JPH0943556A - Optical semiconductor pulse light source and light pulse generating method - Google Patents

Optical semiconductor pulse light source and light pulse generating method

Info

Publication number
JPH0943556A
JPH0943556A JP7193822A JP19382295A JPH0943556A JP H0943556 A JPH0943556 A JP H0943556A JP 7193822 A JP7193822 A JP 7193822A JP 19382295 A JP19382295 A JP 19382295A JP H0943556 A JPH0943556 A JP H0943556A
Authority
JP
Japan
Prior art keywords
optical
semiconductor
voltage
pulse
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7193822A
Other languages
Japanese (ja)
Inventor
Norifumi Sato
佐藤  憲史
Isamu Odaka
勇 小高
Yasuhiro Kondo
康洋 近藤
Mitsuo Yamamoto
▲みつ▼夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7193822A priority Critical patent/JPH0943556A/en
Publication of JPH0943556A publication Critical patent/JPH0943556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the generating of a pulse having a high frequency and also to obtain a fixed pulse oscillation by forming a semiconductor modulator part at the end part of one side of a light resonator or at the vicinity of the resonator. SOLUTION: A light resonator 3 is composed in such a way that a semiconductor modulator part 1 and a semiconductor gain part 2 are arranged and formed in the inside of the resonator. A DC voltage source 4 being an impression voltage source is connected to the modulation part 1 and als a high frequency power source 5 supplying a signal for modulation is connected to it. Moreover, a DC current source 6 supplying an injecting current is connected to the gain part 2. Then, light pulses are generated with the same repetition as a basic frequency by superposing a sine wave voltage having the half frequency of the basic frequency to be determined by the reciprocal of the light reciprocating time of the light resonator 3 on the semiconductor modulator part 1 on which a fixed bias voltage is impressed from the DC voltage source 4 by using a high frequency power source 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信や光信号処
理において必要とされる光半導体パルス光源装置および
光パルスの発生方法に関するものであり、さらに詳しく
は、高い繰り返し周波数のパルス発生を容易にする光半
導体パルス光源装置および光パルスの発生方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor pulse light source device and an optical pulse generation method required for optical communication and optical signal processing. More specifically, it is easy to generate a pulse having a high repetition frequency. The present invention relates to an optical semiconductor pulse light source device and a method for generating an optical pulse.

【0002】[0002]

【従来の技術】従来、光パルス光源としては、半導体レ
ーザのゲインスイッチ法、半導体レーザの受動モード同
期法、半導体レーザの能動モード同期法、ファイバリン
グレーザの能動モード同期法等を用いた光源が主に検討
されている。
2. Description of the Related Art Conventionally, as a light pulse light source, a light source using a gain switching method for a semiconductor laser, a passive mode locking method for a semiconductor laser, an active mode locking method for a semiconductor laser, an active mode locking method for a fiber ring laser, etc. has been used. Mainly under consideration.

【0003】前記半導体レーザの受動モード同期法によ
る光源は、半導体可飽和吸収体による自励発振を利用し
ており、外部から変調信号を加えることなくパルス発振
を得ることができ、100GHz以上の高い繰り返し周
波数も得られている。しかし、この光源を光通信や信号
処理等に応用しようとすると、同期を取る手段が困難で
あるという欠点があった。
The light source according to the passive mode-locking method of the semiconductor laser utilizes self-excited oscillation by a semiconductor saturable absorber, and pulse oscillation can be obtained without adding a modulation signal from the outside, which is higher than 100 GHz. The repetition frequency is also obtained. However, when this light source is applied to optical communication, signal processing, etc., there is a drawback in that it is difficult to obtain synchronization.

【0004】そこで、外部高周波電源で変調する能動モ
ード同期法が必須となるが、変調器の帯域による制限と
外部高周波電源の制限とから、40GHz程度の周波数
が限界であった。さらに、40GHz以上の外部高周波
電源は高価であり、コストが嵩むという問題があった。
Therefore, an active mode locking method in which an external high frequency power source is used for modulation is indispensable. However, due to the limitation of the modulator band and the limitation of the external high frequency power source, the frequency is about 40 GHz. Further, there is a problem that the external high frequency power source of 40 GHz or more is expensive and the cost is increased.

【0005】[0005]

【発明が解決しようとする課題】ところで、光半導体パ
ルス光源装置では、発生されたパルスの繰り返し周波数
は、共振器を光パルスが往復するのに要する時間の逆数
で与えられる基本周波数、あるいはその整数倍の周波数
となる。したがって、高い繰り返し周波数を得るために
は、変調器の帯域を基本周波数程度に高くしなければな
らないが、例えば、40GHz以上の周波数では、従
来、このような高い帯域を有する変調器を作成すること
が困難であった。また、能動モード同期において、変調
周波数を上記共振周波数からわずかでもずらすと、パル
ス幅が増大し、パルスのパワーも低下するという問題が
あった。
By the way, in the optical semiconductor pulse light source device, the repetition frequency of the generated pulse is the fundamental frequency given by the reciprocal of the time required for the optical pulse to reciprocate through the resonator, or an integer thereof. Double the frequency. Therefore, in order to obtain a high repetition frequency, the band of the modulator must be increased to about the fundamental frequency. For example, at a frequency of 40 GHz or higher, it is conventionally necessary to create a modulator having such a high band. Was difficult. Further, in the active mode locking, if the modulation frequency is slightly deviated from the resonance frequency, the pulse width increases and the pulse power also decreases.

【0006】したがって、本発明の課題は、高い周波数
のパルス発生が容易で、従来、変調器の帯域の制限や駆
動する高周波電源の制限で実現不可能であった周波数が
可能で、しかも安定なパルス発振が得られる光半導体パ
ルス光源装置および光パルスの発生方法を提供すること
にある。
Therefore, an object of the present invention is to easily generate a high-frequency pulse, to enable a frequency which has been impossible in the past due to the limitation of the bandwidth of the modulator and the limitation of the high-frequency power source to be driven, and yet stable. An object of the present invention is to provide an optical semiconductor pulse light source device capable of obtaining pulse oscillation and a method of generating an optical pulse.

【0007】[0007]

【課題を解決するための手段】図1は、本発明にかかる
光半導体パルス光源装置の基本構成を示す図である。図
中、1は電圧を加えることにより、ある波長域に対する
光吸収係数が増大する半導体変調器部であり、2は前記
半導体変調器部1に隣接する半導体利得部であり、この
半導体利得部2は、前記ある波長域に対して利得を有す
る。少なくとも、これら半導体変調器部1と半導体利得
部2とが内部に配置形成されることにより、光共振器3
が構成されている。前記変調器部1には印加電圧源であ
るDC電圧源4が接続されるとともに、変調のための信
号を供給する高周波電源5が接続されている。また、前
記利得部2には注入電流を供給するDC電流源6が接続
されている。前記半導体変調器部1は、印加電圧に対す
る光吸収係数の変化が単調増加となる電圧範囲を有し、
かつ該光吸収係数の電圧に対する2次微分が正となる特
性を持っている。
FIG. 1 is a diagram showing a basic configuration of an optical semiconductor pulse light source device according to the present invention. In the figure, 1 is a semiconductor modulator section in which a light absorption coefficient for a certain wavelength region is increased by applying a voltage, 2 is a semiconductor gain section adjacent to the semiconductor modulator section 1, and this semiconductor gain section 2 Has a gain for the certain wavelength range. At least the semiconductor modulator unit 1 and the semiconductor gain unit 2 are arranged and formed inside, so that the optical resonator 3
Is configured. A DC voltage source 4 which is an applied voltage source is connected to the modulator section 1, and a high frequency power source 5 which supplies a signal for modulation is connected to the modulator section 1. A DC current source 6 for supplying an injection current is connected to the gain section 2. The semiconductor modulator unit 1 has a voltage range in which the change of the light absorption coefficient with respect to the applied voltage increases monotonically.
Further, it has a characteristic that the second derivative of the light absorption coefficient with respect to the voltage is positive.

【0008】かかる構成の光半導体パルス光源装置によ
る光パルスの発生方法は、前記光共振器3の光往復時間
の逆数で決まる基本周波数に対して、その半分の周波数
を有する正弦波電圧を、高周波電源5を用いて、DC電
圧源4から一定のバイアス電圧が印加されている前記半
導体変調部1に重畳し、基本周波数と同一の繰り返しで
光パルスを発生させることを特徴としている。
In the method of generating an optical pulse by the optical semiconductor pulse light source device having such a configuration, the sine wave voltage having a half frequency of the fundamental frequency determined by the reciprocal of the optical round trip time of the optical resonator 3 is applied to the high frequency. The power source 5 is used to superimpose it on the semiconductor modulator 1 to which a constant bias voltage is applied from the DC voltage source 4, and generate an optical pulse with the same repetition as the fundamental frequency.

【0009】図2は、パルス発生の原理を模式的に示し
ている。前記光共振器3の光往復時間τの逆数で決まる
基本周波数をf0 とする。前記変調器部1に高周波電源
5から前記基本周波数f0 の半分の周波数を有する正弦
波電圧を加えることにより、光共振器3における吸収係
数が変化し、ロスの時間変化が与えられる。
FIG. 2 schematically shows the principle of pulse generation. The fundamental frequency determined by the reciprocal of the optical round trip time τ of the optical resonator 3 is f0. By applying a sinusoidal voltage having a frequency half that of the fundamental frequency f0 from the high frequency power source 5 to the modulator section 1, the absorption coefficient of the optical resonator 3 changes, and the loss changes with time.

【0010】図2(a)は、変調電圧の周波数がf0 の
時であり、発生するパルス列はf0あるいはその整数倍
の周波数においてしか発生しないため、光パルスは、ロ
スが最小となる時間に同期して周波数f0 で発生する。
これが従来の能動モード同期法である。
FIG. 2 (a) shows the case where the frequency of the modulation voltage is f0 and the pulse train generated is generated only at the frequency of f0 or an integral multiple thereof. Therefore, the optical pulse is synchronized with the time when the loss is minimum. And occurs at frequency f0.
This is the conventional active mode locking method.

【0011】図2(b)は本発明による方法を示してお
り、変調電圧の周波数を基本周波数の1/2としてい
る。この時、光パルスの時間配列には、図示の(1)と
(2)の状態が可能である。このうちロスの小さい状態
で発振することになる。(1)の状態ではパルス強度が
一定となる。光パルスはロスが急激に変化する肩にかか
って安定化するために周波数f0 を少しずらしても復元
力が働き、安定なパルス発振が得られる。(2)の状態
ではロスが光パルス毎に大小繰り返すために、パルスの
強度も大小を繰り返すことになる。(1)の状態を実現
するためには、ロスの時間変化を表す曲線において、ロ
スが大となる時間領域の割合を小さくする必要がある。
FIG. 2 (b) shows the method according to the present invention, in which the frequency of the modulation voltage is ½ of the fundamental frequency. At this time, the states of (1) and (2) shown in the figure are possible in the time arrangement of the light pulse. Of these, oscillation will occur in a state where the loss is small. In the state of (1), the pulse intensity is constant. Since the optical pulse is stabilized by being applied to the shoulder where the loss changes abruptly, the restoring force works even if the frequency f0 is slightly shifted, and stable pulse oscillation can be obtained. In the state of (2), the loss repeats large and small for each optical pulse, so that the intensity of the pulse also repeats large and small. In order to realize the state of (1), it is necessary to reduce the ratio of the time region in which the loss is large in the curve showing the time change of the loss.

【0012】これは、図3に示すように、バイアス電圧
を調整することで実現される、すなわち、図3(a)に
示すように、変調器部のロスの電圧依存性において単調
にロスが増加し、かつその2次微分が正となる電圧領域
に、図3(b)に示すように、バイアス電圧Vbを設定
し、正弦波電圧をその範囲内で重畳する。その結果、図
3(c)に示すようなロスの時間変化が得られる。
This is realized by adjusting the bias voltage as shown in FIG. 3, that is, as shown in FIG. 3 (a), the voltage dependence of the loss of the modulator unit monotonically causes loss. As shown in FIG. 3B, the bias voltage Vb is set in the voltage region where the second derivative is increased and is positive, and the sine wave voltage is superposed within the range. As a result, the time change of the loss as shown in FIG. 3C is obtained.

【0013】[0013]

【発明の実施の形態】本発明の光半導体パルス光源装置
の第1の実施の形態は、ある波長域に対して利得を有す
る半導体利得部と、前記波長域に対する光吸収係数が印
加電圧に対し単調増加となる電圧範囲を有し、かつ該電
圧範囲において光吸収係数の電圧に対する2次微分が正
となる半導体変調器部が光共振器内部に配置され、前記
半導体変調器部が前記光共振器の一方の端部あるいはそ
の近傍に形成されてなることを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of an optical semiconductor pulse light source device of the present invention is a semiconductor gain section having a gain for a certain wavelength range, and an optical absorption coefficient for the wavelength range with respect to an applied voltage. A semiconductor modulator section having a voltage range that increases monotonically and having a positive second-order derivative with respect to the voltage of the optical absorption coefficient in the voltage range is disposed inside the optical resonator, and the semiconductor modulator section has the optical resonance. It is characterized in that it is formed at one end of the container or in the vicinity thereof.

【0014】本発明の光半導体パルス光源装置の第2の
実施の形態は、前記第1の実施の形態において、前記半
導体変調器部には、一定のバイアス電圧を印加する電圧
源が接続されるとともに、該一定のバイアス電圧が印加
された該半導体変調器部に、前記光共振器の光往復時間
の逆数で決まる基本周波数の半分の周波数を有する正弦
波電圧を重畳するための高周波電圧源が接続されている
ことを特徴とする。
The second embodiment of the optical semiconductor pulse light source device of the present invention is the same as the first embodiment, but a voltage source for applying a constant bias voltage is connected to the semiconductor modulator section. At the same time, a high frequency voltage source for superimposing a sine wave voltage having a half frequency of a fundamental frequency determined by the reciprocal of the optical round trip time of the optical resonator on the semiconductor modulator section to which the constant bias voltage is applied. It is characterized by being connected.

【0015】本発明の光半導体パルス光源装置の第3の
実施の形態は、利得を有する半導体利得部と、多重量子
井戸を光吸収層とする半導体変調器部が光共振器内部に
配置形成され、前記半導体変調器部が前記光共振器の一
方の端部あるいはその近傍に形成されてなる多重量子井
戸光変調器型の光半導体パルス光源装置であって、前記
半導体変調器部には、一定のバイアス電圧を印加する電
圧源が接続されるとともに、該一定のバイアス電圧が印
加された該半導体変調器部に、前記光共振器の光往復時
間の逆数で決まる基本周波数の半分の周波数を有する正
弦波電圧を重畳するための高周波電圧源が接続されてい
ることを特徴とする。
In a third embodiment of the optical semiconductor pulse light source device of the present invention, a semiconductor gain section having a gain and a semiconductor modulator section having a multiple quantum well as a light absorption layer are arranged and formed inside an optical resonator. A multi-quantum well optical modulator type optical semiconductor pulse light source device in which the semiconductor modulator section is formed at one end of the optical resonator or in the vicinity thereof, wherein the semiconductor modulator section has a constant Is connected to a voltage source for applying the bias voltage, and the semiconductor modulator section to which the constant bias voltage is applied has a frequency half the fundamental frequency determined by the reciprocal of the optical round-trip time of the optical resonator. A high-frequency voltage source for superposing a sine wave voltage is connected.

【0016】本発明の光半導体パルス光源装置は、前記
第1ないし第3のいずれかの実施の形態において、前記
共振器内に、回折格子からなる波長フィルターが設けら
れていることを特徴とする。
The optical semiconductor pulse light source device of the present invention is characterized in that, in any of the first to third embodiments, a wavelength filter made of a diffraction grating is provided in the resonator. .

【0017】また、本発明の光パルスの発生方法の第1
の実施の形態は、ある波長域に対して利得を有する半導
体利得部と、前記波長域に対する光吸収係数が印加電圧
に対し単調増加となる電圧範囲を有し、かつ該電圧範囲
において光吸収係数の電圧に対する2次微分が正となる
半導体変調器部が光共振器内部に配置され、前記半導体
変調器部が前記光共振器の一方の端部あるいはその近傍
に形成されてなる半導体パルス光源装置を用いて、前記
光共振器の光往復時間の逆数で決まる基本周波数の半分
の周波数を有する正弦波電圧を、一定のバイアス電圧が
印加された前記半導体変調器部に重畳し、前記基本周波
数で光パルスを発生させることを特徴とする。
The first method of generating an optical pulse of the present invention
The embodiment has a semiconductor gain section having a gain in a certain wavelength range and a voltage range in which the light absorption coefficient in the wavelength range monotonically increases with respect to the applied voltage, and the light absorption coefficient in the voltage range. A semiconductor pulse light source device in which a semiconductor modulator section having a positive second derivative with respect to the voltage is placed inside the optical resonator, and the semiconductor modulator section is formed at one end of the optical resonator or in the vicinity thereof. By using a sinusoidal voltage having a frequency of half the fundamental frequency determined by the reciprocal of the optical round-trip time of the optical resonator, superposed on the semiconductor modulator portion to which a constant bias voltage is applied, at the fundamental frequency. It is characterized by generating an optical pulse.

【0018】本発明の光パルスの発生方法の第2の実施
の形態は、利得を有する半導体利得部と、多重量子井戸
を光吸収層とする半導体変調器部が光共振器内部に配置
形成され、前記半導体変調器部が前記光共振器の一方の
端部あるいはその近傍に形成されてなる多重量子井戸光
変調器型の光半導体パルス光源を用いて、前記光共振器
の光往復時間の逆数で決まる基本周波数の半分の周波数
を有する正弦波電圧を、一定のバイアス電圧が印加され
た前記半導体変調器部に重畳し、前記基本周波数で光パ
ルスを発生させることを特徴とする。
In the second embodiment of the optical pulse generating method of the present invention, a semiconductor gain section having a gain and a semiconductor modulator section having a multiple quantum well as a light absorption layer are arranged and formed inside an optical resonator. , A reciprocal of the optical round-trip time of the optical resonator using a multiple quantum well optical modulator type optical semiconductor pulse light source in which the semiconductor modulator section is formed at one end of the optical resonator or in the vicinity thereof. The sine wave voltage having a half frequency of the fundamental frequency determined by is superposed on the semiconductor modulator section to which a constant bias voltage is applied, and an optical pulse is generated at the fundamental frequency.

【0019】本発明の光パルスの発生方法の第3の実施
の形態は、前記第1または第2の実施の形態において、
前記共振器内に、回折格子からなる波長フィルターを設
けることを特徴とする。
The third embodiment of the optical pulse generating method of the present invention is the same as the first or second embodiment,
A wavelength filter made of a diffraction grating is provided in the resonator.

【0020】[0020]

【実施例】【Example】

(実施例1)図4は、本発明の第1の実施例を示すもの
である。InP よりなる同一半導体基板上に、半導体利得
部2と電界吸収型変調器部1とが集積され、光共振器3
を形成している。利得部2では、井戸層がInPGaAs また
はIGaAsPからなるとともに、障壁層がInGaAsP 多重量子
井戸からなり、そのホトルミネッセンス波長は1.55ミク
ロン近傍である。変調器部1では、井戸層がInGaAsまた
はInGaAsP からなるとともに、障壁層がInGaAsP 多重量
子井戸よりなり、そのホトルミネッセンス波長は1.49ミ
クロン近傍である。変調器部1の長さは120 ミクロンで
あり、利得部2の長さは706 ミクロンである。
(Embodiment 1) FIG. 4 shows a first embodiment of the present invention. The semiconductor gain section 2 and the electro-absorption modulator section 1 are integrated on the same semiconductor substrate made of InP, and the optical resonator 3
Is formed. In the gain section 2, the well layer is made of InPGaAs or IGaAsP and the barrier layer is made of InGaAsP multiple quantum wells, and its photoluminescence wavelength is around 1.55 μm. In the modulator section 1, the well layer is made of InGaAs or InGaAsP and the barrier layer is made of InGaAsP multiple quantum wells, and its photoluminescence wavelength is around 1.49 microns. The modulator section 1 has a length of 120 microns and the gain section 2 has a length of 706 microns.

【0021】変調器部1および利得部2の上には、電極
が形成されており、この電極は50ミクロンの長さに亘り
分離されており、それぞれの電極10および11となっ
ている。共振器3の長さは876 ミクロンである。
Electrodes are formed on the modulator section 1 and the gain section 2, and these electrodes are separated by a length of 50 μm and are electrodes 10 and 11, respectively. The length of the resonator 3 is 876 microns.

【0022】この構成においては、光往復時間から決ま
る基本周波数は約48GHzとなる。この構成の光半導体
パルス光源装置において、変調器部1に、DC電圧源4
とバイアスTEE7、および高周波電源5によって、バ
イアス電圧および基本周波数の1/2 の24GHzの正弦波
電圧を重畳して加える。このとき、バイアス電圧は、図
3に示すように、比較的浅い点とする。他方、利得部2
にはDC電流源6から一定電流を加える。
In this structure, the fundamental frequency determined by the optical round trip time is about 48 GHz. In the optical semiconductor pulse light source device having this configuration, the modulator unit 1 includes a DC voltage source 4
A bias voltage and a sine wave voltage of 24 GHz, which is half the fundamental frequency, are superimposed and applied by a bias TEE 7 and a high frequency power source 5. At this time, the bias voltage is set to a relatively shallow point as shown in FIG. On the other hand, the gain unit 2
, A constant current is applied from the DC current source 6.

【0023】その結果、光共振器3の端面から、パルス
幅が3psで48GHzの光パルス列が得られた。
As a result, an optical pulse train of 48 GHz with a pulse width of 3 ps was obtained from the end face of the optical resonator 3.

【0024】(実施例2)図5は、本発明の第2の実施
例を示すものである。本実施例は、実施例1の構成に、
パルスのスペクトル幅を狭窄化するために、回折格子1
3よりなる光フィルター部12を形成した構成としてい
る。
(Embodiment 2) FIG. 5 shows a second embodiment of the present invention. This embodiment has the same structure as that of the first embodiment.
In order to narrow the spectral width of the pulse, the diffraction grating 1
The optical filter unit 12 is formed of three.

【0025】このフィルター部12により波長の拡がり
が制限され、光パルスの生成時に生じる波長チャーピン
グが抑制される。これは、長距離の光ファイバ通信にお
いて波長分散の影響を小さくするために、重要となる。
The filter 12 limits the spread of the wavelength and suppresses the wavelength chirping that occurs when the optical pulse is generated. This is important for reducing the influence of chromatic dispersion in long-distance optical fiber communication.

【0026】[0026]

【発明の効果】本発明にかかる光半導体パルス光源装置
および光パルスの発生方法によれば、パルスの繰り返し
周波数の1/2 の周波数電圧で駆動できるために、高い周
波数のパルス発生が容易になり、これまで変調器の帯域
の制限や駆動する高周波電源の制限で実現不可能であっ
た周波数が可能となった。パルスはロスが急激に変化す
る肩にかかって安定化するために、周波数f0 を少しず
らしても復元力が働き、安定なパルス発振が得られる。
According to the optical semiconductor pulse light source device and the optical pulse generating method of the present invention, since it is possible to drive at a frequency voltage of 1/2 of the pulse repetition frequency, it becomes easy to generate a high frequency pulse. Now, it has become possible to achieve frequencies that could not be realized by the limitation of the modulator band and the limitation of the driving high frequency power source. Since the pulse is stabilized by being applied to the shoulder where the loss changes abruptly, the restoring force works even if the frequency f0 is slightly shifted, and stable pulse oscillation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる光半導体パルス光源装置の基本
構成を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a basic configuration of an optical semiconductor pulse light source device according to the present invention.

【図2】本発明にかかる光半導体パルス光源装置の作用
の一つを説明するためのグラフである。
FIG. 2 is a graph for explaining one of the actions of the optical semiconductor pulse light source device according to the present invention.

【図3】本発明にかかる光半導体パルス光源装置の作用
の一つを説明するためのグラフである。
FIG. 3 is a graph for explaining one of the actions of the optical semiconductor pulse light source device according to the present invention.

【図4】本発明にかかる光半導体パルス光源装置の第1
の実施例を示す構成図である。
FIG. 4 is a first optical semiconductor pulse light source device according to the present invention.
It is a block diagram which shows the Example of.

【図5】本発明にかかる光半導体パルス光源装置の第2
の実施例を示す構成図である。
FIG. 5 is a second optical semiconductor pulse light source device according to the present invention.
It is a block diagram which shows the Example of.

【符号の説明】[Explanation of symbols]

1 半導体電界吸収型光変調器部 2 半導体利得部 3 光共振器 4 DC電圧源 5 高周波電源 6 DC電流源 7 バイアスTEE 8 変調器用多重量子井戸 10 変調器電極 11 利得部電極 12 波長フィルター部 13 回折格子 1 Semiconductor Electroabsorption Type Optical Modulator Section 2 Semiconductor Gain Section 3 Optical Resonator 4 DC Voltage Source 5 High Frequency Power Supply 6 DC Current Source 7 Bias TEE 8 Multiple Quantum Well for Modulator 10 Modulator Electrode 11 Gain Section Electrode 12 Wavelength Filter Section 13 Diffraction grating

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 ▲みつ▼夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yamamoto ▲ Mitsu ▼ Husband 1-16, Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ある波長域に対して利得を有する半導体
利得部と、前記波長域に対する光吸収係数が印加電圧に
対し単調増加となる電圧範囲を有し、かつ該電圧範囲に
おいて光吸収係数の電圧に対する2次微分が正となる半
導体変調器部が光共振器内部に配置され、前記半導体変
調器部が前記光共振器の一方の端部あるいはその近傍に
形成されてなることを特徴とする光半導体パルス光源装
置。
1. A semiconductor gain section having a gain in a certain wavelength range, and a voltage range in which the light absorption coefficient in the wavelength range monotonically increases with respect to an applied voltage, and the light absorption coefficient of the light absorption coefficient in the voltage range. A semiconductor modulator section having a positive second derivative with respect to a voltage is arranged inside the optical resonator, and the semiconductor modulator section is formed at one end of the optical resonator or in the vicinity thereof. Optical semiconductor pulse light source device.
【請求項2】 前記半導体変調器部には、一定のバイア
ス電圧を印加する電圧源が接続されるとともに、該一定
のバイアス電圧が印加された該半導体変調器部に、前記
光共振器の光往復時間の逆数で決まる基本周波数の半分
の周波数を有する正弦波電圧を重畳するための高周波電
圧源が接続されていることを特徴とする請求項1に記載
の光半導体パルス光源装置。
2. A voltage source for applying a constant bias voltage is connected to the semiconductor modulator section, and the semiconductor modulator section to which the constant bias voltage is applied is connected to a light source of the optical resonator. The optical semiconductor pulse light source device according to claim 1, further comprising a high-frequency voltage source connected to superimpose a sine wave voltage having a half frequency of a fundamental frequency determined by the reciprocal of the round-trip time.
【請求項3】 利得を有する半導体利得部と、多重量子
井戸を光吸収層とする半導体変調器部が光共振器内部に
配置形成され、前記半導体変調器部が前記光共振器の一
方の端部あるいはその近傍に形成されてなる多重量子井
戸光変調器型の光半導体パルス光源装置であって、前記
半導体変調器部には、一定のバイアス電圧を印加する電
圧源が接続されるとともに、該一定のバイアス電圧が印
加された該半導体変調器部に、前記光共振器の光往復時
間の逆数で決まる基本周波数の半分の周波数を有する正
弦波電圧を重畳するための高周波電圧源が接続されてい
ることを特徴とする光半導体パルス光源装置。
3. A semiconductor gain section having a gain and a semiconductor modulator section having a multi-quantum well as an optical absorption layer are arranged and formed inside an optical resonator, and the semiconductor modulator section is one end of the optical resonator. Is a multi-quantum well optical modulator type optical semiconductor pulse light source device formed in or near the portion, and a voltage source for applying a constant bias voltage is connected to the semiconductor modulator portion, A high frequency voltage source for superimposing a sine wave voltage having a half frequency of a fundamental frequency determined by the reciprocal of the optical round trip time of the optical resonator is connected to the semiconductor modulator section to which a constant bias voltage is applied. An optical semiconductor pulse light source device characterized in that
【請求項4】 請求項1ないし3のいずれかに記載の光
半導体パルス光源装置において、前記共振器内に、回折
格子からなる波長フィルターが設けられていることを特
徴とする光半導体パルス光源装置。
4. The optical semiconductor pulse light source device according to claim 1, wherein a wavelength filter made of a diffraction grating is provided in the resonator. .
【請求項5】 ある波長域に対して利得を有する半導体
利得部と、前記波長域に対する光吸収係数が印加電圧に
対し単調増加となる電圧範囲を有し、かつ該電圧範囲に
おいて光吸収係数の電圧に対する2次微分が正となる半
導体変調器部が光共振器内部に配置され、前記半導体変
調器部が前記光共振器の一方の端部あるいはその近傍に
形成されてなる半導体パルス光源装置を用いて、前記光
共振器の光往復時間の逆数で決まる基本周波数の半分の
周波数を有する正弦波電圧を、一定のバイアス電圧が印
加された前記半導体変調器部に重畳し、前記基本周波数
で光パルスを発生させることを特徴とする光パルスの発
生方法。
5. A semiconductor gain section having a gain in a certain wavelength range, and a voltage range in which the light absorption coefficient in the wavelength range monotonically increases with respect to an applied voltage, and the light absorption coefficient in the voltage range is increased. A semiconductor pulse light source device in which a semiconductor modulator section having a positive second derivative with respect to a voltage is arranged inside an optical resonator, and the semiconductor modulator section is formed at one end of the optical resonator or in the vicinity thereof. Using a sinusoidal voltage having a frequency of half the fundamental frequency determined by the reciprocal of the optical round-trip time of the optical resonator, is superimposed on the semiconductor modulator portion to which a constant bias voltage is applied, and light is emitted at the fundamental frequency. A method of generating an optical pulse, which comprises generating a pulse.
【請求項6】 利得を有する半導体利得部と、多重量子
井戸を光吸収層とする半導体変調器部が光共振器内部に
配置形成され、前記半導体変調器部が前記光共振器の一
方の端部あるいはその近傍に形成されてなる多重量子井
戸光変調器型の光半導体パルス光源を用いて、前記光共
振器の光往復時間の逆数で決まる基本周波数の半分の周
波数を有する正弦波電圧を、一定のバイアス電圧が印加
された前記半導体変調器部に重畳し、前記基本周波数で
光パルスを発生させることを特徴とする光パルスの発生
方法。
6. A semiconductor gain section having a gain and a semiconductor modulator section having a multiple quantum well as a light absorption layer are arranged and formed inside an optical resonator, and the semiconductor modulator section is one end of the optical resonator. Using a multi-quantum well optical modulator type optical semiconductor pulse light source formed in the part or in the vicinity thereof, a sinusoidal voltage having a frequency of half the fundamental frequency determined by the reciprocal of the optical round-trip time of the optical resonator, A method of generating an optical pulse, characterized in that the optical pulse is superposed on the semiconductor modulator section to which a constant bias voltage is applied, and the optical pulse is generated at the fundamental frequency.
【請求項7】 請求項5または6に記載の光パルスの発
生方法において、前記共振器内に、回折格子からなる波
長フィルターを設けることを特徴とする光パルスの発生
方法。
7. The optical pulse generating method according to claim 5, wherein a wavelength filter made of a diffraction grating is provided in the resonator.
JP7193822A 1995-07-28 1995-07-28 Optical semiconductor pulse light source and light pulse generating method Pending JPH0943556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193822A JPH0943556A (en) 1995-07-28 1995-07-28 Optical semiconductor pulse light source and light pulse generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193822A JPH0943556A (en) 1995-07-28 1995-07-28 Optical semiconductor pulse light source and light pulse generating method

Publications (1)

Publication Number Publication Date
JPH0943556A true JPH0943556A (en) 1997-02-14

Family

ID=16314331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193822A Pending JPH0943556A (en) 1995-07-28 1995-07-28 Optical semiconductor pulse light source and light pulse generating method

Country Status (1)

Country Link
JP (1) JPH0943556A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224328A (en) * 2002-01-30 2003-08-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor pulse light source device
JP2008034657A (en) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd Method of generating carrier suppressed optical pulse train, and mode synchronous semiconductor laser for achieving the same
US7561603B2 (en) 2004-12-14 2009-07-14 Electronics And Telecommunications Research Institute Integrated semiconductor light source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224328A (en) * 2002-01-30 2003-08-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor pulse light source device
US7561603B2 (en) 2004-12-14 2009-07-14 Electronics And Telecommunications Research Institute Integrated semiconductor light source
JP2008034657A (en) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd Method of generating carrier suppressed optical pulse train, and mode synchronous semiconductor laser for achieving the same

Similar Documents

Publication Publication Date Title
US6031851A (en) Mode-locked semiconductor laser and method of driving the same
US5586138A (en) Multiple-cavity semiconductor laser capable of generating ultrashort light pulse train with ultrahigh repetition rate
Heil et al. TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback
Sooudi et al. A novel scheme for two-level stabilization of semiconductor mode-locked lasers using simultaneous optical injection and optical feedback
US20050226285A1 (en) Harmonic generator, method for driving harmonic generator, image-displaying apparatus, image-forming apparatus, optical storage apparatus that employs harmonic generator
Sooudi et al. Injection-locking properties of InAs/InP-based mode-locked quantum-dash lasers at 21 GHz
CN1983749A (en) Passive mode-locked synchronization semiconductor laser, and optical clock signal extracting device
KR20070047292A (en) Apparatus, system, and method for wavelength conversion of mode-locked extended cavity surface emitting semiconductor lasers
JP4807514B2 (en) Optical clock extraction apparatus and method
US5761228A (en) Optical clock regenerator
WO1997039504A1 (en) Tunable gigahertz all-optical clock generator
JP2002033548A (en) Method and apparatus for driving mode-locked semiconductor laser
JP2010113084A (en) Optical signal processing device
JPH0943556A (en) Optical semiconductor pulse light source and light pulse generating method
Arahira et al. Generation of synchronized subterahertz optical pulse trains by repetition-frequency multiplication of a subharmonic synchronous mode-locked semiconductor laser diode using fiber dispersion
JP2697640B2 (en) Optical clock generator
JPH0595152A (en) Semiconductor short optical pulse generator and generating method for short optical pulse
JP3022437B2 (en) Mode-locked semiconductor laser
Ramirez et al. Optical linewidth and RF phase noise reduction of a chip-scale CPM laser using COEO multi-tone injection locking
Roos et al. Using an injection-locked diode laser to pump a cw Raman laser
JP3237727B2 (en) Communication pulse light source device
JP2004158590A (en) Semiconductor pulsed light source
Lim et al. Nonlinear dynamics of optically injected self-pulsating laser diodes
Katagiri et al. Passively mode-locked micromechanically-tunable semiconductor lasers
JPH05160519A (en) Very short light pulse generating device