the glass substrate on the liquid crystal layer side of the two glass substrates is t, these satisfy the following relational expression (1a). Characteristic liquid crystal display device. 0.6 / t ≦ (1 / r) (n 2 −n 1 ) / n 3 <1 / t ... (1a)
【請求項2】 請求項1に記載の液晶表示装置におい
て、前記高屈折率材料が充填される凹部は稠密状に配列
され、且つ隣接する凹部の中心間の最長距離をpとする
とき、以下の関係式(2a)を満足することを特徴とす
る液晶表示装置。 1/8≦p(1/r)(n2−n1)≦1/1.8・・・・・・・・(2a)
2. The liquid crystal display device according to claim 1, wherein the recesses filled with the high refractive index material are densely arranged, and when the longest distance between the centers of adjacent recesses is p, 2. A liquid crystal display device characterized by satisfying the relational expression (2a). 1/8 ≦ p (1 / r) (n 2 −n 1 ) ≦ 1 / 1.8 ... (2a)
【請求項3】 請求項1または請求項2に記載の液晶表
示装置において、以下の関係式(3a)を満足すること
を特徴とする液晶表示装置。 r−(r2−p2/4)1/2≦60μm・・・・・・・・・・・・・(3a)
3. The liquid crystal display device according to claim 1, wherein the following relational expression (3a) is satisfied. r- (r 2 -p 2/4 ) 1/2 ≦ 60μm ············· (3a)
【請求項4】 請求項1または請求項2に記載の液晶表
示装置において、以下の関係式(4)を満足することを
特徴とする液晶表示装置。 r−(r2−p2/4)1/2≦0.45p・・・・・・・・・・・・(4a)
4. The liquid crystal display device according to claim 1, wherein the following relational expression (4) is satisfied. r- (r 2 -p 2/4 ) 1/2 ≦ 0.45p ············ (4a)
【請求項5】 一対の透光性パネルの間に液晶層を設け
てなる液晶表示装置において、前記一対の透光性パネル
のうち照射光が入射する側の透光性パネルは2枚のガラ
ス基板を接合して構成され、これら2枚のガラス基板は
接合面に互いに一致する凹部が規則的に形成され、これ
ら凹部には高屈折率材料が充填されて両凸レンズとなっ
ており、更に前記ガラス基板の屈折率をn1、両凸レン
ズとなる高屈折率材料の屈折率をn2、前記2枚のガラ
ス基板のうちの一方のガラス基板に形成された凹部の曲
率半径をr1、前記2枚のガラス基板のうちの他方のガ
ラス基板に形成された凹部の曲率半径をr2、前記2枚
のガラス基板のうち液晶層側のガラス基板の厚みをtと
するとき、これらは以下の関係式(1b)を満足するこ
とを特徴とする液晶表示装置。 0.6/t≦(1/r1+1/r2)(n2−n1)/n1<1/t・・(1b)
5. A liquid crystal display device comprising a liquid crystal layer provided between a pair of translucent panels, wherein the translucent panel on the side on which the irradiation light is incident is made of two glass plates. These two glass substrates are formed by joining substrates, and concave portions corresponding to each other are regularly formed on the joining surfaces, and these concave portions are filled with a high refractive index material to form a biconvex lens. the refractive index of the glass substrate n1, the refractive index of the high refractive index material comprising a biconvex lens n2, one of the radii of curvature of the concave portion formed on a glass substrate r 1 of the two glass substrates, the two When the radius of curvature of the concave portion formed on the other glass substrate of the two glass substrates is r 2 and the thickness of the glass substrate on the liquid crystal layer side of the two glass substrates is t, these are expressed by the following relational expressions. Liquid crystal table characterized by satisfying (1b) Apparatus. 0.6 / t ≦ (1 / r 1 + 1 / r 2 ) (n 2 −n 1 ) / n 1 <1 / t ·· (1b)
【請求項6】 請求項5に記載の液晶表示装置におい
て、前記高屈折率材料が充填される凹部は稠密状に配列
され、且つ隣接する凹部の中心間の最長距離をpとする
とき、以下の関係式(2b)を満足することを特徴とす
る液晶表示装置。 1/8≦p(1/r1+1/r2)(n2−n1)≦1/1.8・・・・(2b)
6. The liquid crystal display device according to claim 5, wherein the recesses filled with the high-refractive-index material are densely arranged, and the maximum distance between the centers of adjacent recesses is p: 2. A liquid crystal display device satisfying the relational expression (2b). 1/8 ≦ p (1 / r 1 + 1 / r 2 ) (n 2 −n 1 ) ≦ 1 / 1.8 ... (2b)
【請求項7】 請求項5または請求項6に記載の液晶表
示装置において、以下の関係式(3b)を満足すること
を特徴とする液晶表示装置。 r1−(r1 2−p2/4)1/2≦60μm 且つr2−(r2 2−p2/4)1/2≦60μm・・・・・・・・・・・・(3b)
7. The liquid crystal display device according to claim 5 or 6, wherein the following relational expression (3b) is satisfied. r 1 - (r 1 2 -p 2/4) 1/2 ≦ 60μm and r 2 - (r 2 2 -p 2/4) 1/2 ≦ 60μm ············ ( 3b)
【請求項8】 請求項5または請求項6に記載の液晶表
示装置において、以下の関係式(4b)を満足すること
を特徴とする液晶表示装置。 r1−(r1 2−p2/4)1/2≦0.45p 且つr2−(r2 2−p2/4)1/2≦0.45p・・・・・・・・・・・(4b)
8. The liquid crystal display device according to claim 5 or 6, wherein the following relational expression (4b) is satisfied. r 1 - (r 1 2 -p 2/4) 1/2 ≦ 0.45p and r 2 - (r 2 2 -p 2/4) 1/2 ≦ 0.45p ········· .. (4b)
JP7193806A 1995-07-28 1995-07-28 Liquid crystal display Expired - Fee Related JP2980830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193806A JP2980830B2 (en) 1995-07-28 1995-07-28 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193806A JP2980830B2 (en) 1995-07-28 1995-07-28 Liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20265999A Division JP3595203B2 (en) 1999-07-16 1999-07-16 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH0943587A true JPH0943587A (en) 1997-02-14
JP2980830B2 JP2980830B2 (en) 1999-11-22

Family

ID=16314086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193806A Expired - Fee Related JP2980830B2 (en) 1995-07-28 1995-07-28 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2980830B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195197A (en) * 1997-09-18 1999-04-09 Ricoh Opt Ind Co Ltd Liquid crystal device for liquid crystal projector and counter substrate for liquid crystal display
WO1999038035A1 (en) * 1996-07-22 1999-07-29 Maikurooputo Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
US6278500B1 (en) * 1998-10-06 2001-08-21 Seiko Epson Corporation Liquid crystal device and projector display device having a specific relationship for the F-numbers of the illumination optical system
US6825889B1 (en) 1998-11-30 2004-11-30 Seiko Epson Corporation Liquid crystal device with an offset toward a clear viewing direction and projection type display device using the liquid crystal device
JP2006171051A (en) * 2004-12-13 2006-06-29 Sony Corp Lens designing method, optical device, and projection type display device
JP2007212609A (en) * 2006-02-08 2007-08-23 Seiko Epson Corp Liquid crystal device and projector
US7329611B2 (en) 2002-04-11 2008-02-12 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US8009251B2 (en) 2006-06-13 2011-08-30 Au Optronics Corporation High brightness liquid crystal display

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038035A1 (en) * 1996-07-22 1999-07-29 Maikurooputo Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
EP1054270A1 (en) * 1996-07-22 2000-11-22 Maikurooputo Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
US6437918B1 (en) 1996-07-22 2002-08-20 Nippon Sheet Glass Co., Ltd. Method of manufacturing flat plate microlens and flat plate microlens
EP1054270A4 (en) * 1996-07-22 2004-07-28 Maikurooputo Co Ltd Method of manufacturing flat plate microlens and flat plate microlens
JPH1195197A (en) * 1997-09-18 1999-04-09 Ricoh Opt Ind Co Ltd Liquid crystal device for liquid crystal projector and counter substrate for liquid crystal display
US6278500B1 (en) * 1998-10-06 2001-08-21 Seiko Epson Corporation Liquid crystal device and projector display device having a specific relationship for the F-numbers of the illumination optical system
US6825889B1 (en) 1998-11-30 2004-11-30 Seiko Epson Corporation Liquid crystal device with an offset toward a clear viewing direction and projection type display device using the liquid crystal device
US7329611B2 (en) 2002-04-11 2008-02-12 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7525732B2 (en) 2002-04-11 2009-04-28 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7643100B2 (en) 2002-04-11 2010-01-05 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
US7678454B2 (en) 2002-04-11 2010-03-16 Nec Corporation Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part
JP2006171051A (en) * 2004-12-13 2006-06-29 Sony Corp Lens designing method, optical device, and projection type display device
JP2007212609A (en) * 2006-02-08 2007-08-23 Seiko Epson Corp Liquid crystal device and projector
US8009251B2 (en) 2006-06-13 2011-08-30 Au Optronics Corporation High brightness liquid crystal display
US8879028B2 (en) 2006-06-13 2014-11-04 Au Optronics Corporation High brightness liquid crystal display

Also Published As

Publication number Publication date
JP2980830B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
WO2002099530A1 (en) Micro-lens sheet and projection screen
JP3551979B2 (en) Micro corner cube / micro corner cube array manufacturing method and display device using micro corner cube array
JP2007133037A (en) Liquid crystal display panel with microlens array, and its manufacturing method
JP3535610B2 (en) Liquid crystal device for liquid crystal projector and counter substrate for liquid crystal device
JP2980830B2 (en) Liquid crystal display
JPH0943588A (en) Liquid crystal display device
JP4188611B2 (en) Manufacturing method of microlens array
KR0135922B1 (en) Liquid crystal projector and liquid crystal display device using micro lens plate
JPH05346578A (en) Liquid crystal display panel
JP2001059963A (en) Liquid crystal display element
JP3595203B2 (en) Liquid crystal display
JPH0990360A (en) Production of flat plate type microlens array and production of liquid crystal display element using the flat plate type microlens array
JP3954681B2 (en) Liquid crystal device for liquid crystal projector and counter substrate for liquid crystal device
JPH08327986A (en) Production of microlens substrate and liquid crystal display device element using microlens substrate
JPH06300902A (en) Flat plate type lens array and optical display panel using the same
JP2000314876A (en) Liquid crystal display element and liquid crystal display device
JP2837533B2 (en) Liquid crystal optical device
JPH05346577A (en) Microlens incorporated type liquid crystal panel
JP5078229B2 (en) Optical element, liquid crystal device, and liquid crystal projector
JP2837534B2 (en) Liquid crystal optical device
JPH0450802A (en) Plate lens array and liquid crystal panel element using it
JP2922947B2 (en) Liquid crystal display device
JPH08271878A (en) Liquid crystal display device using plate microlens array
JPH0886901A (en) Flat plate lens array and liquid crystal display element formed by using the same
JPH08304811A (en) Single plate type liquid crystal device for single plate type liquid crystal color projector and counter substrate for single plate type liquid crystal device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees