JPH0941004A - Injection molding method of metallic powder - Google Patents

Injection molding method of metallic powder

Info

Publication number
JPH0941004A
JPH0941004A JP20010495A JP20010495A JPH0941004A JP H0941004 A JPH0941004 A JP H0941004A JP 20010495 A JP20010495 A JP 20010495A JP 20010495 A JP20010495 A JP 20010495A JP H0941004 A JPH0941004 A JP H0941004A
Authority
JP
Japan
Prior art keywords
injection molding
sintered body
sample
compound
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20010495A
Other languages
Japanese (ja)
Inventor
Shoji Yamamoto
昇司 山本
Takuya Kodama
卓弥 児玉
Kenji Haga
健二 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP20010495A priority Critical patent/JPH0941004A/en
Publication of JPH0941004A publication Critical patent/JPH0941004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain sintered compacts having the decreased differences in the density of sintered compacts according to their sections and having good dimensional accuracy by preventing the thermal oxidation decomposition of an org. binder, thereby preventing the deterioration of a compd. SOLUTION: A sample 1 is formed to a quadrangular prism shape having a hole vertically penetrating the sample. The molding of the sample 1 is executed by setting the cylinder temp. of an injection molding machine at 160 deg.C at the highest. The degreasing of the sample is executed under a condition of the max. 350 deg.C in an atm. atmosphere and the sintering thereof is executed under a condition of the max. 1320 deg.C under 5Torr of an Ar atmosphere. Gaseous nitrogen is made to flow continuously at a flow rate of 2 liters per minute from the lower part of the material feed port of the injection molding machine at the time of molding and the occupying ratio of the nitrogen volume in the space part between a heating cylinder and a material supplying section is set at >=90vol.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属粉末射出成形
用コンパウンド(以下、コンパウンドという)を射出成
形機に供給して加熱シリンダー内にて加熱溶融し、金型
内に射出してグリーン体を得た後、そのグリーン体を脱
脂する工程と、得られたブラウン体を焼結する工程とを
経て焼結体を製造する金属粉末射出成形法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention supplies a compound for metal powder injection molding (hereinafter referred to as compound) to an injection molding machine, heats and melts it in a heating cylinder, and injects it into a mold to produce a green body. The present invention relates to a metal powder injection molding method for producing a sintered body through a step of degreasing the green body after obtained and a step of sintering the obtained brown body.

【0002】[0002]

【従来の技術】近年、複雑な小物形状で高密度な金属部
品を大量生産する方法として、例えば特開昭59−22
9403号公報に記載されるような金属粉末射出成形法
(Metal Injection Molding
以下、MIMという)が注目されている。
2. Description of the Related Art Recently, as a method for mass-producing high-density metal parts with complicated small shapes, for example, Japanese Patent Laid-Open No. 59-22.
9403 (Metal Injection Molding).
Hereinafter, this is referred to as MIM).

【0003】上記MIMとは、まず金属粉末とバインダ
ーを混練して粉砕したもの、もしくはペレット化したも
のをコンパウンドとして射出成形機に供給し、加熱シリ
ンダー内にて加熱・混練して成形することで成形体を得
る。その後、成形体から有機バインダーを除去する脱脂
工程を行い、さらに焼結工程を経て金属焼結品を得る方
法である。
The above MIM is obtained by first kneading and pulverizing metal powder and binder, or pelletizing them and supplying them to the injection molding machine as a compound, and heating and kneading in a heating cylinder to form the compound. Obtain a molded body. After that, a degreasing step of removing the organic binder from the molded body is performed, and a sintering step is further performed to obtain a sintered metal product.

【0004】通常、コンパウンドを射出成形機の加熱シ
リンダー内にて加熱溶融する際は、空気雰囲気内にて行
っている。また、コンパウンドをリサイクルして使用す
る際にも、射出成形により得られたスプールランナー部
を粉砕して得たリサイクル材を再び空気雰囲気内で加熱
溶融して射出成形していた。
Usually, when a compound is heated and melted in a heating cylinder of an injection molding machine, it is carried out in an air atmosphere. Further, even when the compound is recycled and used, the recycled material obtained by crushing the spool runner portion obtained by injection molding is heated and melted again in the air atmosphere and injection molded.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来技術には以下のような欠点があった。すなわち、コン
パウンド内には前記のごとく金属粉末と有機バインダー
が含まれている。この有機バインダーは空気雰囲気の加
熱シリンダー内にて高温に加熱溶融される際、熱酸化分
解を起こす。それに伴い、有機バインダーの分子量は低
下し、コンパウンドの粘性が低下する。つまり、コンパ
ウンドの劣化が生じていることになる。
However, the above-mentioned prior art has the following drawbacks. That is, the metal powder and the organic binder are contained in the compound as described above. This organic binder undergoes thermal oxidative decomposition when heated and melted to a high temperature in a heating cylinder in an air atmosphere. Along with this, the molecular weight of the organic binder decreases, and the viscosity of the compound decreases. In other words, the compound has deteriorated.

【0006】コンパウンドの粘性が低下することによ
り、薄肉部を有する成形体を得る際、薄肉部をコンパウ
ンドが通過する時に金属粉末と有機バインダーとが分離
しやすくなる。すなわち、薄肉部を通過する時に金属粉
末よりも粘性の低下した有機バインダーの方がより通過
し易くなり、薄肉部もしくは薄肉部を通過した反ゲート
部にはより多くの有機バインダーが充填されやすくな
る。換言すると、薄肉部および反ゲート部には金属粉末
が充填されにくくなる。
Since the viscosity of the compound is lowered, the metal powder and the organic binder are easily separated when the compound passes through the thin portion when the molded product having the thin portion is obtained. That is, when passing through the thin portion, the organic binder whose viscosity is lower than that of the metal powder is more likely to pass through, and the thin portion or the anti-gate portion passing through the thin portion is more likely to be filled with the organic binder. . In other words, it becomes difficult for the thin portion and the anti-gate portion to be filled with the metal powder.

【0007】従って、グリーン体内における粉末の充填
量が部位毎に異なり易くなる。これにより、部位による
焼結時の収縮量の違いが生じ、薄肉部および反ゲート部
とゲート側部との肉厚や幅寸法等に差が生じてしまい、
焼結体の寸法に影響を及ぼしてしまう。また、部位の違
いにより焼結体の相対密度にも差が生じる。以上のこと
から、空気雰囲気内で加熱溶融して射出成形を行うと、
部位による焼結体密度の差が大きくて寸法精度の悪い焼
結体を得ることになる。
Therefore, the filling amount of the powder in the green body tends to be different for each part. Due to this, a difference in shrinkage amount at the time of sintering occurs depending on the site, resulting in a difference in wall thickness, width dimension, etc. between the thin portion and the non-gate portion and the gate side portion,
This will affect the dimensions of the sintered body. Further, the relative density of the sintered body also differs due to the difference in the site. From the above, when injection molding is performed by heating and melting in an air atmosphere,
A large difference in the density of the sintered body depending on the site results in a sintered body having poor dimensional accuracy.

【0008】また、コンパウンドをリサイクルして使用
する際、少なくとも1回は空気雰囲気の加熱シリンダー
内にて高温に加熱溶融されており、これをさらに空気雰
囲気内で加熱溶融して成形するため、有機バインダーの
熱酸化分解はより進むこととなる。つまり、コンパウン
ドの劣化がより生じていることになる。従って、ヴァー
ジン材を用いた場合に比べ、さらに部位による焼結体密
度の差が大きくて寸法精度の悪い焼結体を得ることにな
る。
Further, when the compound is recycled and used, it is heated and melted at a high temperature at least once in a heating cylinder in an air atmosphere, and this is further heated and melted in an air atmosphere to be molded. The thermal oxidative decomposition of the binder will proceed further. In other words, the compound is more deteriorated. Therefore, as compared with the case where the virgin material is used, the difference in the density of the sintered body depending on the site is large, and a sintered body having poor dimensional accuracy can be obtained.

【0009】請求項1の課題は、有機バインダーの熱酸
化分解を防止してコンパウンドの劣化を防ぐことによ
り、部位による焼結体密度の差が少なく、寸法精度の良
好な焼結体が得られる金属粉末射出成形方法の提供にあ
る。
The object of claim 1 is to prevent the thermal oxidative decomposition of the organic binder to prevent the deterioration of the compound, so that the difference in the density of the sintered body depending on the site is small and a sintered body with good dimensional accuracy can be obtained. A metal powder injection molding method is provided.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、不活
性ガスを90容量%以上含む不活性ガス雰囲気下で金属
粉末と有機バインダーの混練物からなる金属粉末射出成
形用コンパウンドを加熱溶融することにより、有機バイ
ンダーの熱酸化分解を抑制しつつ射出成形を行い、成形
体を得るものである。
The invention according to claim 1 heats and melts a metal powder injection molding compound comprising a kneaded product of metal powder and an organic binder in an inert gas atmosphere containing 90% by volume or more of an inert gas. By doing so, injection molding is performed while suppressing thermal oxidative decomposition of the organic binder to obtain a molded body.

【0011】不活性ガスは、成形機のシリンダーおよび
材料供給部に供給し、これらの内部雰囲気を不活性ガス
雰囲気に置換する。不活性ガスの体積比率としては90
容量%でも効果を期待できるが、99容量%以上である
方がより好ましい。不活性ガスの体積比率が90容量%
未満であると、有機バインダーの熱酸化分解を抑制する
効果が得られなくなる。用いる不活性ガスとしては、窒
素,ヘリウム,二酸化炭素およびアルゴン等が考えられ
るが、コスト面から窒素が望ましい。
The inert gas is supplied to the cylinder of the molding machine and the material supply section to replace the internal atmosphere of these with the inert gas atmosphere. 90% by volume of inert gas
The effect can be expected even when the content is% by volume, but it is more preferably 99% by volume or more. 90% by volume of inert gas
If it is less than the above range, the effect of suppressing the thermal oxidative decomposition of the organic binder cannot be obtained. As the inert gas to be used, nitrogen, helium, carbon dioxide, argon and the like can be considered, but nitrogen is preferable from the viewpoint of cost.

【0012】加熱溶融温度はシリンダーのノズル部を含
めたシリンダー内全ての部分の温度を高くする。但し、
材料供給部近辺では、材料どうしが密着しあい固まって
ブリッジが発生するのを防ぐため、低く設定しても構わ
ない。また、不活性ガス雰囲気にする範囲は、加熱溶融
する範囲である加熱シリンダー内が最も好ましいが、コ
ンパウンドを成形時まで保持するホッパー内においても
不活性ガス雰囲気にすることが空気中での酸化を低減す
る上で望ましい。
The heating and melting temperature raises the temperature of all parts in the cylinder including the nozzle part of the cylinder. However,
In the vicinity of the material supply portion, the material may be set to a low value in order to prevent the materials from sticking to each other and solidifying to form a bridge. In addition, the range of the inert gas atmosphere is most preferably within the heating cylinder, which is the range of heating and melting, but it is also possible to set the inert gas atmosphere in the hopper that holds the compound until molding, in order to prevent oxidation in the air. It is desirable to reduce it.

【0013】請求項1の発明においては、上記のごとく
不活性ガスを90容量%以上含む不活性ガス雰囲気下で
金属粉末と有機バインダーの混練物からなる金属粉末射
出成形用コンパウンドを加熱溶融することにより、高温
下の加熱シリンダー内においても有機バインダーの熱酸
化分解を抑制することができる。これにより、有機バイ
ンダーの分子量の低下を抑制してコンパウンドの粘性の
低下を防止できる。すなわち、コンパウンドの劣化を抑
制することができる。
In the first aspect of the present invention, as described above, the compound for metal powder injection molding comprising a kneaded product of the metal powder and the organic binder is heated and melted in an inert gas atmosphere containing 90% by volume or more of the inert gas. Thereby, the thermal oxidative decomposition of the organic binder can be suppressed even in the heating cylinder under high temperature. This can prevent a decrease in the molecular weight of the organic binder and prevent a decrease in the viscosity of the compound. That is, deterioration of the compound can be suppressed.

【0014】コンパウンドの粘性の低下を抑制すること
により、薄肉部を有する成形体を得る際、薄肉部をコン
パウンドが通過する時に金属粉末と有機バインダーとの
分離がおきにくくなる。その結果、グリーン体内におけ
る部位の違いによる粉末の充填量のばらつきを抑制でき
る。従って、焼結収縮が各部位で均等に起きるため、ゲ
ート側,反ゲート側等の部位に限らず寸法差は発生せ
ず、かつ薄肉部の変形を防止できる。また、焼結体密度
についても、部位による差が無い均一な焼結体を得られ
る。
By suppressing the decrease in the viscosity of the compound, when a molded product having a thin portion is obtained, it becomes difficult for the metal powder and the organic binder to separate when the compound passes through the thin portion. As a result, it is possible to suppress the variation in the powder filling amount due to the difference in the parts in the green body. Therefore, since the sintering shrinkage occurs evenly in each part, the dimensional difference does not occur not only in the parts such as the gate side and the non-gate side, but also the deformation of the thin portion can be prevented. Also, with respect to the density of the sintered body, it is possible to obtain a uniform sintered body that does not vary depending on the site.

【0015】コンパウンドをリサイクルして使用する際
においても、ヴァージン材を使用したときとリサイクル
材を使用したときとの両方で有機バインダーの熱酸化分
解を抑制することができるため、コンパウンドの劣化を
さらに抑制することができる。
Even when the compound is recycled and used, the thermal oxidative decomposition of the organic binder can be suppressed both when the virgin material is used and when the recycled material is used, so that the deterioration of the compound is further reduced. Can be suppressed.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(発明の実施の形態1)図1および図2は本発明の実施
の形態のサンプルを示し、図1は平面図、図2は側面図
である。本発明の実施の形態で使用するコンパウンド
は、SUS316Lの金属粉末と、有機バインダーとし
てパラフィンワックス,アクリル,ポリスチレン,エチ
レン−酢酸ビニル共重合体,ジブチルフタレート,ステ
アリン酸を合計11重量部混練したものとを用いた。
(First Embodiment of the Invention) FIGS. 1 and 2 show a sample of an embodiment of the present invention, FIG. 1 is a plan view, and FIG. 2 is a side view. The compound used in the embodiment of the present invention was obtained by kneading metal powder of SUS316L and paraffin wax, acrylic, polystyrene, ethylene-vinyl acetate copolymer, dibutyl phthalate, stearic acid as an organic binder in a total of 11 parts by weight. Was used.

【0017】本発明の実施の形態で使用したサンプル1
のグリーン体の形状は、上下に貫通した孔(中空部)を
有する四角柱形状(W5mm×L12mm×t2.5m
m、中空部φ3.5mm)をしている。上記サンプル1
を成形する際、射出成形機のシリンダー温度を最高で1
60℃に設定して行った。脱脂条件は大気雰囲気にて最
高350℃にて行った。焼結条件は最高1320℃,A
r雰囲気5Torrにて行った。
Sample 1 used in the embodiment of the present invention
The shape of the green body is a quadrangular prism shape (W5 mm x L12 mm x t2.5 m) having a hole (hollow part) penetrating vertically.
m, hollow portion φ3.5 mm). Sample 1 above
Cylinder temperature of injection molding machine can be up to 1 when molding
The setting was performed at 60 ° C. The degreasing condition was performed in the air atmosphere at a maximum of 350 ° C. The maximum sintering condition is 1320 ℃, A
It was conducted in an atmosphere of 5 Torr.

【0018】成形に際しては射出成形機材料投入口の下
部より窒素ガスを毎分2リットルの流量で連続フロー
し、加熱シリンダーおよび材料供給部内の空間部の窒素
体積占有比率を99容量%とした。以上の条件により得
られた焼結体のA部,B部の肉厚寸法およびA部,B部
の相対密度について測定した結果を表1に示す。
At the time of molding, nitrogen gas was continuously flowed from the lower part of the material injection port of the injection molding machine at a flow rate of 2 liters per minute, and the nitrogen volume occupation ratio of the space portion in the heating cylinder and the material supply part was set to 99% by volume. Table 1 shows the measurement results of the wall thickness dimensions of the parts A and B and the relative densities of the parts A and B of the sintered body obtained under the above conditions.

【0019】[0019]

【表1】 [Table 1]

【0020】表1の結果より、A部とB部との肉厚寸法
の差は0.003mmと非常に小さくなった。また、A
部とB部との相対密度の差は0.1%と非常に小さくな
った。
From the results shown in Table 1, the difference in wall thickness between the portion A and the portion B was as small as 0.003 mm. Also, A
The difference in relative density between the B and B parts was 0.1%, which was very small.

【0021】本発明の実施の形態によれば、焼結体寸法
および焼結体密度について部位による差のない均一な焼
結体が得られた。
According to the embodiment of the present invention, a uniform sintered body having no difference in the sintered body size and the sintered body density depending on the site was obtained.

【0022】(発明の実施の形態2)本発明の実施の形
態で使用するコンパウンドは、SUS316Lの金属粉
末と、有機バインダーとしてパラフィンワックス,アク
リル,ポリスチレン,エチレン−酢酸ビニル共重合体,
ジブチルフタレート,ステアリン酸を合計7重量部混練
したものとを用いた。
(Embodiment 2) The compound used in the embodiment of the present invention is a metal powder of SUS316L and paraffin wax, acrylic, polystyrene, ethylene-vinyl acetate copolymer as an organic binder,
A mixture obtained by kneading a total of 7 parts by weight of dibutyl phthalate and stearic acid was used.

【0023】本発明の実施の形態で使用したサンプルの
形状は、前記発明の実施の形態1と同様なものである。
上記サンプルを成形する際、射出成形機のシリンダー温
度を最高で160℃に設定して行った。脱脂条件は大気
雰囲気にて最高350℃にて行った。焼結条件は最高1
320℃,Ar雰囲気5Torrにて行った。
The shape of the sample used in the embodiment of the present invention is the same as that of the first embodiment of the invention.
When molding the sample, the cylinder temperature of the injection molding machine was set to 160 ° C. at the maximum. The degreasing condition was performed in the air atmosphere at a maximum of 350 ° C. The maximum sintering condition is 1
It was conducted at 320 ° C. in an Ar atmosphere of 5 Torr.

【0024】成形に際しては射出成形機材料投入口の下
部より窒素ガスを毎分2リットルの流量で連続フロー
し、加熱シリンダーおよび材料供給部内の空間部の窒素
体積占有比率を99容量%とした。以上の条件により得
られた焼結体のA部,B部の肉厚寸法およびA部,B部
の相対密度について測定した結果を表1に示す。
At the time of molding, nitrogen gas was continuously flowed from the lower part of the material injection port of the injection molding machine at a flow rate of 2 liters per minute, and the nitrogen volume occupation ratio of the heating cylinder and the space in the material supply part was set to 99% by volume. Table 1 shows the measurement results of the wall thickness dimensions of the parts A and B and the relative densities of the parts A and B of the sintered body obtained under the above conditions.

【0025】表1の結果より、A部とB部との肉厚寸法
の差は0.002mmと非常に小さくなった。また、A
部とB部との相対密度の差は0%とその差が認められな
かった。
From the results shown in Table 1, the difference in wall thickness between the portion A and the portion B was 0.002 mm, which was very small. Also, A
The difference in relative density between the parts B and B was 0%, which was not observed.

【0026】本発明の実施の形態によれば、前記発明の
実施の形態1と同様に、焼結体寸法および焼結体密度に
ついて部位による差のない均一な焼結体が得られた。
According to the embodiment of the present invention, as in Embodiment 1 of the present invention, a uniform sintered body having no difference in the sintered body size and the sintered body density depending on the site was obtained.

【0027】(発明の実施の形態3)本発明の実施の形
態で使用するコンパウンドは、前記発明の実施の形態1
と同材料であるが、これを一度リサイクルしたものを使
用する。ヴァージン材での成形およびリサイクル材時で
の成形はともに射出成形機のシリンダー温度を最高で1
60℃に設定し、且つ射出成形機材料投入口の下部より
窒素ガスを毎分2リットルの流量で連続フローして加熱
シリンダーおよび材料供給部内の空間部の窒素体積占有
比率を99容量%とした。
(Embodiment 3 of the Invention) The compound used in the embodiment of the present invention is the same as that of Embodiment 1 of the invention.
It is the same material as, but it is recycled. The maximum cylinder temperature of the injection molding machine is 1 for both virgin material and recycled material.
The temperature was set to 60 ° C., and nitrogen gas continuously flowed from the lower part of the material injection port of the injection molding machine at a flow rate of 2 liters per minute to make the nitrogen volume occupation ratio of the heating cylinder and the space part in the material supply part 99% by volume. .

【0028】使用するサンプルは前記発明の実施の形態
1と同様な形状である。脱脂条件は大気雰囲気にて最高
350℃にて行った。焼結条件は最高1320℃,Ar
雰囲気5Torrにて行った。以上の条件により得られ
た焼結体のA部,B部の肉厚寸法およびA部,B部の相
対密度について測定した結果を表1に示す。
The sample used has the same shape as in the first embodiment of the invention. The degreasing condition was performed in the air atmosphere at a maximum of 350 ° C. Sintering conditions up to 1320 ℃, Ar
It was performed in an atmosphere of 5 Torr. Table 1 shows the measurement results of the wall thickness dimensions of the parts A and B and the relative densities of the parts A and B of the sintered body obtained under the above conditions.

【0029】表1の結果より、A部とB部との肉厚寸法
の差は0.002mmと非常に小さくなった。また、A
部とB部との相対密度の差は0.1%と非常に小さくな
った。
From the results shown in Table 1, the difference in wall thickness between the portion A and the portion B was 0.002 mm, which was very small. Also, A
The difference in relative density between the B and B parts was 0.1%, which was very small.

【0030】本発明の実施の形態によれば、前記各発明
の実施の形態と同様に、焼結体寸法および焼結体密度に
ついて部位による差のない均一な焼結体が得られた。ま
た、リサイクル材使用時はその効果がさらに大きいこと
が確認された。
According to the embodiments of the present invention, similar to the above-mentioned embodiments of the present invention, a uniform sintered body having no difference in sintered body size and sintered body density depending on the site was obtained. It was also confirmed that the effect was even greater when recycled materials were used.

【0031】(比較例1)本比較例では前記発明の実施
の形態1で使用したコンパウンドを使用し、成形時に窒
素ガスを用いずに空気雰囲気内で加熱溶融した。その他
の射出成形,脱脂および焼結を前記発明の実施の形態1
と同条件にて行った。得た焼結体のA部,B部の肉厚寸
法およびA部,B部の相対密度について測定した結果を
表1に示す。
Comparative Example 1 In this comparative example, the compound used in the first embodiment of the invention was used, and the compound was heated and melted in an air atmosphere without using nitrogen gas at the time of molding. Other injection molding, degreasing and sintering are performed according to the first embodiment of the invention.
The same conditions were used. Table 1 shows the results of the measurement of the wall thickness dimensions of parts A and B and the relative densities of parts A and B of the obtained sintered body.

【0032】表1の結果より、A部とB部との肉厚寸法
の差は0.018mmと非常に大きかった。また、A部
とB部との相対密度の差は0.5%と大きくなった。以
上のことから、本比較例では焼結体寸法および焼結体密
度について部位によって差の有る不均一な焼結体になっ
てしまった。
From the results shown in Table 1, the difference in thickness between the A part and the B part was as large as 0.018 mm. The difference in relative density between the A part and the B part was as large as 0.5%. From the above, in this comparative example, a non-uniform sintered body having different sintered body dimensions and sintered body densities was found.

【0033】(比較例2)本比較例では前記発明の実施
の形態2で使用したコンパウンドを使用し、成形時に窒
素ガスを用いずに空気雰囲気内で加熱溶融した。その他
の射出成形,脱脂および焼結を前記発明の実施の形態2
と同条件にて行った。得た焼結体のA部,B部の肉厚寸
法およびA部,B部の相対密度について測定した結果を
表1に示す。
Comparative Example 2 In this comparative example, the compound used in the second embodiment of the present invention was used, and the compound was heated and melted in an air atmosphere without using nitrogen gas at the time of molding. Other injection molding, degreasing and sintering are performed according to the second embodiment of the invention.
The same conditions were used. Table 1 shows the results of the measurement of the wall thickness dimensions of parts A and B and the relative densities of parts A and B of the obtained sintered body.

【0034】表1の結果より、A部とB部との肉厚寸法
の差は0.017mmと非常に大きかった。また、A部
とB部との相対密度の差は0.7%と大きくなった。以
上のことから、本比較例では焼結体寸法および焼結体密
度について部位によって差の有る不均一な焼結体になっ
てしまった。
From the results shown in Table 1, the difference in wall thickness between the A part and the B part was as large as 0.017 mm. The difference in relative density between the A part and the B part was as large as 0.7%. From the above, in this comparative example, a non-uniform sintered body having different sintered body dimensions and sintered body densities was found.

【0035】(比較例3)本比較例では前記発明の実施
の形態1で使用したコンパウンドを一度リサイクルした
ものを使用する。ヴァージン材での成形およびリサイク
ル材での成形時に窒素ガスを用いずに空気雰囲気内で加
熱溶融した。その他の射出成形,脱脂および焼結を前記
発明の実施の形態3と同条件にて行った。得た焼結体の
A部,B部の肉厚寸法およびA部,B部の相対密度につ
いて測定した結果を表1に示す。
(Comparative Example 3) In this comparative example, the compound used in the first embodiment of the present invention is once recycled. During molding with a virgin material and molding with a recycled material, heating and melting were performed in an air atmosphere without using nitrogen gas. Other injection molding, degreasing and sintering were performed under the same conditions as in the third embodiment of the invention. Table 1 shows the results of the measurement of the wall thickness dimensions of parts A and B and the relative densities of parts A and B of the obtained sintered body.

【0036】表1の結果より、A部とB部との肉厚寸法
の差は0.026mmと非常に大きかった。また、A部
とB部との相対密度の差は1.0%と大きくなった。以
上のことから、本比較例では焼結体寸法および焼結体密
度について部位によって差の有る不均一な焼結体になっ
てしまった。また、リサイクル材使用時は焼結体寸法お
よび焼結体密度の部位による差はさらに大きくなってし
まった。
From the results shown in Table 1, the difference in thickness between the A part and the B part was 0.026 mm, which was very large. The difference in relative density between the A part and the B part was as large as 1.0%. From the above, in this comparative example, a non-uniform sintered body having different sintered body dimensions and sintered body densities was found. Further, when the recycled material is used, the difference in the size of the sintered body and the density of the sintered body is further increased.

【0037】[0037]

【発明の効果】請求項1の効果は、有機バインダーの熱
酸化分解を防止し、コンパウンドの劣化を防ぐことがで
きることにより、部位による焼結体密度の差が少なく、
寸法精度の良好な焼結体を得ることが出来る。
The effect of claim 1 is that since the organic binder can be prevented from thermal oxidative decomposition and the deterioration of the compound can be prevented, the difference in the density of the sintered body depending on the site is small,
It is possible to obtain a sintered body with good dimensional accuracy.

【0038】その他の効果としては、成形時の金属粉末
の酸化を防止することにより焼結体組織中の酸化物,ポ
ーラスの介在を減少させることができるため焼結体密度
が向上する。また、焼結時に酸素と炭素との適正な反応
が起こるようになるために結晶粒の成長が適正に行わ
れ、且つ上記で述べたように焼結体密度も向上するため
に焼結体の機械的強度が向上する。さらに、ポーラス部
が少なく、結晶粒の成長が適正な焼結体を得られること
から耐食性も向上する。以上のように、本発明は焼結体
の機械的特性も向上するという効果を併せ持っている。
As another effect, by preventing the metal powder from being oxidized at the time of molding, the inclusion of oxides and porosity in the structure of the sintered body can be reduced, so that the density of the sintered body is improved. In addition, since a proper reaction between oxygen and carbon occurs during sintering, the growth of crystal grains is properly performed, and as described above, the density of the sintered body is also improved, so that Mechanical strength is improved. Further, since a sintered body having few porous portions and proper growth of crystal grains can be obtained, corrosion resistance is also improved. As described above, the present invention also has the effect of improving the mechanical properties of the sintered body.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施の形態1を示す平面図である。FIG. 1 is a plan view showing a first embodiment of the invention.

【図2】発明の実施の形態1を示す側面図である。FIG. 2 is a side view showing the first embodiment of the invention.

【符号の説明】[Explanation of symbols]

1 サンプル 1 sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末と有機バインダーの混練物から
なる金属粉末射出成形用コンパウンドを材料として射出
成形機に供給し、加熱シリンダー内にて加熱溶融して金
型内に射出を行ってグリーン体を得た後、該グリーン体
を脱脂する工程と、得られたブラウン体を焼結する工程
とを経て焼結体を製造する金属粉末射出成形方法におい
て、不活性ガスを90容量%以上含む不活性ガス雰囲気
下で前記材料を加熱溶融して射出成形することを特徴と
する金属粉末射出成形方法。
1. A green body prepared by supplying a metal powder injection molding compound comprising a kneaded material of metal powder and an organic binder as a material to an injection molding machine, heating and melting in a heating cylinder, and injecting it into a mold. In a metal powder injection molding method for producing a sintered body through a step of degreasing the green body after obtaining the green body and a step of sintering the obtained brown body, an inert gas containing 90% by volume or more of an inert gas is used. A metal powder injection molding method, characterized in that the material is heated and melted in an active gas atmosphere to perform injection molding.
JP20010495A 1995-08-04 1995-08-04 Injection molding method of metallic powder Pending JPH0941004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20010495A JPH0941004A (en) 1995-08-04 1995-08-04 Injection molding method of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20010495A JPH0941004A (en) 1995-08-04 1995-08-04 Injection molding method of metallic powder

Publications (1)

Publication Number Publication Date
JPH0941004A true JPH0941004A (en) 1997-02-10

Family

ID=16418909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20010495A Pending JPH0941004A (en) 1995-08-04 1995-08-04 Injection molding method of metallic powder

Country Status (1)

Country Link
JP (1) JPH0941004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503838B2 (en) * 2004-10-15 2014-05-28 太盛工業株式会社 Method for producing porous sintered body, porous sintered molding material, and porous sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503838B2 (en) * 2004-10-15 2014-05-28 太盛工業株式会社 Method for producing porous sintered body, porous sintered molding material, and porous sintered body

Similar Documents

Publication Publication Date Title
US4867943A (en) Starting material for injection molding of metal powder and method of producing sintered parts
US20030062660A1 (en) Process of metal injection molding multiple dissimilar materials to form composite parts
JP2912940B2 (en) Dental metal casting method
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
KR20010074911A (en) Powder metal injection molding process for forming an article from the Nickle-based superalloy "HASTELLOY X"
EP1213072B1 (en) Method to form multi-material sintered articles
US5066449A (en) Injection molding process for ceramics
JPH0775205B2 (en) Method for producing Fe-P alloy soft magnetic sintered body
US6849229B2 (en) Production of injection-molded metallic articles using chemically reduced nonmetallic precursor compounds
JPH0941004A (en) Injection molding method of metallic powder
US6080808A (en) Injection-molding compositions containing metal oxides for the production of metal moldings
JPH07191156A (en) Case for zirconia made watch and injection molding method for zirconia ceramics
EP0532788B1 (en) Method of producing cast magnetic soft ferrite
JPH0770610A (en) Method for sintering injection-molded product
Wang et al. Modifying polyacetal binder based feedstock to improve quality of MIM parts
JP3709569B2 (en) Highly specular metal sintered body and method for producing the same
JPS62104655A (en) Nozzle for continuous casting
US5667717A (en) Method of producing cast magnetic soft ferrite
KR970002093B1 (en) Method of sintering object
JPH06316704A (en) Production of metallic sintered body
KR20230151199A (en) Metal powder injection molding system for metallic frame and the manufacturing method for metallic frame using the system
JPH0734154A (en) Manufacure of sintered hard alloy by injection molding
KR20230151195A (en) Metal powder injection molding product for metallic frame and the method for manufacturing the same
KR20230151198A (en) Metal powder injection molding system for metallic frame and the manufacturing method for manufacturing using the same
JPH0257666A (en) Sintered alloy having excellent mirror-finishing characteristics and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Effective date: 20040223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050517