JPH0940478A - Production of open pore type porous body - Google Patents

Production of open pore type porous body

Info

Publication number
JPH0940478A
JPH0940478A JP19140195A JP19140195A JPH0940478A JP H0940478 A JPH0940478 A JP H0940478A JP 19140195 A JP19140195 A JP 19140195A JP 19140195 A JP19140195 A JP 19140195A JP H0940478 A JPH0940478 A JP H0940478A
Authority
JP
Japan
Prior art keywords
type porous
open
pore
thin film
pore type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19140195A
Other languages
Japanese (ja)
Inventor
Akihiro Oka
昭宏 岡
Miyuki Masaki
みゆき 正木
Katsumi Takahashi
克巳 高橋
Tadashi Sasa
正 佐々
Nobuo Ninomiya
伸雄 二宮
Joshi Shinohara
譲司 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19140195A priority Critical patent/JPH0940478A/en
Publication of JPH0940478A publication Critical patent/JPH0940478A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an open pore type porous body by which the formation of a fine pore layer is uniform and stable on an inclined open pore type porous laminated body, and the arrangement of the particle, etc., optimized. SOLUTION: The open pore type porous body having a fine pore film on the surface of the open pore type porous laminated body inclined such that fine pore diameters become successively small toward the surface or a fine pore layer across a slight depth from the surface is produced with this production method, and the thin film or the surface layer is formed at least with either one method among a vapor chemical reaction method, a vacuum deposition method, an ion plating method or a sputtering method on the surface of the open pore type porous laminated body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスフィルター、
濾過体および触媒担体などに利用される開放気孔型多孔
体の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a gas filter,
The present invention relates to a method for producing an open-pore type porous body used as a filter body, a catalyst carrier, and the like.

【0002】[0002]

【従来の技術】多孔体とは、その固体構造内に多数の小
孔を持つものである。多孔体には開放気孔型と密閉気孔
型がある。開放気孔型は、気孔が互いに連通していて多
孔体全体として通気性や通水性を有するものであり、主
にガスフィルター、濾過体および触媒担体などに利用さ
れている。密閉気孔型は、気孔がそれぞれ壁に囲まれて
独立していて多孔体全体として通気性や通水性のないも
のであり、主に断熱材および熱交換体などに利用されて
いる。本発明は、特に前者の開放気孔型多孔体について
言及するものである
2. Description of the Related Art A porous body has a large number of small holes in its solid structure. The porous body includes an open pore type and a closed pore type. The open-pore type has pores communicating with each other and has air permeability and water permeability as a whole porous body, and is mainly used for gas filters, filter bodies, catalyst carriers and the like. In the closed pore type, pores are surrounded by walls and are independent of each other, and the porous body as a whole has no air permeability or water permeability, and is mainly used as a heat insulating material and a heat exchanger. The present invention particularly refers to the former open-pore type porous body.

【0003】このような開放気孔型多孔体では、その使
用時の圧損を無くすとともに、最適な透過性能や分離性
能を得るために、次のような製造方法が採られている。
特に、セラミックスの開放気孔型多孔体を製造する場合
の製造方法について説明する。 (1)セラミック粉体を鋳込成形法、押出し成形法、ド
クターブレード法または射出成形法などにより成形す
る。 (2)次に、セラミック粉体の成形体の表面にセラミッ
ク粉体よりも細孔径の小さい層を形成する。セラミック
粉体よりも粒径の小さいセラミック粒子を含有した濃度
を濃くしたスラリーまたは塑性物を、塗布、浸漬または
積層し、乾燥、焼結する。これで、2層の傾斜化された
開放気孔型多孔積層体が成形された。 (3)さらに傾斜化したいときには、(2)で成形され
た層よりも細孔径を小さくするために、(2)と同様
に、(2)のセラミック粒子とは粒径または組成の異な
ったセラミック粒子を含有したスラリーまたは塑性物を
塗布、浸漬または積層し、乾燥、焼結する。 (4)この開放気孔型多孔積層体の表面に、さらに細孔
径の小さい微細孔層を形成する。この微細孔層は、所望
の細孔径、細孔率が得られるような粒径または組成を有
するセラミック粒子を含有したゾルを塗布し、ゲル化、
乾燥、焼結して形成される。なお、このゾルの塗布、ゲ
ル化、乾燥、焼結は繰り返し行われることが多い。
In order to eliminate pressure loss during use and to obtain optimum permeation performance and separation performance, the following manufacturing method is adopted for such open-pore type porous material.
In particular, a method of manufacturing a ceramic open-pore type porous body will be described. (1) The ceramic powder is molded by a cast molding method, an extrusion molding method, a doctor blade method, an injection molding method, or the like. (2) Next, a layer having a pore size smaller than that of the ceramic powder is formed on the surface of the ceramic powder compact. A slurry or a plastic material containing ceramic particles having a particle size smaller than that of ceramic powder and having a high concentration is applied, dipped or laminated, dried, and sintered. This formed a two-layer inclined open-pore type porous laminate. (3) When it is desired to further incline, in order to make the pore size smaller than that of the layer formed in (2), a ceramic having a different particle size or composition from the ceramic particles of (2) is used as in (2). A slurry or a plastic material containing particles is applied, dipped or laminated, dried and sintered. (4) A microporous layer having a smaller pore size is formed on the surface of this open-pore type porous laminate. This fine pore layer is formed by applying a sol containing ceramic particles having a particle size or a composition such that a desired pore size and a porosity can be obtained, and gelling,
It is formed by drying and sintering. The application, gelation, drying and sintering of this sol are often repeated.

【0004】この開放気孔型多孔積層体の表面に形成さ
れる微細孔層が、開放気孔型多孔体の透過性能や分離性
能に大きな影響を与えている。なお、単位重量の多孔体
に含まれる細孔の容積を細孔容積といい、全容積に対す
る細孔容積の比を細孔率という。
The microporous layer formed on the surface of the open-pore type porous laminate has a great influence on the permeation performance and separation performance of the open-pore type porous body. The volume of the pores contained in a unit weight of the porous body is called the pore volume, and the ratio of the pore volume to the total volume is called the porosity.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述したよう
な製造方法では、ゾルの有効成分濃度が低いため、乾
燥、焼結させたときに微細孔層として残存する量が非常
に少なく、またゾルを開放気孔型多孔積層体の表面に均
一に塗布することが困難であるため、ゾルの塗布量に偏
りが生じてしまう。したがって、ゾルを焼結させるまで
の過程において、ピンホール、亀裂、剥離などが発生し
やすく、微細孔層の細孔径分布にも偏りが生じていた。
However, in the above-mentioned production method, since the concentration of the active ingredient in the sol is low, the amount remaining as a microporous layer when dried and sintered is very small, and the sol It is difficult to uniformly coat the surface of the open-pore type porous laminate with a uniform amount of sol, so that the coating amount of the sol becomes uneven. Therefore, in the process of sintering the sol, pinholes, cracks, peeling, and the like were likely to occur, and the pore size distribution of the micropore layer was uneven.

【0006】さらに、微細孔層の透過性能や分離性能を
向上させるためには、微細孔層の粒子の配置を最適化す
る必要があるが、従来の製造方法では、粒子を含むゾル
の塗布単位でしかその粒子の配置を制御することができ
なかった。したがって、ゾルに含まれる粒子の粒径や組
成を変えたり、ゾルの塗布量を変えたとしても、形成さ
れる微細孔層の粒子の配置を最適化することが困難であ
った。
Further, in order to improve the permeation performance and separation performance of the microporous layer, it is necessary to optimize the arrangement of particles in the microporous layer, but in the conventional manufacturing method, the coating unit of the sol containing particles is used. Only then could the placement of the particles be controlled. Therefore, even if the particle size and composition of the particles contained in the sol are changed or the coating amount of the sol is changed, it is difficult to optimize the arrangement of the particles in the formed microporous layer.

【0007】本発明は、上記課題を解決するために創案
されたものである。すなわち、傾斜化された開放気孔型
多孔積層体への微細孔層の形成を均一かつ安定にすると
ともに、その粒子の配置などの最適化を図ることができ
る開放気孔型多孔体の製造方法を提供することを目的と
する。
The present invention was created to solve the above problems. That is, a method for producing an open-pore type porous body, which can uniformly and stably form a fine-pore layer in a graded open-pore type porous laminate and can optimize the arrangement of particles thereof The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明によれば、細孔径
が表面に向かって順次小さくなるように傾斜化された開
放気孔型多孔積層体の表面に微細孔膜または表面から僅
かな深さに渡って微細孔層を有する開放気孔型多孔体の
製造方法であって、その開放気孔型多孔積層体の表面
に、気相化学反応法、真空蒸着法、イオンプレーティン
グ法およびスパッタリング法のいずれかのうち少なくと
も1つの方法で薄膜または表層を形成することを特徴と
する開放気孔型多孔体の製造方法が提供される。
According to the present invention, a fine pore film or a slight depth from the surface is formed on the surface of an open pore type porous laminate in which the pore diameter is gradually decreased toward the surface. A method for producing an open-pore type porous body having a fine-pore layer across, wherein the surface of the open-pore type porous laminate has any of a vapor phase chemical reaction method, a vacuum deposition method, an ion plating method and a sputtering method. There is provided a method for producing an open-pore type porous body, which comprises forming a thin film or a surface layer by at least one of the methods.

【0009】また、本発明の好ましい実施の形態によれ
ば、上記薄膜または表層は、アルミナ質、ジルコニア
質、シリカ質、アルミニウムシリケート質、ムライト
質、ゼオライト質、コーディエライト質、磁器質、炭化
珪素質、窒化珪素質、炭素質のうち少なくとも1種類の
成分で形成される。
According to a preferred embodiment of the present invention, the thin film or surface layer is made of alumina, zirconia, silica, aluminum silicate, mullite, zeolite, cordierite, porcelain, carbonized. It is formed of at least one component selected from silicon, silicon nitride, and carbon.

【0010】さらに、本発明の好ましい実施の形態によ
れば、上記薄膜を2種類以上の成分により形成する場合
において、加温下での使用を鑑み、上記開放気孔型多孔
積層体と薄膜との熱膨張差を緩和するように、その組成
成分の比を変化させる。
Further, according to a preferred embodiment of the present invention, in the case where the thin film is formed of two or more kinds of components, in consideration of use under heating, the open pore type porous laminate and the thin film are formed. The ratio of the composition components is changed so as to reduce the difference in thermal expansion.

【0011】上述のように、開放気孔型多孔積層体の表
面に、気相化学反応法、真空蒸着法、イオンプレーティ
ング法およびスパッタリング法のいずれかの方法で薄膜
または表層を形成すれば、微細孔層を粒子単位から原子
単位で形成することができるため、粒子の配置の最適化
を容易に図ることができ、その透過性能や分離性能を向
上させることができる。また、開放気孔型多孔積層体と
薄膜との熱膨張差を緩和するように、薄膜の組成成分の
比を変化させて薄膜を形成すれば、薄膜の剥離を防止す
ることができる。
As described above, when a thin film or surface layer is formed on the surface of the open-pore type porous laminate by any one of the vapor phase chemical reaction method, the vacuum deposition method, the ion plating method and the sputtering method, Since the pore layer can be formed from a particle unit to an atom unit, it is possible to easily optimize the arrangement of particles and improve the permeation performance and the separation performance thereof. Further, peeling of the thin film can be prevented by changing the composition ratio of the thin film to form the thin film so as to reduce the difference in thermal expansion between the open-pore type porous laminate and the thin film.

【0012】[0012]

【実施の形態】以下、本発明の実施の形態について説明
する。本発明の開放気孔型多孔体の製造方法は、従来の
ゾルを塗布して微細孔層を形成する方法に換えて、傾斜
化された開放気孔型多孔積層体の表面に、CVD(Chemi
cal Vapor Deposition:化学気相蒸着) 法、スパッタリ
ング法、イオンプレーティング法および真空蒸着法のい
ずれかの方法で微細孔層たる薄膜を形成するか、または
傾斜化された開放気孔型多孔積層体の表面から僅かな深
さに渡って、CVI(Chemical Vapor Infiltration:化
学気相浸透) 法で微細孔層たる表層を形成するものであ
る。
Embodiments of the present invention will be described below. The method for producing an open-pore type porous body of the present invention, in place of the conventional method of forming a fine pore layer by applying a sol, CVD (Chemi
cal vapor deposition (chemical vapor deposition) method, sputtering method, ion plating method or vacuum deposition method is used to form a thin film that is a fine pore layer, or a graded open pore type porous laminate The surface layer, which is a fine pore layer, is formed by a CVI (Chemical Vapor Infiltration) method over a slight depth from the surface.

【0013】このCVD法とCVI法とを総称して気相
化学反応法という。この方法では気体を利用して薄膜を
形成しているため、複雑な形状の対象物に対しても均一
な膜厚の薄膜を形成することができること、薄膜を組成
する原料の選択の自由度が極めて大きいことを主な特徴
とする。また、数原子層オーダーで薄膜の組織を制御す
ることができるため、その粒子の配置の最適化を容易に
図ることができる。
The CVD method and the CVI method are generically called a vapor phase chemical reaction method. Since a thin film is formed using gas in this method, it is possible to form a thin film having a uniform film thickness even on an object having a complicated shape, and the degree of freedom in selecting raw materials for forming the thin film is high. Its main feature is that it is extremely large. Further, since the structure of the thin film can be controlled on the order of several atomic layers, the arrangement of the particles can be easily optimized.

【0014】なお、CVD法とは、原料ガスを加熱した
基板上へ導き、その表面に気相から反応生成物を析出さ
せて薄膜を形成する方法である。高融点の金属、無機材
料を比較的低い温度で高純度の薄膜を形成できることが
主な特徴であり、特にセラミックスの薄膜を形成すると
きに利用されている。また、CVI法とは、対象物の内
部に原料ガスを導き、そこで反応生成物を析出させて対
象物の内部を反応生成物で充填する方法である。この方
法によれば、傾斜化された開放気孔型多孔積層体の表面
から僅かな深さに渡って反応生成物を充填して、微細孔
層たる表層を形成することができる。
The CVD method is a method of forming a thin film by introducing a source gas onto a heated substrate and precipitating a reaction product from the gas phase on the surface thereof. The main feature is that a high-purity thin film can be formed from a metal or inorganic material having a high melting point at a relatively low temperature, and it is particularly used when forming a ceramic thin film. In addition, the CVI method is a method in which a source gas is introduced into the inside of an object, a reaction product is deposited therein, and the inside of the object is filled with the reaction product. According to this method, the reaction product can be filled to a slight depth from the surface of the inclined open-pore type porous laminate to form a surface layer which is a microporous layer.

【0015】真空蒸着法、イオンプレーティング法およ
びスパッタリング法は、一般にPVD(Physical Vapor
Deposition:物理蒸着)法と呼ばれており、次に示すよ
うな特徴を有している。 (1)薄膜を組成する原料の選択の自由度が極めて大き
く、金属、合金、セラミックから有機材料までコーティ
ングすることができる。 (2)薄膜を形成する対象物の温度を変化させることに
より、膜構造を制御することができる。 (3)蒸発物質と雰囲気ガスとを反応させて、反応生成
物による薄膜を形成することができる。 (4)高純度で、密着性がよく、平滑な薄膜を形成する
ことができる。
The vacuum deposition method, the ion plating method and the sputtering method are generally PVD (Physical Vapor).
It is called a Deposition (physical vapor deposition) method and has the following features. (1) The degree of freedom in selecting raw materials for forming a thin film is extremely high, and it is possible to coat metals, alloys, ceramics and organic materials. (2) The film structure can be controlled by changing the temperature of the object on which the thin film is formed. (3) A thin film of the reaction product can be formed by reacting the vaporized substance with the atmospheric gas. (4) It is possible to form a smooth thin film having high purity and good adhesion.

【0016】上述の気相化学反応法のように数原子層オ
ーダーで薄膜の組織を制御することはできないが、膜構
造を制御することにより細孔率や細孔径分布の優れた薄
膜を形成することができる。
Although it is not possible to control the structure of the thin film on the order of several atomic layers as in the vapor phase chemical reaction method described above, by controlling the film structure, a thin film with excellent porosity and pore size distribution is formed. be able to.

【0017】真空蒸着法とは、10-5〜10-6Torrの圧
力下において、真空中で金属を蒸発させ、その蒸気で金
属を薄膜状に付ける方法である。PVD法の中で、最も
単純な薄膜形成手段であり、金属を蒸発させる蒸発源の
電気的制御をしやすいことが主な特徴である。
The vacuum deposition method is a method of evaporating a metal in a vacuum at a pressure of 10 -5 to 10 -6 Torr and depositing the metal into a thin film with the vapor. It is the simplest thin film forming means in the PVD method, and its main feature is that it is easy to electrically control an evaporation source for evaporating a metal.

【0018】イオンプレーティング法とは、雰囲気ガス
中で気体放電を起こさせ、蒸発粒子をイオン化させるこ
とにより活性化して薄膜を形成する方法である。薄膜の
密着性が極めて強いこと、薄膜の形成が速いこと、ピン
ホールなどの欠陥が極めて少ないこと、密度の高いもの
を得やすいことが主な特徴である。
The ion plating method is a method of forming a thin film by causing a gas discharge in an atmospheric gas and ionizing the vaporized particles to activate them. The main characteristics are that the adhesion of the thin film is extremely strong, that the thin film is formed quickly, that there are very few defects such as pinholes, and that it is easy to obtain a high density.

【0019】スパッタリング法とは、プラズマ中のイオ
ンを固体表面に照射して高速で衝突させ、イオンと固体
表面の原子の運動量を交換して、固体表面から原子をは
じき出して薄膜を形成する方法である。薄膜の密着性が
極めて強いこと、高融点物質の薄膜の形成が容易である
こと、広面積で均一な薄膜を形成できること、薄膜の組
成の制御が容易であることが主な特徴である。
The sputtering method is a method of irradiating ions in plasma onto a solid surface and causing them to collide at a high speed, exchanging momentum between ions and atoms on the solid surface, and ejecting atoms from the solid surface to form a thin film. is there. The main characteristics are that the adhesion of the thin film is extremely strong, that a thin film of a high melting point substance can be easily formed, that a uniform thin film can be formed over a wide area, and that the composition of the thin film can be easily controlled.

【0020】したがって、上述した特徴を有するこれら
の方法で、傾斜化された開放気孔型多孔積層体の表面に
薄膜または表層を形成することにより、粒子の配置の最
適化を図ることが出来るとともに、均一かつ安定した微
細孔層を形成することができる。
Therefore, by forming a thin film or surface layer on the surface of the graded open-pore type porous laminate by these methods having the above-mentioned characteristics, the arrangement of particles can be optimized, and A uniform and stable microporous layer can be formed.

【0021】また、薄膜の熱膨張係数が開放気孔型多孔
積層体の熱膨張係数に近くなるように、原料ガスの成分
を組み合わせれば、開放気孔型多孔積層体と薄膜との熱
膨張差が緩和され、その剥離を防ぐことができる。ま
た、薄膜を2種類以上の成分の組み合わせにより形成す
る場合において、所望の細孔径、細孔率および細孔径分
布を実現させるとともに、その剥離を防ぐためには、原
料ガスの成分あるいは流量比を時系列的に変化させるこ
とにより、開放気孔型多孔積層体に密着する部分の熱膨
張係数を開放気孔型多孔積層体の熱膨張係数に近くし
て、開放気孔型多孔積層体と薄膜との熱膨張差を緩和す
るようにすればよい。
If the raw material gas components are combined so that the coefficient of thermal expansion of the thin film is close to the coefficient of thermal expansion of the open pore type porous laminate, the difference in thermal expansion between the open pore type porous laminate and the thin film is obtained. It is relaxed and its peeling can be prevented. When a thin film is formed by combining two or more kinds of components, in order to achieve the desired pore diameter, porosity and pore diameter distribution, and to prevent the peeling, the composition of the source gas or the flow rate ratio is By changing it in series, the coefficient of thermal expansion of the portion in close contact with the open-pore type porous laminate is made close to that of the open-pore type porous laminate, and the thermal expansion of the open-pore type porous laminate and the thin film is increased. The difference should be eased.

【0022】[0022]

【実施例】次に、本発明の製造方法を利用して開放気孔
型多孔体を製造した実施例1および実施例2と、従来の
製造方法で開放気孔型多孔体を製造した比較例とを表1
を参照して説明する。
[Examples] Next, Examples 1 and 2 in which an open-pore type porous body was produced by using the production method of the present invention and a comparative example in which an open-pore type porous body was produced by a conventional production method were prepared. Table 1
This will be described with reference to FIG.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例1は、まず粒子径が21μmのアル
ミナ粉末、分散剤、結合剤および水をボールミルにて湿
式混合し泥奨とした後、石膏型を用いて鋳込み成形法に
より成形し、その成形体を1500℃で1時間焼結して
開放気孔型多孔積層体の基礎となる層(以下、基層とい
う)を形成し、この基層を粒子径が0.5μmのアルミ
ナ粉末、分散剤、結合剤および水をボールミルにて湿式
混合して泥奨としたものに、浸漬、乾燥する工程を5回
繰り返した後、1400℃で1時間焼結して傾斜化され
た開放気孔型多孔積層体を形成し、表面温度が800
℃、圧力が5×10-3Toll、スパッタリングガスがAr
−O2 混合ガス(O2 濃度20%)の条件にて、スパッ
タリング法により上記開放気孔型多孔積層体の表面に微
細孔層たる薄膜(アルミナ膜)を形成したものである。
In Example 1, first, alumina powder having a particle diameter of 21 μm, a dispersant, a binder, and water were wet-mixed in a ball mill to form a mud, which was then molded by a cast molding method using a gypsum mold. The molded body is sintered at 1500 ° C. for 1 hour to form a base layer (hereinafter referred to as a base layer) of the open pore type porous laminate, and this base layer is bonded with alumina powder having a particle diameter of 0.5 μm, a dispersant, and a binder. A wet-mixed agent and water were wet mixed in a ball mill, and the steps of dipping and drying were repeated 5 times, followed by sintering at 1400 ° C. for 1 hour to obtain a graded open-pore porous laminate. Formed and the surface temperature is 800
℃, pressure 5 × 10 -3 Toll, sputtering gas Ar
A thin film (alumina film), which is a fine pore layer, is formed on the surface of the open pore type porous laminate by a sputtering method under the condition of a —O 2 mixed gas (O 2 concentration 20%).

【0025】予め、膜厚は100nm、平均細孔径は5
0nm、細孔率は75%となるようにしてスパッタリン
グ法を行ったところ、表1に示すように所望のとおりの
微細孔層を得ることができた。また、ピンホール、亀
裂、剥離などの欠陥は全く見られなかった。なお、表面
温度が500〜1200℃、圧力が5×10-2〜5×1
-4Toll、スパッタリングガスがAr−O2 混合ガス
(O2 濃度5〜30%)の条件において、薄膜を形成す
ることができた。
In advance, the film thickness is 100 nm and the average pore diameter is 5
When the sputtering method was carried out with 0 nm and a porosity of 75%, a desired microporous layer could be obtained as shown in Table 1. In addition, no defects such as pinholes, cracks, and peeling were observed. The surface temperature is 500 to 1200 ° C and the pressure is 5 × 10 -2 to 5 × 1.
A thin film could be formed under the conditions of 0 −4 Toll and a sputtering gas of Ar—O 2 mixed gas (O 2 concentration of 5 to 30%).

【0026】実施例2は、まず粒子径が15μmのアル
ミナ粉末、分散剤、結合剤および水をボールミルにて湿
式混合し泥奨とした後、フィルタープレスにより成形
し、その成形体を1450℃で1時間焼結して開放気孔
型多孔積層体の基層を形成し、この基層を粒子径が0.
4μmのアルミナ粉末、分散剤、結合剤および水をボー
ルミルにて湿式混合して泥奨としたものに、浸漬、乾燥
する工程を5回繰り返した後、1400℃で1時間焼結
して傾斜化された開放気孔型多孔積層体を形成し、表面
温度が1100℃、圧力が4Torr、原料ガスがアルミニ
ウムアルコキシド系およびO2 系、キャリアガスがH2-
Arガス(Ar濃度5%)、ガス流量が2000cc/
分(25℃、1気圧)の条件にて、アルミニウムアルコ
キシド系およびO2 系の原料ガスを交互に供給する不連
続CVD法を300回繰り返して上記開放気孔型多孔積
層体の表面に微細孔層たる薄膜(アルミナ膜)を形成し
たものである。
In Example 2, first, alumina powder having a particle diameter of 15 μm, a dispersant, a binder, and water were wet mixed in a ball mill to form a mud, which was then molded by a filter press, and the molded body at 1450 ° C. Sintering for 1 hour forms a base layer of the open-pore type porous laminate, and the base layer has a particle size of 0.
4 μm alumina powder, dispersant, binder, and water were wet-mixed in a ball mill to make a mud scoop, and the process of dipping and drying was repeated 5 times, and then the mixture was sintered at 1400 ° C. for 1 hour to be graded. To form an open-pore type porous laminate having a surface temperature of 1100 ° C., a pressure of 4 Torr, a source gas of aluminum alkoxide system and O 2 system, and a carrier gas of H 2-.
Ar gas (Ar concentration 5%), gas flow rate is 2000cc /
A microporous layer is formed on the surface of the open-pore type porous laminate by repeating the discontinuous CVD method for alternately supplying aluminum alkoxide-based and O 2 -based source gases under the condition of minutes (25 ° C., 1 atm) for 300 times. It is a thin film (alumina film) formed.

【0027】予め、膜厚は50nm、平均細孔径は25
nm、細孔率は45%となるようにしてCVD法を行っ
たところ、表1に示すように所望のとおりの微細孔層を
得ることができた。また、ピンホール、亀裂、剥離など
の欠陥は実施例1と同様に全く見られなかった。なお、
表面温度が600〜1300℃、圧力が0.1〜50To
rr、キャリアガスがH2-Arガス(Ar濃度0〜10
%)、ガス流量が1500〜5000cc/分(25
℃、1気圧)の条件においても、薄膜を形成することが
できた。
The film thickness is 50 nm and the average pore size is 25 in advance.
When the CVD method was carried out so that the pore size was 45 nm and the porosity was 45%, a desired fine pore layer could be obtained as shown in Table 1. In addition, defects such as pinholes, cracks, and peeling were not found at all as in Example 1. In addition,
Surface temperature is 600 ~ 1300 ℃, pressure is 0.1 ~ 50To
rr, carrier gas is H 2 -Ar gas (Ar concentration 0-10
%), The gas flow rate is 1500 to 5000 cc / min (25
A thin film could be formed even under the condition of (° C., 1 atm).

【0028】比較例は、まず粒子径が21μmのアルミ
ナ粉末、分散剤、結合剤および水をボールミルにて湿式
混合し泥奨とした後、石膏型を用いて鋳込み成形法によ
り成形し、その成形体を1500℃で1時間焼結して開
放気孔型多孔積層体の基層を形成し、この基層を粒子径
が0.5μmのアルミナ粉末、分散剤、結合剤および水
をボールミルにて湿式混合して泥奨としたものに、浸
漬、乾燥する工程を5回繰り返した後、1400℃で1
時間焼結して傾斜化された開放気孔型多孔積層体を形成
し、アルミナゾルの塗布、ゲル化、乾燥および焼結を5
回繰り返して上記開放気孔型多孔積層体の表面に微細孔
層を形成した。
In the comparative example, first, alumina powder having a particle diameter of 21 μm, a dispersant, a binder and water were wet mixed in a ball mill to make mud, and then molded by a cast molding method using a gypsum mold, and the molding was performed. The body is sintered at 1500 ° C. for 1 hour to form a base layer of an open-pore type porous laminate, and the base layer is wet-mixed with an alumina powder having a particle size of 0.5 μm, a dispersant, a binder and water in a ball mill. After repeating the process of dipping and drying 5 times in a mud-removed product,
After the time sintering, a graded open-pore type porous laminate is formed, and alumina sol coating, gelling, drying and sintering are performed.
Repeated times to form a microporous layer on the surface of the open-pore type porous laminate.

【0029】表に示すように、平均細孔径が60nmで
細孔率が30%の微細孔層が得られた。また、この微細
孔層においては、ピンホールおよび亀裂が数カ所に発生
していた。
As shown in the table, a fine pore layer having an average pore diameter of 60 nm and a porosity of 30% was obtained. Moreover, in this microporous layer, pinholes and cracks were generated at several places.

【0030】これらの結果から、実施例1,実施例2と
比較例を比較すると、細孔率が実施例1では70%、実
施例2では45%、比較例では30%と、実施例1,実
施例2の方が比較例よりも格段に透過性能や分離性能に
優れている。つまり、簡単にいえば実施例1,実施例2
の方が細孔の数が多いということであり、透過性能や分
離性能に優れていることが分かる。さらに、実施例1,
実施例2には、微細孔層にピンホールや亀裂の欠陥が無
いのに対し、比較例ではピンホールや亀裂が生じている
ことが分かる。
From these results, comparing Example 1 and Example 2 with Comparative Example, the porosity was 70% in Example 1, 45% in Example 2, and 30% in Comparative Example. The Example 2 is far superior to the Comparative Example in the permeation performance and the separation performance. That is, to put it simply, Embodiment 1 and Embodiment 2
This means that the number of pores is larger, and the permeation performance and separation performance are superior. Furthermore, Example 1,
In Example 2, it can be seen that the microhole layer has no defects such as pinholes and cracks, whereas the comparative example has pinholes and cracks.

【0031】なお、本発明は上述した実施の形態および
実施例に限定されず、本発明の要旨を逸脱しない範囲で
種々変更できることは勿論である。
The present invention is not limited to the above-described embodiments and examples, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0032】[0032]

【発明の効果】上述した本発明の開放気孔型多孔体の製
造方法によれば、微細孔層の形成において、薄膜形成の
条件を変更するだけで粒子の配置の最適化を図ることが
できる。したがって、細孔率を高くすることができ、ピ
ンホール、亀裂、剥離などの欠陥のない微細孔層を形成
することができる、などの優れた効果を有する。
According to the above-described method for producing an open-pore type porous body of the present invention, in the formation of the fine pore layer, the arrangement of the particles can be optimized only by changing the conditions for forming the thin film. Therefore, it has an excellent effect such that the porosity can be increased and a fine pore layer having no defects such as pinholes, cracks, and peeling can be formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々 正 東京都江東区豊洲3丁目1番15号 石川島 播磨重工業株式会社技術研究所内 (72)発明者 二宮 伸雄 東京都江東区豊洲3丁目1番15号 石川島 播磨重工業株式会社技術研究所内 (72)発明者 篠原 譲司 東京都江東区豊洲3丁目1番15号 石川島 播磨重工業株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tadashi Sasa Tadashi, 1-1-15 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Ltd. Technical Research Institute (72) Nobuo Ninomiya 3-1-1, Toyosu, Koto-ku, Tokyo No. Ishikawajima Harima Heavy Industries Co., Ltd. Technical Research Institute (72) Inventor Joji Shinohara 3-1-15-1 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Technical Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 細孔径が表面に向かって順次小さくなる
ように傾斜化された開放気孔型多孔積層体の表面に微細
孔膜または表面から僅かな深さに渡って微細孔層を有す
る開放気孔型多孔体の製造方法であって、その開放気孔
型多孔積層体の表面に、気相化学反応法、真空蒸着法、
イオンプレーティング法およびスパッタリング法のいず
れかのうち少なくとも1つの方法で薄膜または表層を形
成することを特徴とする開放気孔型多孔体の製造方法。
1. An open pore having a fine pore film or a fine pore layer extending to a slight depth from the surface on the surface of an open pore type porous laminate in which the pore diameter is gradually decreased toward the surface. A method for producing a porous mold body, wherein a gas phase chemical reaction method, a vacuum deposition method,
A method for producing an open-pore type porous body, comprising forming a thin film or a surface layer by at least one of an ion plating method and a sputtering method.
【請求項2】 上記薄膜または表層は、アルミナ質、ジ
ルコニア質、シリカ質、アルミニウムシリケート質、ム
ライト質、ゼオライト質、コーディエライト質、磁器
質、炭化珪素質、窒化珪素質、炭素質のうち少なくとも
1種類の成分で形成される請求項1記載の開放気孔型多
孔体の製造方法。
2. The thin film or surface layer is made of alumina, zirconia, silica, aluminum silicate, mullite, zeolite, cordierite, porcelain, silicon carbide, silicon nitride, or carbonaceous material. The method for producing an open-pore type porous body according to claim 1, which is formed of at least one kind of component.
【請求項3】 上記薄膜を2種類以上の成分により形成
する場合において、上記開放気孔型多孔積層体と薄膜と
の熱膨張差を緩和するように、その組成成分の比を変化
させる請求項1または請求項2記載の開放気孔型多孔体
の製造方法。
3. When the thin film is formed of two or more kinds of components, the ratio of the composition components is changed so as to reduce the difference in thermal expansion between the open pore type porous laminate and the thin film. Alternatively, the method for producing an open-pore type porous body according to claim 2.
JP19140195A 1995-07-27 1995-07-27 Production of open pore type porous body Pending JPH0940478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19140195A JPH0940478A (en) 1995-07-27 1995-07-27 Production of open pore type porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19140195A JPH0940478A (en) 1995-07-27 1995-07-27 Production of open pore type porous body

Publications (1)

Publication Number Publication Date
JPH0940478A true JPH0940478A (en) 1997-02-10

Family

ID=16273997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19140195A Pending JPH0940478A (en) 1995-07-27 1995-07-27 Production of open pore type porous body

Country Status (1)

Country Link
JP (1) JPH0940478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012508A5 (en) * 1998-06-03 2000-11-07 Denso Corp Structure honeycomb and method of production.
KR20160132018A (en) 2014-03-11 2016-11-16 미쓰비시 마테리알 가부시키가이샤 Liquid composition for forming silica porous film and silica porous film formed from such liquid composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1012508A5 (en) * 1998-06-03 2000-11-07 Denso Corp Structure honeycomb and method of production.
US6242072B1 (en) 1998-06-03 2001-06-05 Denso Corporation Honeycomb structural body and process for production of the same
KR20160132018A (en) 2014-03-11 2016-11-16 미쓰비시 마테리알 가부시키가이샤 Liquid composition for forming silica porous film and silica porous film formed from such liquid composition
US10457561B2 (en) 2014-03-11 2019-10-29 Mitsubishi Materials Corporation Liquid composition for forming silica porous film and silica porous film formed from such liquid composition

Similar Documents

Publication Publication Date Title
EP0195549B1 (en) A separation membrane and process for manufacturing the same
JP5369096B2 (en) Method for preparing a porous inorganic coating on a porous support using specific pore fillers
JP4300871B2 (en) Method for producing sheet-like porous metal body
US5472927A (en) Catalyst or membrane precursor systems, catalyst or membrane systems, and method of preparing such systems
US7074479B2 (en) Sintered shaped body, whose surface comprises a porous layer and a method for the production thereof
JP2002533576A5 (en) Colloidal treatment spraying method for effective plating adhesion and composition for forming a film
JP2002533576A (en) Colloidal treatment spray method for effective plating adhesion
US20030054154A1 (en) Method of making a porous green form and oxygen transport membrane
US20040258611A1 (en) Colloidal composite sol gel formulation with an expanded gel network for making thick inorganic coatings
PL209724B1 (en) Silicon carbide based porous article and method for preparation thereof
US6248434B1 (en) Composite body comprising a hard metal, cermet or ceramic substrate body and method of producing same
US6613384B1 (en) Method for manufacturing a membrane
WO2007025152A1 (en) Colloidal templating process for manufacture of highly porous ceramics
DK169993B1 (en) Ceramic foam and method for making ceramic articles
CN111699164A (en) Aqueous suspension containing metal carbide particles
JPH0295423A (en) Inorgannic film
JPH0940478A (en) Production of open pore type porous body
WO2003072848A1 (en) Method and device for manufacturing semiconductor or insulator/metallic laminar composite cluster
JP2612878B2 (en) Method for producing silicon carbide honeycomb structure
KR101323106B1 (en) Manufacturing method of hydrogen filtering membrane having pipe-shaped structure
JPH0818883B2 (en) Porous filter manufacturing method
RU2040371C1 (en) Method of making filtering material
JPH11116352A (en) Production of porous ceramic
JP4448915B2 (en) Laminated porous body, method for producing the same, and filter
JPH03150276A (en) Multilayered ceramic material and production thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050414

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051111