JPH0942875A - Heat transfer pipe - Google Patents

Heat transfer pipe

Info

Publication number
JPH0942875A
JPH0942875A JP7193501A JP19350195A JPH0942875A JP H0942875 A JPH0942875 A JP H0942875A JP 7193501 A JP7193501 A JP 7193501A JP 19350195 A JP19350195 A JP 19350195A JP H0942875 A JPH0942875 A JP H0942875A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
absorbing liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7193501A
Other languages
Japanese (ja)
Inventor
Kotaro Tsuri
弘太郎 釣
Hidemitsu Kameoka
秀光 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7193501A priority Critical patent/JPH0942875A/en
Publication of JPH0942875A publication Critical patent/JPH0942875A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To promote a dispersion of absorbing liquid toward an axial direction of a pipe and further promote an agitating action of an absorbing liquid film by a method wherein both banks at both sides of a liquid accumulating recessed part are formed with some slots spaced apart by a predetermined distance in an axial direction of a pipe and more shallow than the recessed part in a direction across the recessed part, and a central part of the lower surface of an outer surface is formed with a projection part for removing liquid which is continuous with an axial direction of the pipe. SOLUTION: A heat transfer pipe 11 is formed with a liquid accumulating recessed part 13 which is axially continuous with a central part of an upper surface of an outer surface under a state of horizontal arrangement. Both sides of this recessed part 13 form banks 15 and the banks 15 are formed with some slots 17 spaced apart by a predetermined distance across the recessed part 13 in an axial direction of the pipe. The slots 17 are formed to be more shallow than the recessed part 13. In addition, the central part of the lower surface of the outer surface is formed with a projection 19 for use in removing liquid which is continuous in an axial direction of the pipe. With such an arrangement as above, it is possible to perform a sufficient promotion of a spreading of absorbing liquid in an axial direction of the pipe and an agitating action of the absorption liquid film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、吸収式冷凍機の吸
収器や再生器などに使用される伝熱管に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used for an absorber or a regenerator of an absorption refrigerator.

【0002】[0002]

【従来の技術】吸収式冷凍機は、基本的には蒸発器、吸
収器、再生器、凝縮器の4つの熱交換器で構成されてい
る。このうち吸収器は伝熱面積および容積が最も大き
く、吸収器の性能が冷凍機としての性能に与える影響は
大きい。一般に吸収式冷凍機の吸収器は、水平に配置さ
れた多数本の伝熱管を備えており、この伝熱管群の上部
より例えば臭化リチウム水溶液のような吸収液を散布し
て、この吸収液が伝熱管外表面を流下する間に、冷媒蒸
気を吸収すると同時に、伝熱管内を流れる冷却水と熱交
換が行われるようになっている。
2. Description of the Related Art An absorption refrigerator is basically composed of four heat exchangers, an evaporator, an absorber, a regenerator and a condenser. Of these, the absorber has the largest heat transfer area and volume, and the performance of the absorber has a great influence on the performance as a refrigerator. Generally, the absorber of an absorption chiller is equipped with a large number of heat transfer tubes arranged horizontally, and an absorption liquid such as an aqueous solution of lithium bromide is sprayed from the upper part of this heat transfer tube group to obtain this absorption liquid. While flowing down the outer surface of the heat transfer tube, the refrigerant vapor is absorbed and at the same time, heat exchange is performed with the cooling water flowing in the heat transfer tube.

【0003】この熱交換を効率よく行わせるためには、
冷媒蒸気を吸収液に吸収させる物質移動現象を促進させ
ることが必要であり、そのためには吸収液が伝熱管外表
面で効率よく広がるようにしなければならない。また吸
収液は冷媒蒸気を吸収する際に吸収液膜の攪乱現象が生
じることが知られており、この攪乱現象を効率的に促進
させることも必要である。
In order to efficiently perform this heat exchange,
It is necessary to promote the mass transfer phenomenon that causes the absorption liquid to absorb the refrigerant vapor, and for that purpose, the absorption liquid must be spread efficiently on the outer surface of the heat transfer tube. Further, it is known that the absorbing liquid causes a disturbing phenomenon of the absorbing liquid film when absorbing the refrigerant vapor, and it is also necessary to efficiently promote this disturbing phenomenon.

【0004】吸収液が伝熱管外表面で、特に管軸方向に
広がるように工夫された伝熱管としては、例えば「外表
面の上部に管軸方向に連続した凹面を形成すると共に、
外表面の周方向に多数の突条または溝を形成した伝熱
管」が公知である(実開昭48−47050号公報)。
この伝熱管は、散布された吸収液が伝熱管上面の凹面に
溜まって管軸方向に広がり、その凹面よりあふれた吸収
液が周方向に形成された突条または溝に沿って周方向に
広がることで、伝熱管外表面全体を吸収液で濡らし、冷
媒蒸気の吸収能力を高めたものである。
As a heat transfer tube designed so that the absorbing liquid spreads on the outer surface of the heat transfer tube, particularly in the tube axial direction, for example, "a concave surface continuous in the tube axial direction is formed at the upper part of the outer surface,
A heat transfer tube having a large number of ridges or grooves formed on the outer surface in the circumferential direction is known (Japanese Utility Model Publication No. 48-47050).
In this heat transfer tube, the dispersed absorption liquid is accumulated in the concave surface of the upper surface of the heat transfer tube and spreads in the axial direction of the tube, and the absorption liquid overflowing from the concave surface spreads in the circumferential direction along the ridges or grooves formed in the circumferential direction. By so doing, the entire outer surface of the heat transfer tube is wetted with the absorbing liquid to enhance the ability to absorb the refrigerant vapor.

【0005】また吸収液の攪乱作用を促進させる効果を
ねらった伝熱管としては、例えば「外表面に多数の細か
ならせん溝を形成した伝熱管」が公知である(実開昭5
7−100161号公報)。この伝熱管は、外表面に付
着した吸収液をらせん溝に沿って管軸方向に広げると同
時に、多数のらせん溝の凹凸によって吸収液膜の攪乱作
用を促進させようとするものである。
As a heat transfer tube aiming at the effect of promoting the disturbing action of the absorbing liquid, for example, "a heat transfer tube having a large number of fine spiral grooves formed on the outer surface" is known (Actual exploitation 5).
7-100161). This heat transfer tube is intended to spread the absorbing liquid adhering to the outer surface in the pipe axial direction along the spiral groove, and at the same time to promote the disturbing action of the absorbing liquid film by the unevenness of the numerous spiral grooves.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0006】しかしながら前者の伝熱管は、上面に管軸
方向に形成された凹面によって吸収液の管軸方向への広
がりを期待できるが、凹面からあふれた吸収液が周方向
の突条または溝に沿ってスムーズに流下してしまうた
め、吸収液膜の攪乱作用が期待できない。
However, in the former heat transfer tube, the concave surface formed in the tube axial direction on the upper surface can be expected to spread the absorbing liquid in the axial direction of the tube, but the absorbing liquid overflowing from the concave surface is formed in the circumferential ridges or grooves. Since it will flow down smoothly along it, the disturbing action of the absorbing liquid film cannot be expected.

【0007】また後者の伝熱管は、外表面の上半部では
吸収液がらせん溝に沿って流れて管軸方向に広がるが、
外表面の下半部では吸収液は自重で下へ流れてしまうた
め、らせん溝に沿う流れが出来にくい。このため吸収液
の管軸方向への広がりが十分に得られない。
In the latter heat transfer tube, the absorbing liquid flows along the spiral groove in the upper half of the outer surface and spreads in the axial direction of the tube.
In the lower half of the outer surface, the absorbing liquid flows downward due to its own weight, which makes it difficult to flow along the spiral groove. Therefore, the spread of the absorbing liquid in the tube axis direction cannot be sufficiently obtained.

【0008】また吸収式冷凍機の吸収器においては、水
平な伝熱管が上下方向に多段に配置されるため、上段の
伝熱管から滴下した吸収液がその下の段の伝熱管の上に
落ちて再びその伝熱管の外表面で広がるような状態にす
ることが望ましいが、従来の伝熱管は吸収液の滴下位置
(液離れ位置)が一定しないため、その下の段の伝熱管
の外表面で吸収液の広がり方に偏りやバラツキが発生し
やすい。
Further, in the absorber of the absorption refrigerating machine, since the horizontal heat transfer tubes are arranged in multiple stages in the vertical direction, the absorbing liquid dropped from the upper heat transfer tubes falls on the heat transfer tubes in the lower step. It is desirable that the heat transfer tube be spread again on the outer surface of the heat transfer tube. However, in the conventional heat transfer tube, the absorption liquid drip position (liquid separation position) is not constant, so the outer surface of the heat transfer tube in the stage below it As a result, the way in which the absorbing liquid spreads tends to be uneven or uneven.

【0009】以上のような問題は吸収式冷凍機の滴下液
膜式再生器などにも存在する。滴下液膜式再生器は、前
述の吸収器と同様に伝熱管群が水平に配置され、吸収器
内で冷媒蒸気を吸収して薄くなった希吸収液を伝熱管外
表面に滴下させると共に、伝熱管内部に温水または水蒸
気を流し、希吸収液を伝熱管外表面で沸騰させて濃吸収
液に変換するものである。したがって滴下液膜式再生器
でも、伝熱管上での吸収液の広がりと、冷媒蒸気が吸収
液から追い出されるときの攪乱作用を促進させること
が、高性能化へのカギとなる。
The above problems also exist in the dropping liquid film type regenerator of the absorption refrigerator. The dripping liquid film type regenerator is similar to the above-mentioned absorber in that the heat transfer tube group is arranged horizontally, and the diluted absorption liquid that has become thin by absorbing the refrigerant vapor in the absorber is dropped onto the outer surface of the heat transfer tube. Hot water or steam is caused to flow inside the heat transfer tube to boil the rare absorption liquid on the outer surface of the heat transfer tube to convert it into a concentrated absorption liquid. Therefore, even in the dropping liquid film type regenerator, it is a key to high performance to promote the spreading of the absorbing liquid on the heat transfer tube and the disturbing action when the refrigerant vapor is expelled from the absorbing liquid.

【0010】本発明の目的は、以上のような問題点に鑑
み、吸収液の管軸方向への広がりと吸収液膜の攪乱作用
を十分に促進させることができると共に、下面側の液離
れ位置を安定させて、その下の段の伝熱管の適正位置に
吸収液を滴下させることができる伝熱管を提供すること
にある。
In view of the above-mentioned problems, an object of the present invention is to sufficiently promote the spreading of the absorbing liquid in the tube axis direction and the disturbing action of the absorbing liquid film, and the liquid separating position on the lower surface side. It is to provide a heat transfer tube that stabilizes the heat transfer tube and allows the absorbing liquid to drip at an appropriate position of the heat transfer tube in the lower stage.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
本発明の伝熱管は、水平に配置された状態で、外表面の
上面中央部に管軸方向に連続する液溜め用の凹部を有
し、この凹部の両側の堤部に管軸方向に所定の間隔をお
いて凹部を横切る方向の凹部より浅いスロットを有し、
外表面の下面中央部に管軸方向に連続する液離れ用の凸
部を有することを特徴とするものである(請求項1)。
In order to achieve this object, the heat transfer tube of the present invention has a recess for liquid storage which is continuous in the axial direction of the tube in the central portion of the upper surface of the outer surface when it is horizontally arranged. However, the bank portion on both sides of this recess has a slot shallower than the recess in the direction crossing the recess at a predetermined interval in the pipe axis direction,
It is characterized in that it has a convex portion for liquid separation which is continuous in the tube axis direction in the central portion of the lower surface of the outer surface (Claim 1).

【0012】本発明の伝熱管は上記のような構成である
ため、伝熱管上に滴下した吸収液は上面の凹部に溜ま
り、その凹部に沿って管軸方向に十分に広がる。凹部が
吸収液で満たされると、吸収液の一部は堤部に形成され
たスロットを通って、それ以外は堤部を乗り越えて、管
の周方向に流れ出す。これにより伝熱管の外表面全体に
吸収液を広げることができる。
Since the heat transfer tube of the present invention has the above-mentioned structure, the absorbing liquid dropped on the heat transfer tube collects in the concave portion on the upper surface, and sufficiently spreads along the concave portion in the axial direction of the tube. When the concave portion is filled with the absorbing liquid, a part of the absorbing liquid flows through the slots formed in the bank and over the other portions, flows over in the circumferential direction of the pipe, overcoming the bank. This allows the absorbing liquid to spread over the entire outer surface of the heat transfer tube.

【0013】また凹部から周方向に流れ出る吸収液の膜
は、スロットを通る部分の膜厚が堤部を乗り越える部分
の膜厚より厚くなるので、この膜厚の差が管の側面を流
下するときに表面張力によって吸収液の攪乱作用を引き
起こす。
Further, the film of the absorbing liquid flowing out from the concave portion in the circumferential direction is thicker in the portion passing through the slot than in the portion passing over the bank portion. Therefore, when the difference in the film thickness flows down the side surface of the pipe. The surface tension causes the disturbance of the absorption liquid.

【0014】さらに、管の両側面を流下した吸収液は、
下面中央部に形成された凸部に集まり、そこから滴下す
る。このため滴下位置が安定し、滴下した吸収液は確実
に、その下の段の伝熱管の上面中央部の凹部で受け止め
られる。このため下段の伝熱管でも吸収液の偏りやバラ
ツキのない状態で熱交換が行われることになる。
Further, the absorbing liquid flowing down on both sides of the pipe is
It gathers on the convex portion formed in the central portion of the lower surface and drops from there. Therefore, the dropping position is stable, and the absorbed liquid that has been dropped can be reliably received by the recessed portion in the center of the upper surface of the heat transfer tube in the lower stage. Therefore, even in the lower heat transfer tube, heat exchange is performed in a state where there is no unevenness or variation in the absorbing liquid.

【0015】本発明の伝熱管では、以上のような吸収液
の流れが得られるため、吸収能力が向上し、伝熱性能の
向上を図ることができる。
In the heat transfer tube of the present invention, since the flow of the absorbing liquid as described above is obtained, the absorption capacity is improved and the heat transfer performance can be improved.

【0016】伝熱管の上面中央部に管軸方向に形成する
凹部の深さは1.0〜3.0mm程度にすることが望ま
しい。あまり浅すぎると吸収液が管軸方向に広がる前に
凹部からあふれ出てしまう。また深すぎると吸収液が溜
まる量が多すぎて、冷凍機の停止時に伝熱管上に残った
吸収液が結晶化してしまい、冷凍機に悪影響を及ぼすこ
とになる。
The depth of the recess formed in the central portion of the upper surface of the heat transfer tube in the tube axial direction is preferably about 1.0 to 3.0 mm. If it is too shallow, the absorbent will overflow from the recess before spreading in the tube axis direction. On the other hand, if the depth is too deep, the amount of the absorbing liquid accumulated will be too large, and the absorbing liquid remaining on the heat transfer tubes will crystallize when the refrigerator is stopped, which will adversely affect the refrigerator.

【0017】また凹部の両側の堤部に形成するスロット
の深さは0.5〜2.0mm程度にすることが望まし
い。あまり浅すぎるとスロット部を通る吸収液膜と堤部
を乗り越える吸収液膜の厚さの差が小さくなり、攪乱作
用が十分に得られない。また深すぎると、凹部内の吸収
液がスロットのみから流れ出し、堤部の頂部付近が濡れ
なくなって、実効伝熱面積が少なくなってしまう。
Further, it is desirable that the depth of the slots formed on the bank portions on both sides of the recess is about 0.5 to 2.0 mm. If it is too shallow, the difference between the thickness of the absorbent film passing through the slot and the thickness of the absorbent film passing over the bank is small, and the disturbing action cannot be sufficiently obtained. On the other hand, if it is too deep, the absorbing liquid in the recess flows out only from the slot, the vicinity of the top of the bank is not wetted, and the effective heat transfer area is reduced.

【0018】また凹部の両側の堤部に形成するスロット
は、凹部に溜まった吸収液を管の周方向に流し出す働き
をするものであるから、管の周方向(凹部と直交する方
向)に形成することが望ましい。ただしスロットの方向
は管の周方向に対し多少傾いていてもよく、例えば周方
向に対し10°以内の傾きであれば性能的に問題はな
い。
Further, the slots formed on the bank portions on both sides of the concave portion serve to let the absorbing liquid accumulated in the concave portion flow out in the circumferential direction of the pipe, and therefore, in the circumferential direction of the pipe (direction orthogonal to the concave portion). It is desirable to form. However, the direction of the slot may be slightly inclined with respect to the circumferential direction of the tube, and if the inclination is within 10 ° with respect to the circumferential direction, there is no problem in performance.

【0019】なお、管の両側面には管軸方向またはそれ
に近い方向にのびる複数本の突条または溝を形成するこ
とが望ましい(請求項2)。このような突条または溝を
形成すると、伝熱面積を増加させることができると共
に、その突条または溝によって流下する吸収液膜の攪乱
作用が促進される。突条または溝の方向は管軸と同方向
にすることが好ましいが、管軸方向に対し10°以内で
あれば若干傾いていてもよい。
It is desirable that a plurality of ridges or grooves extending in the tube axis direction or a direction close to the tube axis be formed on both side surfaces of the tube (claim 2). When such protrusions or grooves are formed, the heat transfer area can be increased, and the disturbing action of the absorbing liquid film flowing down is promoted by the protrusions or grooves. The direction of the ridge or groove is preferably the same as the tube axis, but may be slightly inclined with respect to the tube axis direction within 10 °.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0021】〔実施形態1〕図1は本発明の第1の実施
形態を示す。この伝熱管11は、水平配置の状態で、外
表面の上面中央部に管軸方向に連続する液溜め用の凹部
13が形成されている。この凹部13の両側は堤部15
となっており、この堤部15には、管軸方向に所定の間
隔をおいて、凹部13を横切る方向のスロット17が形
成されている。このスロット17は凹部13より浅く形
成されている。また外表面の下面中央部には管軸方向に
連続する液離れ用の凸部19が形成されている。以上の
ような形状であるため、伝熱管11の横断面は、ほぼハ
ート形であり、凹部13の中央と凸部19の中央を通る
鉛直面に関し左右対称である。
[First Embodiment] FIG. 1 shows a first embodiment of the present invention. The heat transfer tube 11 has a recess 13 for holding a liquid, which is continuous in the axial direction of the tube, in the central portion of the upper surface of the outer surface when the heat transfer tube 11 is horizontally arranged. Both sides of the recess 13 are bank portions 15
The bank portion 15 is formed with slots 17 extending in the direction crossing the recess 13 at predetermined intervals in the pipe axis direction. The slot 17 is formed shallower than the recess 13. A convex portion 19 for separating the liquid is formed in the central portion of the lower surface of the outer surface and is continuous in the tube axis direction. Because of the above-described shape, the cross section of the heat transfer tube 11 is substantially heart-shaped, and is symmetrical with respect to the vertical plane passing through the center of the concave portion 13 and the center of the convex portion 19.

【0022】図2は吸収式冷凍機の吸収器内で図1の伝
熱管11が上下方向に多段に配置されている状態を示
す。吸収液が散布されて伝熱管11にかかると、吸収液
は伝熱管11の上面の凹部13に溜まり、凹部13に沿
って管軸方向に広がる。凹部13が吸収液21で満たさ
れると、吸収液21の一部はスロット17を通って、そ
れ以外は堤部15を乗り越えて、伝熱管11の周方向に
流れ出す。これにより吸収液21は伝熱管11の外表面
全体に広がる。なお伝熱管11内には冷却水23が流れ
ている。
FIG. 2 shows a state in which the heat transfer tubes 11 of FIG. 1 are arranged in multiple stages in the vertical direction within the absorber of the absorption refrigerator. When the absorbing liquid is sprayed and applied to the heat transfer tube 11, the absorbing liquid is collected in the recess 13 on the upper surface of the heat transfer tube 11 and spreads along the recess 13 in the tube axial direction. When the concave portion 13 is filled with the absorbing liquid 21, a part of the absorbing liquid 21 passes through the slots 17 and the other portions pass over the bank portion 15 and flow out in the circumferential direction of the heat transfer tube 11. As a result, the absorbing liquid 21 spreads over the entire outer surface of the heat transfer tube 11. The cooling water 23 flows in the heat transfer tube 11.

【0023】凹部13から流れ出た吸収液21の膜は、
堤部15を乗り越えた部分の膜厚とスロット17を通過
した部分の膜厚に差があることから、表面張力によって
吸収液の攪乱作用が促進される。このため吸収液は伝熱
管11の両側面を流下するときに冷媒蒸気を効率よく吸
収すると共に、伝熱管11内を流れる冷却水により冷却
される。
The film of the absorbing liquid 21 flowing out from the recess 13 is
Since there is a difference between the film thickness of the portion that has passed over the bank 15 and the film thickness of the portion that has passed through the slot 17, the disturbing action of the absorbing liquid is promoted by the surface tension. Therefore, the absorbing liquid efficiently absorbs the refrigerant vapor when flowing down both side surfaces of the heat transfer tube 11, and is cooled by the cooling water flowing in the heat transfer tube 11.

【0024】さらに伝熱管11の両側面を流下した吸収
液は、下面中央部の凸部19に集まり、そこから液滴2
1aとなって落下する。上段の伝熱管11の凸部19
は、その下の段の伝熱管11の凹部13の真上に位置す
るから、凸部19から滴下した吸収液は確実に、その下
の段の伝熱管11の凹部13に受け止められる。したが
って下段の伝熱管でも上記と同様な現象が繰り返され
る。
Further, the absorbing liquid flowing down on both side surfaces of the heat transfer tube 11 gathers on the convex portion 19 in the central portion of the lower surface, and the droplet 2 is discharged from there.
It becomes 1a and falls. The convex portion 19 of the upper heat transfer tube 11
Is located directly above the concave portion 13 of the heat transfer tube 11 in the lower stage, so that the absorbing liquid dropped from the convex portion 19 is reliably received by the concave portion 13 of the heat transfer tube 11 in the lower stage. Therefore, the same phenomenon as above is repeated in the lower heat transfer tube.

【0025】〔実施形態2〕図3は本発明の第2の実施
形態を示す。この伝熱管11は、外表面の両側面に管軸
方向にのびる複数本の突条25を形成したものである。
それ以外は図1の伝熱管と同じであるので、同一部分に
は同一符号を付してある。上記のような突条25を形成
すると、管側面を流下する吸収液が突条25によってさ
らに管軸方向に広げられると共に、攪乱作用が促進され
る。突条25の代わりに溝を形成しても同様である。
[Second Embodiment] FIG. 3 shows a second embodiment of the present invention. The heat transfer tube 11 has a plurality of ridges 25 extending in the tube axis direction on both sides of the outer surface.
Other than that, since it is the same as the heat transfer tube of FIG. 1, the same reference numerals are given to the same portions. When the protrusion 25 is formed as described above, the absorbing liquid flowing down the side surface of the pipe is further spread by the protrusion 25 in the pipe axial direction, and the disturbing action is promoted. The same applies when a groove is formed instead of the protrusion 25.

【0026】図4は図3の伝熱管を製造する方法の一例
を示す。伝熱管11の素材となる管は断面円形の管であ
り、その中に断面ほぼハート形のプラグ27を挿入する
と共に、外周に3つのローラーダイス29A、29B、
29Cを押し当てて、各ローラーダイス29A、29
B、29Cをモーターで回転させることにより成形加工
を行う。
FIG. 4 shows an example of a method of manufacturing the heat transfer tube of FIG. The tube used as the material for the heat transfer tube 11 is a tube having a circular cross section, into which a plug 27 having a substantially heart-shaped cross section is inserted, and three roller dies 29A, 29B are provided on the outer circumference.
29C, and press each roller die 29A, 29
Molding is performed by rotating B and 29C with a motor.

【0027】管の上面に凹部13と堤部15を形成する
ローラーダイス29Aは、突起31を有していて、この
突起31でスロット17(図3参照)を形成するように
なっている。また管の両側面と下面を成形する2つのロ
ーラーダイス29B、29Cは、突条25に対応する周
面を有している。
The roller die 29A forming the concave portion 13 and the bank portion 15 on the upper surface of the tube has a protrusion 31, and the protrusion 31 forms the slot 17 (see FIG. 3). Further, the two roller dies 29B and 29C for molding both side surfaces and the lower surface of the tube have a peripheral surface corresponding to the protrusion 25.

【0028】なお管の両端部は、ローラーダイス29
A、29B、29Cによる加工を行わずに断面円形のま
まとする。これは熱交換器の組立のためである。他の実
施形態の伝熱管も同様の製造方法で製造することができ
る。
Both ends of the pipe are provided with roller dies 29.
The cross section remains circular without being processed by A, 29B, and 29C. This is due to the assembly of the heat exchanger. The heat transfer tubes of other embodiments can be manufactured by the same manufacturing method.

【0029】〔実施形態3〕図5は本発明の第3の実施
形態を示す。この伝熱管11は、管上面の堤部15に、
深いスロット17Aと浅いスロット17Bを交互に形成
したものである。深いスロット17Aでもその深さは凹
部13の深さより浅くなっている。それ以外は図3の伝
熱管と同じであるので、同一部分には同一符号を付して
ある。上記のように堤部15に深さの異なるスロット1
7A、17Bを形成すると、管側面に流れ出す吸収液の
膜厚の種類が多くなるので、攪乱作用をさらに促進する
ことができる。
[Third Embodiment] FIG. 5 shows a third embodiment of the present invention. The heat transfer tube 11 is attached to the bank 15 on the upper surface of the tube.
The deep slots 17A and the shallow slots 17B are alternately formed. The depth of the deep slot 17A is smaller than the depth of the recess 13. Other than that, it is the same as the heat transfer tube of FIG. 3, and thus the same portions are denoted by the same reference numerals. As described above, the slots 1 having different depths in the bank portion 15
When 7A and 17B are formed, the number of types of film thickness of the absorbing liquid flowing out to the side surface of the tube increases, so that the disturbing action can be further promoted.

【0030】〔実施形態4〕図6は本発明の第4の実施
形態を示す。この伝熱管11は、管外表面の凹凸に対応
して管内面にも凹凸33を形成したものである。管内面
の凹凸33は管外表面の凹凸と反対になっている。それ
以外は図3の伝熱管と同じであるので、同一部分には同
一符号を付してある。上記のように管内面に凹凸33を
形成すると、管壁の厚さがほぼ一様になると共に、管内
表面の伝熱面積が大きくなるため、管内から管外への伝
熱性能が向上する。
[Fourth Embodiment] FIG. 6 shows a fourth embodiment of the present invention. The heat transfer tube 11 has irregularities 33 formed on the inner surface of the tube corresponding to the irregularities on the outer surface of the tube. The irregularities 33 on the inner surface of the tube are opposite to the irregularities on the outer surface of the tube. Other than that, it is the same as the heat transfer tube of FIG. 3, and thus the same portions are denoted by the same reference numerals. When the unevenness 33 is formed on the inner surface of the tube as described above, the thickness of the tube wall becomes substantially uniform and the heat transfer area of the inner surface of the tube increases, so that the heat transfer performance from the inside to the outside of the tube is improved.

【0031】〔実施形態5〕図7は本発明の第5の実施
形態を示す。この伝熱管11は、外表面の両側面に管軸
方向に近い方向(管軸方向に対し10°以内の方向)に
斜めにのびる多数本の突条35を形成したものである。
それ以外は図1の伝熱管と同じであるので、同一部分に
は同一符号を付してある。このような構造でも、管側面
を流下する吸収液の管軸方向への広がりと攪乱作用を生
み出すことができる。なお上記のような突条35は切削
加工により形成することができる。
[Fifth Embodiment] FIG. 7 shows a fifth embodiment of the present invention. The heat transfer tube 11 has a large number of protrusions 35 formed on both side surfaces of the outer surface and extending obliquely in a direction close to the tube axis direction (direction within 10 ° with respect to the tube axis direction).
Other than that, since it is the same as the heat transfer tube of FIG. 1, the same reference numerals are given to the same portions. Even with such a structure, the absorption liquid flowing down the side surface of the pipe can be spread in the axial direction of the pipe and a disturbing action can be produced. The ridge 35 as described above can be formed by cutting.

【0032】[0032]

【実施例】次の3種類の伝熱管について、吸収器に使用
した場合の伝熱試験を行った。 図1の伝熱管(実施例1):材質はリン脱酸銅、加
工前の素管の外径19.05mm、凹部13の深さ1.
0mm、スロット17の方向は凹部13の方向に対し直
角、スロット17の深さ0.7mm、スロット17の間
隔10mm、凸部19の下端の曲率半径1mm。 図5の伝熱管(実施例2):スロット17Aの深さ
0.7mm、スロット17Bの深さ0.5mm、突条2
5の溝底からの高さ0.5mm、突条25の本数は一側
面につき3本、その他は実施例1と同じ。 実開昭57−100161号公報記載の伝熱管(従
来例):材質と素管は実施例1と同じ、溝の管軸に対す
るねじれ角度30°、溝深さ0.35mm、溝数61
本。
Example A heat transfer test was performed on the following three types of heat transfer tubes when used in an absorber. Heat transfer tube of FIG. 1 (Example 1): The material is phosphorus deoxidized copper, the outer diameter of the raw tube before processing is 19.05 mm, and the depth of the recess 13 is 1.
0 mm, the direction of the slot 17 is perpendicular to the direction of the concave portion 13, the depth of the slot 17 is 0.7 mm, the interval between the slots 17 is 10 mm, and the radius of curvature of the lower end of the convex portion 19 is 1 mm. Heat transfer tube of FIG. 5 (Example 2): depth of slot 17A 0.7 mm, depth of slot 17B 0.5 mm, ridge 2
The height from the groove bottom of No. 5 is 0.5 mm, the number of the ridges 25 is three per one side, and the others are the same as in the first embodiment. Heat transfer tube described in Japanese Utility Model Laid-Open No. 57-100161 (conventional example): The material and the raw tube are the same as in Example 1, the twist angle of the groove with respect to the tube axis is 30 °, the groove depth is 0.35 mm, and the number of grooves is 61.
Book.

【0033】試験機は図8のとおりである。41は蒸発
器であり、内部には伝熱管37を2列5段に配管し、上
下の伝熱管37を相互に連通して、これらに水を通し、
これらの伝熱管37には散布パイプ45より冷媒(純
水)を散布した。39は吸収器であり、内部には供試伝
熱管11を1列5段に配管し、上下の伝熱管11を相互
に連通して、これらに冷却水を通し、これらの供試伝熱
管11には散布パイプ43より吸収液(臭化リチウム水
溶液)を散布した。47は吸収器39内で冷媒蒸気を吸
収して希釈された吸収液を溜める希溶液槽である。この
希溶液槽47内の吸収液を濃溶液槽49に供給し、濃溶
液槽49で臭化リチウムを加えて濃度を調整し、濃度調
整後の吸収液を、ポンプ53により配管51、散布パイ
プ43を通じて供試伝熱管11へ散布した。
The test machine is as shown in FIG. Reference numeral 41 denotes an evaporator, in which heat transfer tubes 37 are arranged in two rows and five stages, the upper and lower heat transfer tubes 37 are connected to each other, and water is passed through them.
Refrigerant (pure water) was sprayed from these spray pipes 45 to these heat transfer tubes 37. Reference numeral 39 denotes an absorber, in which the test heat transfer tubes 11 are arranged in five rows in one row, the upper and lower heat transfer tubes 11 are communicated with each other, and cooling water is allowed to pass through them. The absorbing liquid (lithium bromide aqueous solution) was sprayed through the spray pipe 43. Reference numeral 47 is a dilute solution tank for absorbing the refrigerant vapor in the absorber 39 and storing the diluted absorption liquid. The absorbing solution in the dilute solution tank 47 is supplied to the concentrated solution tank 49, lithium bromide is added in the concentrated solution tank 49 to adjust the concentration, and the absorbing solution after the concentration is adjusted by the pump 53 through the pipe 51 and the spray pipe. It was sprayed on the heat transfer tube 11 through 43.

【0034】試験条件は次のとおりである。 吸収液:LiBr水溶液 入口濃度:58±0.5wt% 入口温度:40±1℃ 流量:50〜150kg/h 界面活性剤:添加せず 吸収液散布装置 孔径:1.5mm 間隔:24mm 吸収器冷却水 入口温度:28±0.3℃ 流速:1m/s 吸収器および蒸発器内圧力:15±0.5mmHg 供試伝熱管の配列:長さ500mmの伝熱管を上下方向に5段1列The test conditions are as follows. Absorbing liquid: LiBr aqueous solution Inlet concentration: 58 ± 0.5 wt% Inlet temperature: 40 ± 1 ° C. Flow rate: 50 to 150 kg / h Surfactant: No addition Absorbing liquid spraying device Pore diameter: 1.5 mm Interval: 24 mm Absorber cooling Water inlet temperature: 28 ± 0.3 ° C. Flow velocity: 1 m / s Pressure inside absorber and evaporator: 15 ± 0.5 mmHg Arrangement of test heat transfer tubes: Heat transfer tubes of length 500 mm are arranged in 5 rows in one row in the vertical direction

【0035】以上の試験を行った結果、各供試伝熱管の
熱通過率は図9のとおりであった。この結果によれば、
本発明の実施例1および2の伝熱管は従来例のらせん溝
付き伝熱管より伝熱性能が優れていることが分かる。
As a result of the above-mentioned tests, the heat transfer coefficient of each test heat transfer tube was as shown in FIG. According to this result,
It can be seen that the heat transfer tubes of Examples 1 and 2 of the present invention have better heat transfer performance than the conventional heat transfer tube with the spiral groove.

【0036】以上の説明は、本発明の伝熱管を吸収式冷
凍機の吸収器に使用した場合であるが、吸収式冷凍機の
滴下液膜式再生器においても伝熱管が同様に使用される
ので、本発明の伝熱管は滴下液膜式再生器の伝熱管とし
ても使用可能である。
The above description is for the case where the heat transfer tube of the present invention is used in the absorber of the absorption refrigerator, but the heat transfer tube is also used in the dropping liquid film type regenerator of the absorption refrigerator. Therefore, the heat transfer tube of the present invention can also be used as a heat transfer tube of a dropping liquid film type regenerator.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、吸
収液を伝熱管の外表面全体に効率よく広がらせることが
できると共に、吸収液膜の攪乱作用を十分に促進させる
ことができ、また上段の伝熱管から滴下する吸収液が確
実にその下の段の伝熱管の凹部に受け止められて十分な
吸収液の広がりと攪乱作用を何段にも繰り返すことがで
きる。したがって伝熱性能の高い伝熱管が得られ、冷凍
機の小型化または能力アップに寄与することができる。
As described above, according to the present invention, the absorbing liquid can be efficiently spread over the entire outer surface of the heat transfer tube, and the disturbing action of the absorbing liquid film can be sufficiently promoted. Further, the absorbing liquid dripping from the upper heat transfer tube is surely received by the concave portion of the lower heat transfer tube so that the sufficient absorbing liquid spreading and the disturbing action can be repeated many times. Therefore, a heat transfer tube having high heat transfer performance can be obtained, which can contribute to downsizing or improvement in capacity of the refrigerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の伝熱管の第1の実施形態を示す斜視
図。
FIG. 1 is a perspective view showing a first embodiment of a heat transfer tube of the present invention.

【図2】 図1の伝熱管の使用状態を示す断面図。FIG. 2 is a sectional view showing a usage state of the heat transfer tube of FIG.

【図3】 本発明の伝熱管の第2の実施形態を示す斜視
図。
FIG. 3 is a perspective view showing a second embodiment of the heat transfer tube of the present invention.

【図4】 図3の伝熱管の製造方法を示す断面図。FIG. 4 is a sectional view showing a method of manufacturing the heat transfer tube of FIG.

【図5】 本発明の伝熱管の第3の実施形態を示す斜視
図。
FIG. 5 is a perspective view showing a third embodiment of the heat transfer tube of the present invention.

【図6】 本発明の伝熱管の第4の実施形態を示す斜視
図。
FIG. 6 is a perspective view showing a fourth embodiment of the heat transfer tube of the present invention.

【図7】 本発明の伝熱管の第5の実施形態を示す斜視
図。
FIG. 7 is a perspective view showing a fifth embodiment of the heat transfer tube of the present invention.

【図8】 伝熱管の試験装置を示す説明図。FIG. 8 is an explanatory diagram showing a heat transfer tube testing device.

【図9】 伝熱管の試験結果を示すグラフ。FIG. 9 is a graph showing test results of heat transfer tubes.

【符号の説明】[Explanation of symbols]

11:伝熱管 13:凹部 15:堤部 17、17A、17B:スロット 19:凸部 21:吸収液 23:冷却水 25:突条 11: Heat transfer pipe 13: Recessed portion 15: Bank portion 17, 17A, 17B: Slot 19: Convex portion 21: Absorbing liquid 23: Cooling water 25: Ridge

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水平に配置されて使用される伝熱管であっ
て、外表面の上面中央部に管軸方向に連続する液溜め用
の凹部が形成され、この凹部の両側の堤部に管軸方向に
所定の間隔をおいて凹部を横切る方向の凹部より浅いス
ロットが形成され、外表面の下面中央部に管軸方向に連
続する液離れ用の凸部が形成されていることを特徴とす
る伝熱管。
1. A heat transfer tube which is horizontally arranged and used, wherein a recess for liquid storage which is continuous in the axial direction of the tube is formed in the central portion of the upper surface of the outer surface, and the tube is provided on both sides of the recess. A slot that is shallower than the concave portion in a direction crossing the concave portion at a predetermined interval in the axial direction is formed, and a convex portion for liquid separation that is continuous in the axial direction of the pipe is formed in the center of the lower surface of the outer surface. Heat transfer tube.
【請求項2】外表面の両側面に管軸方向またはそれに近
い方向にのびる複数本の突条または溝が形成されている
ことを特徴とする請求項1記載の伝熱管。
2. The heat transfer tube according to claim 1, wherein a plurality of ridges or grooves extending in the tube axis direction or a direction close to the tube axis are formed on both side surfaces of the outer surface.
JP7193501A 1995-07-28 1995-07-28 Heat transfer pipe Pending JPH0942875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193501A JPH0942875A (en) 1995-07-28 1995-07-28 Heat transfer pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193501A JPH0942875A (en) 1995-07-28 1995-07-28 Heat transfer pipe

Publications (1)

Publication Number Publication Date
JPH0942875A true JPH0942875A (en) 1997-02-14

Family

ID=16309105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193501A Pending JPH0942875A (en) 1995-07-28 1995-07-28 Heat transfer pipe

Country Status (1)

Country Link
JP (1) JPH0942875A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210020288A (en) * 2019-08-14 2021-02-24 주식회사 주원이앤에스 the heat recovery system of bathroom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210020288A (en) * 2019-08-14 2021-02-24 주식회사 주원이앤에스 the heat recovery system of bathroom

Similar Documents

Publication Publication Date Title
US6655451B2 (en) Heat transfer tube for falling film type evaporator
US5573062A (en) Heat transfer tube for absorption refrigerating machine
JP3315785B2 (en) Heat transfer tube for absorber
KR100466773B1 (en) Absorption Chiller
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
CN1128331C (en) Heat exchanging tube for absorber and method of manufacturing same
JPH0942875A (en) Heat transfer pipe
KR100454210B1 (en) Absorption refrigerator
KR890004392B1 (en) Air cooled absorption refrigeration system
JPH06147784A (en) Heat exchanger tube
JP2962866B2 (en) Absorber
JPH0518633A (en) Absorption refrigerating apparatus
JPH06307788A (en) Heat transfer wall, heat transfer tube, heat exchanger, and absorption/cooler/heater
JP2934160B2 (en) Heat transfer tubes for absorbers and regenerators
JPS636364A (en) Heat transfer tube for absorber
JPH0961080A (en) Turbo freezer
JP3756980B2 (en) Plate type absorber for absorption refrigerator
JPH058424Y2 (en)
JPS61114092A (en) Heat exchanger
JPS5852988A (en) Condensing heat transfer pipe
JPH06159862A (en) Absorber for freezer
JPH04126964A (en) Absorption device of absorption type freezing cycle
JPH0714777Y2 (en) Absorber
JPH09145279A (en) Heat transfer pipe for absorber device
JP3391170B2 (en) Heat transfer tube and absorber for absorber