JPH0942184A - Mixed flow type fluid machine - Google Patents

Mixed flow type fluid machine

Info

Publication number
JPH0942184A
JPH0942184A JP18999195A JP18999195A JPH0942184A JP H0942184 A JPH0942184 A JP H0942184A JP 18999195 A JP18999195 A JP 18999195A JP 18999195 A JP18999195 A JP 18999195A JP H0942184 A JPH0942184 A JP H0942184A
Authority
JP
Japan
Prior art keywords
mixed flow
impeller
stage
stage mixed
flow impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18999195A
Other languages
Japanese (ja)
Other versions
JP3637426B2 (en
Inventor
Tomoyoshi Okamura
共由 岡村
Masahiro Takeura
正博 竹浦
Jinji Kimura
仁治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18999195A priority Critical patent/JP3637426B2/en
Publication of JPH0942184A publication Critical patent/JPH0942184A/en
Application granted granted Critical
Publication of JP3637426B2 publication Critical patent/JP3637426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize the miniaturization of a mixed flow type fluid machine without impairing pump efficiency, cavitation performance and the stabilization of head discharge curve. SOLUTION: A mixed flow type fluid machine is composed of the first stage mixed flow impeller 2 and the second stage mixed flow impeller 3 which are axially concentric and accommodated in a casing 1, and provided with a rotating direction reversing mechanism for reversing the second stage mixed flow impeller 3 in an opposite rotating direction relative to the rotating direction of the first stage mixed flow impeller 2, and the outlet diameter of the second stage mixed flow impeller 3 is formed smaller than its inlet diameter. Since the second stage mixed flow impeller 3 is rotated in an opposite rotating direction, and the whole lift and discharge quantity are executed by two impellers having each different stage, the diameter of impeller can be lessened, and moreover a stable head curve can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排水機用ポンプ及び火
力発電所や原子力発電所で冷却水を循環させる循環水ポ
ンプ等に係り、特に小型化しかつ揚程曲線を安定化する
のに好適な斜流形流体機械に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drainage pump and a circulating water pump for circulating cooling water in a thermal power plant or a nuclear power plant, and is particularly suitable for downsizing and stabilizing a head curve. A mixed flow type fluid machine.

【0002】[0002]

【従来の技術】従来の斜流形流体機械である斜流ポンプ
の一例を図12に示す。斜流ポンプに吸い込まれた水
は、吸込ケーシング21、羽根車22、案内羽根29及
び吐出ケーシング30を経て吐出口31より吐出され
る。羽根車22は、原動機である電動機32に連結され
た駆動軸33により駆動され、吸い込み流れにエネルギ
ーを与えて圧力上昇させる。案内羽根39は静止流路
で、羽根車22で得られた流れの周方向残留成分を圧力
に変換する機能を有している。斜流ポンプを小型化する
要求は、従来にも増して高まっている。ホンプを小型化
するには、水力学的観点より、羽根車を高速回転させ
る、又は羽根出口角度を大きくして羽根車羽根の負荷を
大きくする等の方策が考えられるが、これらの方策は以
下のような問題点が存在する。
FIG. 12 shows an example of a conventional mixed flow pump which is a mixed flow type fluid machine. The water sucked by the mixed flow pump is discharged from the discharge port 31 through the suction casing 21, the impeller 22, the guide blades 29, and the discharge casing 30. The impeller 22 is driven by a drive shaft 33 connected to an electric motor 32, which is a prime mover, and imparts energy to the suction flow to increase the pressure. The guide vanes 39 are static flow paths and have a function of converting circumferential residual components of the flow obtained by the impeller 22 into pressure. The demand for miniaturization of mixed flow pumps is increasing more than ever before. From the hydraulic point of view, in order to reduce the size of the hoop, measures such as rotating the impeller at high speed or increasing the blade outlet angle to increase the load on the impeller blade can be considered. There are such problems.

【0003】羽根車の高速化は、流速の増大によりキャ
ビテーションの発生が促進されるため、キャビテーショ
ン性能の向上やキャビテーションによる壊食や振動・騒
音の増大対策が不可欠であり、その実現は極めて困難で
ある。そして羽根車羽根の負荷を大きくすると、ポンプ
の揚程曲線に不安定部が発生しやすく、低流量域におけ
る運転が困難となる。また、過大な負荷の増大は流れの
剥離による損失増大がもたらされ、ポンプ効率が低下す
る。
Since speeding up the impeller accelerates the occurrence of cavitation due to an increase in flow velocity, it is essential to improve cavitation performance and to take measures against erosion and vibration / noise increase due to cavitation, which is extremely difficult to realize. is there. When the load on the impeller blades is increased, an unstable portion is likely to occur in the pump head curve, which makes it difficult to operate in the low flow rate region. In addition, an excessive increase in load leads to an increase in loss due to flow separation, which lowers pump efficiency.

【0004】また図13に示す斜流ポンプの場合、駆動
軸6の軸方向に同芯の第1段斜流羽根車2aと第2段斜
流羽根車2bとをケーシング1aに収容してなり、第1
段斜流羽根車2a及び第1段整流板4eの吐出側に第2
段斜流羽根車2b及び第2段整流板4fにより多段化す
ると、ポンプのケーシング1aの外径を小さくできる
が、軸方向長さが長くなり、ポンプ構造上の問題が新た
に生ずる場合が多い。したがって、これらの問題解決
は、効率、キャビテーション性能、揚程曲線の安定性及
び構造等を犠牲にすることなく実現するのは極めて困難
であり、従来ポンプをさらに小型化することは極めて困
難であった。
In the case of the mixed flow pump shown in FIG. 13, the first stage mixed flow impeller 2a and the second stage mixed flow impeller 2b, which are concentric with each other in the axial direction of the drive shaft 6, are housed in the casing 1a. , First
The second mixed flow impeller 2a and the first-stage straightening plate 4e are provided with a second
When the multi-stage mixed flow impeller 2b and the second-stage straightening plate 4f are used in multiple stages, the outer diameter of the casing 1a of the pump can be reduced, but the axial length becomes long, which often causes new problems in the pump structure. . Therefore, it is extremely difficult to solve these problems without sacrificing efficiency, cavitation performance, stability of the lift curve, structure, etc., and it has been extremely difficult to further downsize the conventional pump. .

【0005】[0005]

【発明が解決しようとする課題】従来の斜流形流体機械
においては、小型化するため、羽根車を高速回転させる
と、揚程曲線に不安定部が発生しやすく、キャビテーシ
ョンの発生が促進されて低流量域における運転が困難と
なる問題点がある。また、羽根車羽根の負荷を大きくす
ると、過大な負荷の増大は流れの剥離による損失増大が
もたらされ、ポンプ効率が低下する問題点がある。さら
に羽根車を多段化すると、外径を小さくできるが軸方向
長さが長くなり、ポンプ構造上の問題点が新たに生ずる
問題点がある。
In the conventional mixed flow type fluid machine, when the impeller is rotated at a high speed for the purpose of downsizing, an unstable portion is likely to occur in the lift curve, which promotes the occurrence of cavitation. There is a problem that it becomes difficult to operate in the low flow rate range. Further, when the load on the impeller blades is increased, an excessive increase in load causes an increase in loss due to flow separation, which causes a problem that pump efficiency is reduced. Further, when the number of stages of the impeller is increased, the outer diameter can be reduced, but the axial length becomes long, which causes a new problem in the structure of the pump.

【0006】本発明の目的は、ポンプ効率、キャビテー
ション性能及び揚程曲線の安定化等を犠牲にすることな
く小型化を実現することのできる斜流形流体機械を提供
することにある。
It is an object of the present invention to provide a mixed flow type fluid machine which can be miniaturized without sacrificing pump efficiency, cavitation performance and stabilization of a lift curve.

【0007】[0007]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る斜流形流体機械は、軸方向に同芯の第
1段斜流羽根車と第2段斜流羽根車とをケーシングに収
容してなる斜流形流体機械において、第1段斜流羽根車
の回転方向に対し、第2段斜流羽根車を逆回転方向に反
転する回転方向反転機構を設け、第2段斜流羽根車は、
出口径をその入口径より小さく形成されている構成とす
る。
To achieve the above object, a mixed flow type fluid machine according to the present invention comprises a first-stage mixed flow impeller and a second-stage mixed flow impeller which are coaxial with each other. In a mixed flow type fluid machine in which a casing is housed in a casing, a rotation direction reversing mechanism for reversing the second stage mixed flow impeller in a reverse rotation direction with respect to the rotation direction of the first stage mixed flow impeller is provided. The multi-stage mixed flow impeller is
The diameter of the outlet is smaller than the diameter of the inlet.

【0008】そして軸方向に同芯の第1段斜流羽根車と
第2段斜流羽根車とをケーシングに収容してなる斜流形
流体機械において、第1段斜流羽根車の回転方向に対
し、第2段斜流羽根車を逆回転方向に反転する回転方向
反転機構を設け、第2段斜流羽根車は、その子午面流路
が第1段斜流羽根車の子午面流路に連続されるととも
に、下流に向けて次第に駆動軸中心より離れるように外
向きに形成されている構成でもよい。
In a mixed flow type fluid machine in which a first-stage mixed flow impeller and a second-stage mixed flow impeller, which are coaxial with each other in the axial direction, are housed in a casing, the rotation direction of the first-stage mixed flow impeller On the other hand, a rotation direction reversing mechanism that reverses the second stage mixed flow impeller in the reverse rotation direction is provided, and the meridional flow passage of the second stage mixed flow impeller has a meridional flow path of the first stage mixed flow impeller. The structure may be formed such that it is continuous with the road and is formed outward so as to gradually separate from the center of the drive shaft toward the downstream side.

【0009】また回転方向反転機構は、駆動軸と該駆動
軸を挿通した駆動中空軸とを備え、入力軸を原動機に連
結するとともに出力軸を駆動軸及び駆動中空軸の他端に
連結して形成され、駆動軸の一端に第1段斜流羽根車を
連結するとともに、駆動中空軸の一端に第2段斜流羽根
車を連結している構成でもよい。
The rotation direction reversing mechanism includes a drive shaft and a drive hollow shaft having the drive shaft inserted therethrough, and connects the input shaft to the prime mover and the output shaft to the drive shaft and the other end of the drive hollow shaft. The first stage mixed flow impeller may be connected to one end of the drive shaft and the second stage mixed flow impeller may be connected to one end of the drive hollow shaft.

【0010】さらに駆動軸は、駆動中空軸に軸支される
とともに、駆動中空軸を介して軸受ハウジングに軸支さ
れ、軸受ハウジングは、ケーシングに整流羽根を経由し
て支持されている構成でもよい。
Further, the drive shaft may be rotatably supported by the drive hollow shaft and also supported by the bearing housing through the drive hollow shaft, and the bearing housing may be supported by the casing through the flow straightening vanes. .

【0011】そして第1段斜流羽根車と第2段斜流羽根
車との間に、静止案内羽根を設置した構成でもよい。
A stationary guide vane may be installed between the first stage mixed flow impeller and the second stage mixed flow impeller.

【0012】また回転方向反転機構は、第1段斜流羽根
車と第2段斜流羽根車との間に設置され、第2段斜流羽
根車に連結する駆動軸を有し、駆動軸を経由して原動機
に連結している構成でもよい。
The rotation direction reversing mechanism is installed between the first stage mixed flow impeller and the second stage mixed flow impeller, and has a drive shaft connected to the second stage mixed flow impeller. It may be configured to be connected to the prime mover via.

【0013】さらに回転方向反転機構は、第1段斜流羽
根車と第2段斜流羽根車との間に設けられ、第1段斜流
羽根車と連結する原動機と第2段斜流羽根車と連結する
原動機とを互いに対向して配置し、それぞれの原動機を
ハブに収納して形成されている構成でもよい。
Further, the rotation direction reversing mechanism is provided between the first stage mixed flow impeller and the second stage mixed flow impeller, and is connected to the first stage mixed flow impeller and the second stage mixed flow vane. A configuration may also be adopted in which a vehicle and a prime mover connected to each other are arranged to face each other, and each prime mover is housed in a hub.

【0014】そして回転方向反転機構は、第1段斜流羽
根車及び第2段斜流羽根車のそれぞれの駆動軸に連結さ
れかつ互いに対向して設けられる傘歯車と、それぞれの
駆動軸と直交しかつそれぞれの傘歯車と歯合する第2の
傘歯車と、第2の傘歯車の入力軸とよりなり、入力軸を
原動機に連結している構成でもよい。
The rotating direction reversing mechanism is connected to the drive shafts of the first-stage mixed flow impeller and the second-stage mixed flow impeller and is provided to face each other, and a bevel gear orthogonal to the respective drive shafts. However, it may be configured to include a second bevel gear that meshes with each bevel gear and an input shaft of the second bevel gear, and the input shaft is connected to the prime mover.

【0015】また第1段斜流羽根車及び第2段斜流羽根
車は、いずれか一方が可動翼で形成されている構成でも
よい。
Further, one of the first-stage mixed flow impeller and the second-stage mixed flow impeller may be constituted by movable blades.

【0016】さらにターボ形流体機械においては。前記
いずれか一つの斜流形流体機械の技術を適用してなる構
成とする。
Further in the turbo type fluid machine. It is configured by applying any one of the mixed flow type fluid machine technologies.

【0017】[0017]

【作用】通常の斜流ポンプにおいて、羽根車の回転によ
り得られる単段ポンプの全揚程Hthは、角運動量の変化
より(1)式で得られる。羽根車入口で予旋回がないと
すると、Cu1=0であるから全揚程Hthは(2)式にな
る。
In the normal mixed flow pump, the total head Hth of the single-stage pump obtained by the rotation of the impeller is obtained by the equation (1) from the change of the angular momentum. If there is no pre-turning at the impeller inlet, then Cu 1 = 0, so the total head Hth is given by equation (2).

【0018】[0018]

【数1】 [Equation 1]

【0019】[0019]

【数2】 [Equation 2]

【0020】図5は第1段斜流羽根車及び第2段斜流羽
根車流路の円錐面における羽根出入口の相対流れW1
4を示した図である。一方、図6は図5に示す円錐面
を展開して示した流路の羽根の速度三角形を示す。図5
及び図6に示すように、第1段斜流羽根車及び第2段斜
流羽根車を備え、かつ第2段斜流羽根車を第1段斜流羽
根車の回転方向と逆回転方向に反転すると、第2段斜流
羽根車入口に逆予旋回Cu3が与えられることになる。
このような二重反転ポンプの場合の理論揚程は同様に
(3)式で得られる。ポンプ入口には予旋回がなく(C
u1=0)、またポンプ出口でも残留旋回がなく(Cu2
0)、かつCu2=Cu3、U2=U3に設定すると、(3)
式より(4)式が求められる。
FIG. 5 shows the relative flow W 1 -W at the blade inlet and outlet in the conical surface of the flow passages of the first stage mixed flow impeller and the second stage mixed flow impeller.
W 4 is a diagram showing a. On the other hand, FIG. 6 shows a velocity triangle of the blades of the flow path shown by expanding the conical surface shown in FIG. FIG.
As shown in FIG. 6, the first-stage mixed flow impeller and the second-stage mixed flow impeller are provided, and the second-stage mixed flow impeller is rotated in a direction opposite to the rotation direction of the first-stage mixed flow impeller. When reversed, the reverse pre-turn Cu 3 is applied to the inlet of the second stage mixed flow impeller.
The theoretical head in the case of such a counter-rotating pump is similarly obtained by the equation (3). There is no pre-turning at the pump inlet (C
u 1 = 0), and there is no residual swirl at the pump outlet (Cu 2 =
0), and Cu 2 = Cu 3 and U 2 = U 3 are set, (3)
Equation (4) is obtained from the equation.

【0021】[0021]

【数3】 (Equation 3)

【0022】[0022]

【数4】 (Equation 4)

【0023】すなわち、(2)式と(4)式とより、二
重反転式羽根車の第2段羽根車入口流れの周方向成分C
u3を、通常の1段羽根車の出口流れの周方向成分Cu2
同じであると仮定すると、羽根車出口周速U2は1/2
となり、回転数が同一であると羽根車径は1/2とな
り、大巾に小型化できることになる。又は羽根車径が同
じ場合、羽根車出口流れの周方向成分Cu2は1/2に設
定できる。羽根の負荷を大巾に小さくできるため、揚程
曲線の安定した羽根車を容易に得ることができる。言い
替えれば従来単段の羽根車で行っていた仕事を2段の羽
根車で行うことにより、1段の羽根当りの仕事量を小さ
くできるため、羽根車を小さくすることが可能となる。
また羽根車の仕事量すなわち負荷を小さくできるので、
安定した揚程曲線を得ることができる。第2段羽根車入
口の相対速度は逆予旋回のため、大きな値となり静圧低
下によるキャビテーションの発生が懸念されるが、第1
段羽根車で十分な昇圧がなされているため、キャビテー
ションが発生することはない。
That is, from the formulas (2) and (4), the circumferential component C of the second stage impeller inlet flow of the counter-rotating impeller is calculated.
Assuming that u 3 is the same as the circumferential component Cu 2 of the outlet flow of a normal single-stage impeller, the impeller outlet peripheral speed U 2 is 1/2.
When the number of rotations is the same, the diameter of the impeller is halved, and the size can be greatly reduced. Alternatively, when the impeller diameter is the same, the circumferential component Cu 2 of the impeller outlet flow can be set to 1/2. Since the blade load can be greatly reduced, an impeller with a stable lift curve can be easily obtained. In other words, by performing the work conventionally performed by the single-stage impeller by the two-stage impeller, the work amount per one-stage impeller can be reduced, so that the impeller can be downsized.
Also, since the work amount, that is, the load of the impeller can be reduced,
A stable lift curve can be obtained. Since the relative speed at the entrance of the second-stage impeller is reverse pre-turning, it becomes a large value, which may cause cavitation due to a decrease in static pressure.
Cavitation does not occur because the pressure is sufficiently increased by the step impeller.

【0024】さらに原理上、案内羽根を設けなくても、
ポンプ出口流れにおいて残留旋回成分をなくすことがで
きるため、2段の羽根車を適用してもポンプ全体の軸方
向長さは1段のポンプと同等、あるいはそれ以下とする
ことが可能である。
Further, in principle, even if guide vanes are not provided,
Since the residual swirl component can be eliminated in the pump outlet flow, even if a two-stage impeller is applied, the axial length of the entire pump can be made equal to or shorter than that of the one-stage pump.

【0025】[0025]

【実施例】本発明の第1の実施例を図1を参照しながら
説明する。図1に示すように、軸方向に同芯の第1段斜
流羽根車2と第2段斜流羽根車3とをケーシング1に収
納してなる斜流形流体機械であって、第1段斜流羽根車
2の回転方向に対し、第2段斜流羽根車3を逆回転方向
に反転する回転方向反転機構(反転歯車装置)15を設
け、第2段斜流羽根車3の出口径をその入口径より小さ
く形成した構成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, a mixed flow type fluid machine in which a first-stage mixed-flow impeller 2 and a second-stage mixed-flow impeller 3 which are concentric in the axial direction are housed in a casing 1. A rotation direction reversing mechanism (reversing gear device) 15 for reversing the second-stage mixed flow impeller 3 in the reverse rotation direction with respect to the rotation direction of the second-stage mixed flow impeller 2 is provided. This is a configuration in which the diameter is formed smaller than the inlet diameter.

【0026】すなわち、吸込みベルマウスとケーシング
ライナとが一体になった吸込ケーシング(ケーシング)
1と、第1段斜流羽根車2と、第2段斜流羽根車3と、
第1段及び第2段斜流羽根車2,3に駆動トルクを与え
る同芯2重の駆動中空軸5及び駆動軸6と、軸受ハウジ
ング4bを支える整流板(整流羽根)4aとよりなる。
第1段斜流羽根車2と、第2段斜流羽根車3の回転方向
は互いに逆回転方向になるように設定され、羽根形状
は、図6に示すように第1段斜流羽根車2の入口では予
旋回成分がなく、第2段斜流羽根車3の出口では残留旋
回成分がないように設定されている。羽根車の外径は、
通常の単段羽根車の外径より小さい外径になるように設
定してある。
That is, the suction casing (casing) in which the suction bell mouth and the casing liner are integrated.
1, a first stage mixed flow impeller 2, a second stage mixed flow impeller 3,
It is composed of a concentric double drive hollow shaft 5 and a drive shaft 6 that apply a drive torque to the first-stage and second-stage mixed flow impellers 2 and 3, and a straightening vane (rectifying vane) 4a that supports the bearing housing 4b.
The rotation directions of the first-stage mixed-flow impeller 2 and the second-stage mixed-flow impeller 3 are set to be opposite to each other, and the blade shapes are as shown in FIG. It is set so that there is no pre-swirling component at the inlet of No. 2 and no residual swirling component at the outlet of the second stage mixed flow impeller 3. The outer diameter of the impeller is
The outer diameter is smaller than that of a normal single-stage impeller.

【0027】図2に軸受ハウジングのA・A断面を示
す。駆動中空軸5は外軸であり、内軸として駆動中空軸
5と反対方向に回転する駆動軸6が挿通されている。駆
動中空軸5と駆動軸6との間に軸受7が設けられ、また
駆動中空軸5と軸受ハウジング4bとの間の中空部には
軸受8が設けられている。したがって駆動軸6は、駆動
中空軸5に軸受7で軸支されるとともに、駆動中空軸5
を介して軸受ハウジング4bに軸受8で軸支され、軸受
ハウジング4bは、ケーシング1に整流羽根4aを経由
して支持されている。駆動中空軸5と駆動軸6とは、図
3及び図4に示すように、原動機12に継手16を介し
て接続された反転歯車装置15の出力軸の2重軸継手1
4に接続されており、同芯で回転方向が異なる駆動中空
軸5及び駆動軸6の2軸に動力が伝達されるようになっ
ている。
FIG. 2 shows a cross section taken along the line AA of the bearing housing. The drive hollow shaft 5 is an outer shaft, and a drive shaft 6 that rotates in a direction opposite to the drive hollow shaft 5 is inserted as an inner shaft. A bearing 7 is provided between the drive hollow shaft 5 and the drive shaft 6, and a bearing 8 is provided in the hollow portion between the drive hollow shaft 5 and the bearing housing 4b. Therefore, the drive shaft 6 is rotatably supported by the drive hollow shaft 5 by the bearing 7, and
The bearing housing 4b is rotatably supported by the bearing 8 through the bearing housing 4b, and the bearing housing 4b is supported by the casing 1 through the flow straightening vanes 4a. The drive hollow shaft 5 and the drive shaft 6 are, as shown in FIGS. 3 and 4, a double shaft joint 1 of an output shaft of a reversing gear device 15 connected to a prime mover 12 via a joint 16.
4 are connected to each other, and the power is transmitted to two shafts of a drive hollow shaft 5 and a drive shaft 6 which are concentric and have different rotation directions.

【0028】反転歯車装置15は、例えば遊星歯車機構
により形成され、駆動中空軸5に連結される外歯車の太
陽歯車15aと、一方の面が駆動軸6に連結されかつ他
方の面が継手16を介して原動機12に連結される内歯
車の太陽歯車15bと、太陽歯車15aと太陽歯車15
bとに歯合し自転しながら太陽歯車15bの周りを公転
する複数の遊星歯車15cと、各遊星歯車15cを軸支
するャリア15dとよりなり、駆動軸6の回転方向に対
して駆動中空軸5を逆回転方向に反転可能な構造であ
る。
The reversing gear device 15 is formed of, for example, a planetary gear mechanism, and is an external gear sun gear 15a connected to the drive hollow shaft 5, and one surface is connected to the drive shaft 6 and the other surface is a joint 16. Sun gear 15b, which is an internal gear, which is connected to the prime mover 12 via
It is composed of a plurality of planetary gears 15c revolving around the sun gear 15b while meshing with b and rotating, and a carrier 15d pivotally supporting each planetary gear 15c. 5 is a structure in which 5 can be reversed in the reverse rotation direction.

【0029】このように構成された二重反転形斜流ポン
プでは、羽根車が回転すると羽根車出入口の速度三角形
は、図6に示す形状となり、第2段羽根車出口では残留
旋回成分がないような速度C4で羽根車より出ていく。
その際、第1段斜流羽根車では(5)式に示す理論揚程
が得られ、かつ第2段斜流羽根車では(6)式に示す理
論揚程が得られるため、ポンプ出口では、(5)式及び
(6)式の和である(7)式に示す理論揚程が得られ
る。
In the counter-rotating mixed flow pump constructed as described above, when the impeller rotates, the velocity triangle at the inlet and outlet of the impeller becomes the shape shown in FIG. 6, and there is no residual swirl component at the outlet of the second stage impeller. It leaves the impeller at such a speed C 4 .
At that time, the theoretical lift shown in equation (5) is obtained with the first-stage mixed flow impeller and the theoretical lift shown in equation (6) is obtained with the second-stage mixed flow impeller, so that at the pump outlet, The theoretical lift shown in equation (7), which is the sum of equations (5) and (6), is obtained.

【0030】[0030]

【数5】 (Equation 5)

【0031】[0031]

【数6】 (Equation 6)

【0032】[0032]

【数7】 (Equation 7)

【0033】本実施例によれば、通常の単段ポンプに比
べ、2段ポンプで同じ揚程、吐出量を出すため、単段あ
たりの負荷が小さくなり羽根車径を小さくできる。一
方、従来と同一羽根車径とすると、羽根車の負荷が小さ
いため、低流量域においても羽根車羽根では剥離や失速
を生じにくく、揚程曲線は不安定部のない右下がりの曲
線となる。
According to the present embodiment, the two-stage pump produces the same lift and discharge amount as compared with the normal single-stage pump, so that the load per single stage is reduced and the impeller diameter can be reduced. On the other hand, if the diameter of the impeller is the same as that of the conventional one, the impeller load is small, so that separation and stall are unlikely to occur in the impeller blade even in the low flow rate region, and the head curve is a downward-sloping curve without an unstable portion.

【0034】本発明の第2の実施例を図7に示す。第1
段斜流羽根車2の直後に第2段斜流羽根車3を設置し、
かつその子午面流路形状は、その中心流線が下流方向に
漸次、羽根車駆動軸中心より遠ざかるように外向きに形
成し、かつ第1段斜流羽根車の子午面流路と第2段斜流
羽根車の子午面流路とが連続するように構成した二重反
転式斜流ポンプである。第1段斜流羽根車2の最大径は
第2段斜流羽根車3の径最大よりも小さく形成されてお
り、第1段斜流羽根車2羽根の負荷を小さくしてキャビ
テーションの発生を少なくすることができるため、キャ
ビテーション性能の良好な斜流ポンプを実現することが
できる。第2段斜流羽根車3の入口では第1段斜流羽根
車2で昇圧がなされているため、第2段斜流羽根車での
キャビテーションの発生を抑制することができる。
A second embodiment of the present invention is shown in FIG. First
Immediately after the two-stage mixed flow impeller 2, a second-stage mixed flow impeller 3 is installed,
And, the meridian flow passage shape is formed so that the central streamline thereof gradually becomes downstream and away from the center of the impeller drive shaft, and the meridional flow passage of the first stage mixed flow impeller and the second meridian flow passage are formed. It is a counter-rotating mixed flow pump configured such that the meridional flow path of the multi-stage mixed flow impeller is continuous. The maximum diameter of the first-stage mixed-flow impeller 2 is smaller than the maximum diameter of the second-stage mixed-flow impeller 3, and the load on the first-stage mixed-flow impeller 2 is reduced to prevent cavitation. Since it can be reduced, it is possible to realize a mixed flow pump having good cavitation performance. Since the pressure is increased by the first-stage mixed flow impeller 2 at the inlet of the second-stage mixed flow impeller 3, it is possible to suppress the occurrence of cavitation in the second-stage mixed flow impeller.

【0035】本発明の第3の実施例を図8に示す。第1
段斜流羽根車2と第2段斜流羽根車3との間に静止案内
羽根9を設置した構成である。このとき、第1段斜流羽
根車2で生じた羽根車出口の周方向成分の一部は、静止
案内羽根9a,9b等により流速がC2よりC3に減速さ
れ圧力回復がなされる。そしてその後、第2段斜流羽根
車3に流入する。このとき、図1に示す静止案内羽根9
がない構成に比べ、図6に示す第2段斜流羽根車入口の
速度三角形における角度α3が小さくなる。その結果、
第2段斜流羽根車羽根の入口角が大きくなり羽根長さを
短くできて羽根の製作が容易になる。
A third embodiment of the present invention is shown in FIG. First
The stationary guide vane 9 is installed between the stage mixed flow impeller 2 and the second stage mixed flow impeller 3. At this time, a part of the circumferential component of the impeller outlet generated in the first-stage mixed flow impeller 2 is decelerated from C 2 to C 3 by the stationary guide vanes 9a and 9b, etc. to recover pressure. Then, after that, it flows into the second stage mixed flow impeller 3. At this time, the stationary guide vane 9 shown in FIG.
The angle α 3 in the velocity triangle at the inlet of the second-stage mixed flow impeller shown in FIG. as a result,
The inlet angle of the second stage mixed flow impeller blade is increased, and the blade length can be shortened, which facilitates the manufacture of the blade.

【0036】本発明の第4の実施例を図9に示す。反転
歯車装置25は、第1段斜流羽根車2と第2段斜流羽根
車3との間に設置され、第2段斜流羽根車3に連結され
る駆動軸26を有し、駆動軸26を経由して原動機12
に連結している構成である。すなわち羽根車のハブ内に
反転歯車装置25を内蔵させたものである。このような
構成により、駆動軸26を中空軸にする必要がなくな
り、製作が容易になる。
A fourth embodiment of the present invention is shown in FIG. The reversing gear device 25 is installed between the first stage mixed flow impeller 2 and the second stage mixed flow impeller 3, has a drive shaft 26 that is connected to the second stage mixed flow impeller 3, and drives the Prime mover 12 via shaft 26
It is connected to. That is, the reversing gear device 25 is built in the hub of the impeller. With such a configuration, it is not necessary to make the drive shaft 26 a hollow shaft, and the manufacture becomes easy.

【0037】本発明の第5の実施例を図10に示す。本
実施例はチューブラー形の二重反転形斜流ポンプであ
る。反転歯車装置35は、第1段斜流羽根車2と第2段
斜流羽根車3との間に設置され、第1段斜流羽根車2と
連結する原動機12aと第2段斜流羽根車3と連結する
原動機12bとを互いに対向して配置し、各原動機12
a,12bをポンプハブ34内に収容してなる構成であ
る。第1段斜流羽根車2は設置された原動機12aで駆
動され、第2段斜流羽根車3は原動機12bで駆動さ
れ、両原電機12a,12bの回転方向は互いに逆に設
定されている。原動機をポンプ本体に内蔵しているた
め、非常にコンパクトな形状にすることができる。
The fifth embodiment of the present invention is shown in FIG. This embodiment is a tubular counter-rotating mixed flow pump. The reversing gear device 35 is installed between the first-stage mixed-flow impeller 2 and the second-stage mixed-flow impeller 3 and is connected to the first-stage mixed-flow impeller 2 and the prime mover 12 a and the second-stage mixed-flow vane. The prime mover 12b connected to the vehicle 3 is arranged to face each other, and each prime mover 12b
This is a configuration in which a and 12b are housed in the pump hub 34. The first-stage mixed-flow impeller 2 is driven by the installed prime mover 12a, the second-stage mixed-flow impeller 3 is driven by the prime mover 12b, and the rotation directions of the two original electric machines 12a and 12b are set to be opposite to each other. . Since the prime mover is built into the pump body, it can be made into a very compact shape.

【0038】本発明の第6の実施例を図11に示す。反
転歯車装置45は、第1段斜流羽根車2及び第2段斜流
羽根車3の各駆動軸に連結連結しかつ互いに対向して設
けられる傘歯車45a,45bと、各駆動軸と直交しか
つ各傘歯車45a,45bと歯合する第2の傘歯車45
cと、第2の傘歯車45cの入力軸46とよりなり、入
力軸46を原動機12に連結している構成である。この
構成により斜流ポンプの全長を大巾に短縮することがで
きる。
The sixth embodiment of the present invention is shown in FIG. The reversing gear device 45 includes bevel gears 45a and 45b that are provided so as to be connected and connected to the drive shafts of the first-stage mixed flow impeller 2 and the second-stage mixed flow impeller 3 and face each other, and are orthogonal to the respective drive shafts. Second bevel gear 45 that meshes with each bevel gear 45a, 45b
c and the input shaft 46 of the second bevel gear 45c, and the input shaft 46 is connected to the prime mover 12. With this configuration, the total length of the mixed flow pump can be greatly shortened.

【0039】さらに本発明の第7の実施例として、第1
段又は第2段の羽根車のいずか一方を可動翼とする構成
であり、小型でかつ可動翼の特性を備えた斜流ポンプを
提供することができる。
Further, as a seventh embodiment of the present invention, the first
It is possible to provide a small-sized mixed flow pump having the characteristics of the movable blade, which has a configuration in which either one of the first stage impeller and the second stage impeller is used as the movable vane.

【0040】なお以上の実施例で斜流ポンプへの適用に
ついて説明したが、斜流送風機及び斜流圧縮機等のター
ボ形流体機械に対しても同様の技術を適用可能である。
Although the application to the mixed flow pump has been described in the above embodiments, the same technique can be applied to a turbo type fluid machine such as a mixed flow fan and a mixed flow compressor.

【0041】本発明によれば、単段の羽根車でなす全揚
程と流量の仕事とを2段の羽根車で行うため、羽根車径
を縮小することができ、かつ羽根の負荷を小さく設定で
きるため、安定したポンプの揚程が得やすくなる。
According to the present invention, since the total head and the work of the flow rate performed by the single-stage impeller are performed by the two-stage impeller, the impeller diameter can be reduced and the blade load can be set small. As a result, a stable pump head can be easily obtained.

【0042】[0042]

【発明の効果】本発明によれば、第1段斜流羽根車の回
転方向に対し、第2段斜流羽根車を逆回転方向に回転
し、全揚程と吐出量とを2段の羽根車で行うため、羽根
車径を縮小することができ、かつ羽根の負荷を小さく設
定できるため、安定した揚程曲線を得る効果がある。
According to the present invention, the second stage mixed flow impeller is rotated in the reverse rotation direction with respect to the rotation direction of the first stage mixed flow impeller, and the total head and discharge amount are divided into two stages. Since it is performed by a car, the diameter of the impeller can be reduced and the load on the blade can be set small, so that there is an effect of obtaining a stable head curve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.

【図2】図1のA・A線矢視を示す横断面図である。FIG. 2 is a cross-sectional view showing a line AA of FIG.

【図3】図1の装置全体を示す外形図である。FIG. 3 is an external view showing the entire apparatus of FIG.

【図4】図1の回転方向反転機構を示す縦断面図であ
る。
FIG. 4 is a vertical cross-sectional view showing the rotation direction reversing mechanism of FIG.

【図5】図1の羽根車の子午面流路を示す斜視図であ
る。
5 is a perspective view showing a meridional flow path of the impeller of FIG. 1. FIG.

【図6】図5の羽根車の速度三角形を示す図である。6 is a diagram showing a velocity triangle of the impeller of FIG.

【図7】本発明の第2の実施例を示す縦断面図である。FIG. 7 is a vertical cross-sectional view showing a second embodiment of the present invention.

【図8】本発明の第3の実施例を示す縦断面図である。FIG. 8 is a vertical cross-sectional view showing a third embodiment of the present invention.

【図9】本発明の第4の実施例を示す縦断面図である。FIG. 9 is a longitudinal sectional view showing a fourth embodiment of the present invention.

【図10】本発明の第5の実施例を示す縦断面図であ
る。
FIG. 10 is a vertical cross-sectional view showing a fifth embodiment of the present invention.

【図11】本発明の第6の実施例を示す縦断面図であ
る。
FIG. 11 is a vertical sectional view showing a sixth embodiment of the present invention.

【図12】従来の技術を示す縦形斜流ポンプの縦断面図
である。
FIG. 12 is a vertical cross-sectional view of a vertical mixed flow pump showing a conventional technique.

【図13】従来の技術を示す2段式斜流ポンプの縦断面
図である。
FIG. 13 is a vertical cross-sectional view of a two-stage mixed flow pump showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 吸込ケーシング 2 第1段斜流羽根車 3 第2段斜流羽根車 4 整流板 5 駆動中空軸 6,26,46 駆動軸 7 軸受 8 軸受 9 案内羽根 10 吐出ケーシング 11 吐出口 12 原動機 13 二重反転斜流ポンプ 14 二重継手 15,25,35,45 反転歯車装置 16 継手 DESCRIPTION OF SYMBOLS 1 Suction casing 2 1st stage mixed flow impeller 3 2nd stage mixed flow impeller 4 Straightening plate 5 Drive hollow shaft 6,26,46 Drive shaft 7 Bearing 8 Bearing 9 Guide vane 10 Discharge casing 11 Discharge port 12 Prime mover 13 2 Heavy inversion mixed flow pump 14 Double joint 15, 25, 35, 45 Inversion gear device 16 Joint

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 軸方向に同芯の第1段斜流羽根車と第2
段斜流羽根車とをケーシングに収容してなる斜流形流体
機械において、前記第1段斜流羽根車の回転方向に対
し、前記第2段斜流羽根車を逆回転方向に反転する回転
方向反転機構を設け、前記第2段斜流羽根車は、出口径
をその入口径より小さく形成されていることを特徴とす
る斜流形流体機械。
1. A first-stage mixed flow impeller and a second axial concentric fan shaft.
In a mixed flow type fluid machine in which a two-stage mixed flow impeller is housed in a casing, a rotation for reversing the second-stage mixed flow impeller in a reverse rotation direction with respect to a rotation direction of the first-stage mixed flow impeller. A mixed flow type fluid machine characterized in that a direction reversing mechanism is provided, and the second stage mixed flow impeller has an outlet diameter smaller than its inlet diameter.
【請求項2】 軸方向に同芯の第1段斜流羽根車と第2
段斜流羽根車とをケーシングに収容してなる斜流形流体
機械において、前記第1段斜流羽根車の回転方向に対
し、前記第2段斜流羽根車を逆回転方向に反転する回転
方向反転機構を設け、前記第2段斜流羽根車は、その子
午面流路が前記第1段斜流羽根車の子午面流路に連続さ
れるとともに、下流に向けて次第に駆動軸中心より離れ
るように外向きに形成されていることを特徴とする斜流
形流体機械。
2. A first-stage mixed-flow impeller coaxially concentric with the second
In a mixed flow type fluid machine in which a two-stage mixed flow impeller is housed in a casing, a rotation for reversing the second-stage mixed flow impeller in a reverse rotation direction with respect to a rotation direction of the first-stage mixed flow impeller. A direction reversing mechanism is provided, and the meridional flow passage of the second stage mixed flow impeller is continued to the meridional flow channel of the first stage mixed flow impeller, and gradually extends from the drive shaft center toward the downstream side. A mixed flow type fluid machine characterized in that it is formed so as to face away from one another.
【請求項3】 回転方向反転機構は、駆動軸と該駆動軸
を挿通した駆動中空軸とを備え、入力軸を原動機に連結
するとともに出力軸を前記駆動軸及び前記駆動中空軸の
他端に連結して形成され、前記駆動軸の一端に第1段斜
流羽根車を連結するとともに、前記駆動中空軸の一端に
第2段斜流羽根車を連結していることを特徴とする請求
項1又は2記載の斜流形流体機械。
3. The rotation direction reversing mechanism includes a drive shaft and a drive hollow shaft having the drive shaft inserted therethrough, the input shaft is connected to a prime mover, and the output shaft is connected to the drive shaft and the other end of the drive hollow shaft. The first stage mixed flow impeller is connected to one end of the drive shaft, and the second stage mixed flow impeller is connected to one end of the drive hollow shaft. The mixed flow fluid machine according to 1 or 2.
【請求項4】 駆動軸は、駆動中空軸に軸支されるとと
もに、該駆動中空軸を介して軸受ハウジングに軸支さ
れ、該軸受ハウジングは、ケーシングに整流羽根を経由
して支持されていることを特徴とする請求項3記載の斜
流形流体機械。
4. The drive shaft is rotatably supported by the drive hollow shaft and is also supported by the bearing housing via the drive hollow shaft, and the bearing housing is supported by the casing via the rectifying blades. The mixed flow type fluid machine according to claim 3, wherein:
【請求項5】 第1段斜流羽根車と第2段斜流羽根車と
の間に、静止案内羽根を設置したことを特徴とする請求
項1又は2記載の斜流形流体機械。
5. The mixed flow type fluid machine according to claim 1, wherein a stationary guide vane is installed between the first stage mixed flow impeller and the second stage mixed flow impeller.
【請求項6】 回転方向反転機構は、第1段斜流羽根車
と第2段斜流羽根車との間に設置され、該第2段斜流羽
根車に連結する駆動軸を有し、該駆動軸を経由して原動
機に連結していることを特徴とする請求項1又は2記載
の斜流形流体機械。
6. The rotation direction reversing mechanism has a drive shaft installed between the first stage mixed flow impeller and the second stage mixed flow impeller, and connected to the second stage mixed flow impeller. The mixed flow type fluid machine according to claim 1 or 2, which is connected to a prime mover via the drive shaft.
【請求項7】 回転方向反転機構は、第1段斜流羽根車
と第2段斜流羽根車との間に設けられ、第1段斜流羽根
車と連結する原動機と第2段斜流羽根車と連結する原動
機とを互いに対向して配置し、それぞれの原動機をハブ
に収納して形成されていることを特徴とする請求項1記
載の斜流形流体機械。
7. The rotating direction reversing mechanism is provided between the first stage mixed flow impeller and the second stage mixed flow impeller and is connected to the first stage mixed flow impeller and the second stage mixed flow. 2. The mixed flow type fluid machine according to claim 1, wherein the impeller and a prime mover connected to the impeller are arranged to face each other, and the prime movers are housed in a hub.
【請求項8】 回転方向反転機構は、第1段斜流羽根車
及び第2段斜流羽根車のそれぞれの駆動軸に連結されか
つ互いに対向して設けられる傘歯車と、それぞれの駆動
軸と直交しかつそれぞれの傘歯車と歯合する第2の傘歯
車と、該第2の傘歯車の入力軸とよりなり、該入力軸を
原動機に連結していることを特徴とする請求項1又は2
記載の斜流形流体機械。
8. A bevel gear connected to the respective drive shafts of the first stage mixed flow impeller and the second stage mixed flow impeller and provided to face each other, and the respective drive shafts. 2. A second bevel gear, which is orthogonal to each other and meshes with each bevel gear, and an input shaft of the second bevel gear, the input shaft being connected to a prime mover. Two
The mixed flow fluid machine described.
【請求項9】 第1段斜流羽根車及び第2段斜流羽根車
は、いずれか一方が可動翼で形成されていることを特徴
とする請求項1又は2記載の斜流形流体機械。
9. The mixed flow fluid machine according to claim 1, wherein one of the first-stage mixed flow impeller and the second-stage mixed flow impeller is formed of movable blades. .
【請求項10】 請求項1〜9のいずれか1項記載の斜
流形流体機械の技術を適用してなることを特徴とするタ
ーボ形流体機械。
10. A turbo type fluid machine to which the technology of a mixed flow type fluid machine according to any one of claims 1 to 9 is applied.
JP18999195A 1995-07-26 1995-07-26 Mixed flow fluid machine Expired - Fee Related JP3637426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18999195A JP3637426B2 (en) 1995-07-26 1995-07-26 Mixed flow fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18999195A JP3637426B2 (en) 1995-07-26 1995-07-26 Mixed flow fluid machine

Publications (2)

Publication Number Publication Date
JPH0942184A true JPH0942184A (en) 1997-02-10
JP3637426B2 JP3637426B2 (en) 2005-04-13

Family

ID=16250570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18999195A Expired - Fee Related JP3637426B2 (en) 1995-07-26 1995-07-26 Mixed flow fluid machine

Country Status (1)

Country Link
JP (1) JP3637426B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148645A1 (en) * 2006-06-19 2007-12-27 Panasonic Corporation Outdoor unit for air conditioner
CN105114217A (en) * 2015-09-29 2015-12-02 安徽江淮汽车股份有限公司 EGR waste gas mixing mechanism
CN113480006A (en) * 2021-07-21 2021-10-08 河南景尚环保科技有限公司 Sewage treatment bilobed wheel backwash pump based on CRI system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148645A1 (en) * 2006-06-19 2007-12-27 Panasonic Corporation Outdoor unit for air conditioner
JP2008025983A (en) * 2006-06-19 2008-02-07 Matsushita Electric Ind Co Ltd Outdoor unit for air conditioner
CN105114217A (en) * 2015-09-29 2015-12-02 安徽江淮汽车股份有限公司 EGR waste gas mixing mechanism
CN113480006A (en) * 2021-07-21 2021-10-08 河南景尚环保科技有限公司 Sewage treatment bilobed wheel backwash pump based on CRI system

Also Published As

Publication number Publication date
JP3637426B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
JP6632763B2 (en) Turbo compressor with intercooler
JP2835324B2 (en) Gear transmission type turbo compressor
US4219306A (en) Multistage turbocompressor with multiple shafts
JP2016509153A (en) Engine configuration with reverse rotation integrated drive and vaneless turbine
JP2001200797A (en) Multistage centrifugal compressor
JP2013204550A (en) Centrifugal compressor
JP3557389B2 (en) Multistage centrifugal compressor
JP3637426B2 (en) Mixed flow fluid machine
CN110332125B (en) Compact axial flow pipeline pump
JP3576068B2 (en) High-speed gate pump
JP2005163682A (en) Axial pump
JPS6027840B2 (en) Guide vane drive device for multistage centrifugal compressor
JP2750008B2 (en) Twin shaft reversing axial turbine
JP6935312B2 (en) Multi-stage centrifugal compressor
CN205533405U (en) A impeller device for power equipment
AU2005200540A1 (en) Axial-flow pump
JP4078477B2 (en) Multistage pump
JPH08159094A (en) Multistage centrifugal compressor
EP1682779B1 (en) Radial compressor impeller
JPH06123298A (en) High lift pump
JP3045418B2 (en) Turbo vacuum pump
JP2004011440A (en) Centrifugal compressor
JP2003343473A (en) Mixed flow impeller with screw in mixed flow pump
JPH01170795A (en) Vortex turbo-machinery
JPH1182364A (en) Multistage centrifugal pump

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041221

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees