JPH0938783A - Welded structure of aluminum alloy - Google Patents

Welded structure of aluminum alloy

Info

Publication number
JPH0938783A
JPH0938783A JP7212548A JP21254895A JPH0938783A JP H0938783 A JPH0938783 A JP H0938783A JP 7212548 A JP7212548 A JP 7212548A JP 21254895 A JP21254895 A JP 21254895A JP H0938783 A JPH0938783 A JP H0938783A
Authority
JP
Japan
Prior art keywords
nugget
aluminum alloy
magnesium
strength
welded structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7212548A
Other languages
Japanese (ja)
Inventor
Takashi Iwasa
孝 岩佐
Shinji Okabe
伸治 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7212548A priority Critical patent/JPH0938783A/en
Publication of JPH0938783A publication Critical patent/JPH0938783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Welding (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to obtain high strength by forming alloy layers on the circumference of a nugget part, thereby suppressing the formation of the oxidized films at the ends of the nugget part formed thus far and suppressing the formation of the oxidized films as the oxidized films are liable to be the start point for crack. SOLUTION: This welded structure of the aluminum alloy is produced by using the aluminum ally as base metals 1, 3 and joining these base metals 2, 3 to each other via weld zones by resistance welding. The weld zones consist of the nugget part 7 and the alloyed layers 8, 8 formed around the nugget part 7. Magnesium is incorporated more in these alloyed layers 8, 8 than in the base metals 1, 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はアルミニウム合金構
造物におけるナゲット部の強度向上技術に関する。
TECHNICAL FIELD The present invention relates to a technique for improving the strength of a nugget portion in an aluminum alloy structure.

【0002】[0002]

【従来の技術】アルミニウム合金の溶融接合部(以下
「ナゲット部」と言う)の強度は母材の強度より低くな
る傾向にあり、特にスポット溶接ではナゲット部の強度
が母材の強度の60%以下に低下することは珍しくな
い。それゆえにスポット溶接では、電流値を上げて接合
面積を増加させる、又は、スポット点の数を増加させる
等の対策を講じている。
2. Description of the Related Art The strength of a fusion-bonded portion of an aluminum alloy (hereinafter referred to as "nugget portion") tends to be lower than that of a base metal, and particularly in spot welding, the strength of the nugget portion is 60% of the strength of the base metal. It is not uncommon to drop below. Therefore, in spot welding, measures such as increasing the current value to increase the joining area or increasing the number of spot points are taken.

【0003】しかし、電流値を上げるには設備を大型
化、高性能化する必要があってイニシャルコストを増す
という不都合があり、またスポット点の数を増すことは
工数の増加となってコストアップの要因となる。
However, in order to increase the current value, it is necessary to increase the size and performance of the equipment, which increases the initial cost, and increasing the number of spot points increases the man-hours and increases the cost. It becomes a factor of.

【0004】そこで、アルミニウム合金同士の間に、亜
鉛薄膜を介在させる改良技術が特公昭54−41550
号で提案されている。即ち、アルミニウム板とアルミニ
ウム板の抵抗溶接部に予め亜鉛薄膜を介在させて抵抗溶
接時に亜鉛を瞬間的に溶融せしめて局部的な高抵抗部を
形成して電力を集中させ、ナゲット部をAl−Znの固
溶化、析出を図り、接合部の強度向上を図るというもの
である。上記亜鉛薄膜をTi薄層に変更したのものが特
公昭59−26392号、又亜鉛薄膜をステンレス鋼薄
板に変更したのものが特公昭59−26393号で提案
されている。
Therefore, an improved technique of interposing a zinc thin film between aluminum alloys is disclosed in Japanese Examined Patent Publication No. 54-41550.
No. has been proposed. That is, by interposing a zinc thin film in advance between the aluminum plate and the resistance welding part of the aluminum plate, zinc is instantaneously melted during resistance welding to form a local high resistance part to concentrate electric power, and the nugget part is Al- It aims to improve the strength of the joint by solidifying and precipitating Zn. JP-B-59-26392 proposes a zinc thin film changed to a Ti thin layer, and JP-B-59-26393 proposes a zinc thin film changed to a stainless steel thin plate.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記亜鉛薄
板、Ti薄層、ステンレス鋼薄板はいずれも局部的に抵
抗を高める作用は発揮されるものの、ナゲット部の強度
を母材まで引き上げるに至ってない。これは、アルミニ
ウムに対して亜鉛は固溶するが格子定数差が小さいため
に固溶強化は小さい。また、アルミニウムに対してTi
の固溶限が0.15wt%、そしてFe(鉄)の固溶限
が0.05wt%と極めて小さいためにこれらによる固
溶化効果が小さいためである。そこで、亜鉛薄板、Ti
薄層、ステンレス鋼薄板に代る技術が求められている。
However, although the zinc thin plate, the Ti thin layer, and the stainless steel thin plate all have the effect of locally increasing the resistance, the strength of the nugget portion has not been increased to the base material. . This is because although zinc is solid-dissolved in aluminum, the solid-solution strengthening is small because the difference in lattice constant is small. Also, for aluminum, Ti
This is because the solid solution limit of 0.15 wt% and the solid solution limit of Fe (iron) are extremely small at 0.05 wt%, so that the solid solution effect by these is small. Therefore, zinc thin plate, Ti
There is a need for an alternative technology to thin layers, stainless steel sheets.

【0006】また、通常の抵抗溶接法によるアルミニウ
ム合金溶接構造物には次のような欠陥が認められること
がある。図3は従来の抵抗溶接法によるアルミニウム合
金溶接構造物の溶接部の顕微鏡写真(倍率=400)で
あり、詳細な溶接条件は比較例1として実施例の項で述
べる。写真は、アルミニウム合金製の母材間に形成され
たナゲット部を示し、このナゲット部に横筋状のクラッ
クが入り、しかも母材にもクラック入っていることをも
示す。
Further, the following defects may be observed in the aluminum alloy welded structure formed by the usual resistance welding method. FIG. 3 is a micrograph (magnification = 400) of a welded portion of an aluminum alloy welded structure by a conventional resistance welding method, and detailed welding conditions will be described in Comparative Example 1 in the section of Examples. The photograph shows a nugget part formed between base materials made of aluminum alloy, and also shows that the nugget part has horizontal streak-like cracks and that the base material also has cracks.

【0007】[0007]

【課題を解決するための手段】上記図3のクラックは有
害であるため、本発明者等はクラックの発生プロセスを
解明すべく鋭意研究を進めた。その結果、上記抵抗溶接
ではナゲット部の端部にクラックの発生起点となる窪み
(ノッチ)が形成されことを見出し、更にこの窪みはア
ルミニウム材に付き物の酸化物が原因していることを突
き止めた。即ち、アルミニウム材の表面に強固な酸化物
が形成され、この酸化物が抵抗溶接の際に溶融せずに残
って、ナゲット部の周囲に不都合な窪みを形成するとい
うものである。
Since the cracks shown in FIG. 3 are harmful, the inventors of the present invention have conducted extensive studies to clarify the crack generation process. As a result, it was found that a dent (notch), which is a starting point of crack generation, was formed at the end of the nugget portion in the resistance welding, and it was further found that the dent was caused by an oxide attached to the aluminum material. . That is, a strong oxide is formed on the surface of the aluminum material, and this oxide remains without melting during resistance welding, forming an inconvenient depression around the nugget portion.

【0008】そこで、本発明者等は前記窪みの発生を抑
える研究をし、この酸化物を除去することで強度の高い
アルミニウム合金溶接構造物を得ることに成功した。具
体的には、請求項1の溶接部は、ナゲット部と、このナ
ゲット部の周囲に形成された合金化層とからなり、この
合金化層に母材より多くのマグネシウムを含ませたこと
を特徴とする。
[0008] Therefore, the inventors of the present invention conducted a study to suppress the generation of the depressions, and succeeded in obtaining an aluminum alloy welded structure having high strength by removing this oxide. Specifically, the welded portion of claim 1 comprises a nugget portion and an alloyed layer formed around the nugget portion, and the alloyed layer contains more magnesium than the base metal. Characterize.

【0009】即ち、抵抗溶接の際にマグネシウム成分で
自己発熱反応を起こさせ、その熱で酸化膜を破壊する。
そして、ナゲット部の周囲に合金層を形成したことによ
り、従来発生していたナゲット部端部の酸化膜の発生を
抑えることができる。酸化膜がクラックの起点となりや
すいので、酸化膜の発生を抑えることで、高強度が得ら
れる。
That is, during resistance welding, the magnesium component causes a self-heating reaction, and the heat destroys the oxide film.
By forming the alloy layer around the nugget portion, it is possible to suppress the generation of the oxide film at the end portion of the nugget portion, which has been conventionally generated. Since the oxide film easily becomes a starting point of cracks, high strength can be obtained by suppressing the generation of the oxide film.

【0010】請求項2は、合金化層に、ナゲット部より
多くのマグネシウムを含ませたことを特徴とする。
A second aspect of the present invention is characterized in that the alloyed layer contains more magnesium than the nugget portion.

【0011】マグネシウムリッチの合金化層は、ナゲッ
ト部より強度が大きくなり、溶接部の強度向上に寄与す
る。
The magnesium-rich alloyed layer has a strength higher than that of the nugget portion and contributes to the improvement of the strength of the welded portion.

【0012】[0012]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。図1(a)〜(d)は本発明に係る抵抗溶
接の工程図である。(a)において、母材1に、アルミ
ニウム粉末、マグネシウム粉末及び金属酸化物を混合し
てなる混合粉末2を適量載せて、その上から母材3を被
せる。母材1,3はアルミニウム合金板である。(b)
において、母材1,3を電極4,5にて所定の押圧力で
挟持し、所定の電流を流して、抵抗溶接を実施する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals. 1A to 1D are process diagrams of resistance welding according to the present invention. In (a), an appropriate amount of mixed powder 2 obtained by mixing aluminum powder, magnesium powder and metal oxide is placed on the base material 1, and the base material 3 is covered thereon. The base materials 1 and 3 are aluminum alloy plates. (B)
In, the base materials 1 and 3 are sandwiched between the electrodes 4 and 5 with a predetermined pressing force, and a predetermined current is passed to perform resistance welding.

【0013】(c)は母材1,3間に生成した溶融部6
を示し、この溶融部6はジュール熱と混合粉末内におけ
るテルミット発熱反応、すなわちマグネシウムと金属酸
化物との酸化反応による自己発熱反応とにより、溶融が
促進され溶融部6は拡大される。(d)は通電終了後の
状態を示し、前記溶融部は凝固してナゲット部7とな
り、このナゲット部7の上部及び下部は電極4,5を通
じて冷却が進むが、ナゲット部7の端部7a,7aは冷
却の度合が小さく、母材1,3の接合面に沿って混合粉
末の酸化反応が進行し、接合面にMg−Al合金を主成
分とした合金化層8,8が形成される。上記テルミット
反応が期待できない従来技術では前記端部7a,7aの
凝固がかなり遅れて、酸化膜による窪みが残ることにな
るが、本発明ではその心配はない。
(C) is a fusion zone 6 formed between the base materials 1 and 3.
The melting portion 6 is expanded by the Joule heat and thermite exothermic reaction in the mixed powder, that is, a self-exothermic reaction due to an oxidation reaction of magnesium and a metal oxide. (D) shows the state after the end of energization, the molten portion is solidified to become the nugget portion 7, and the upper and lower portions of the nugget portion 7 are cooled through the electrodes 4 and 5, but the end portion 7a of the nugget portion 7 is , 7a has a low degree of cooling, the oxidation reaction of the mixed powder progresses along the joint surfaces of the base materials 1 and 3, and alloying layers 8 and 8 containing Mg-Al alloy as a main component are formed on the joint surfaces. It In the prior art in which the thermite reaction cannot be expected, the solidification of the end portions 7a, 7a is considerably delayed, and a dent due to an oxide film remains, but in the present invention, there is no concern.

【0014】[0014]

【実施例】本発明に係る実施例を次に説明する。以下、
本発明の実施例を示すが、本発明はこれに限定されるも
のではない。 実施例1〜3及び比較例1,2: 被溶接材(母材); 材質;Al−Mg系アルミニウム合金(A5182材)
圧延材 形状;00mm×30mm×1.2mm 溶接条件; 電源;インバータ式 電流;12又は18kA 加圧力;400kgf 電極; 材質;無酸素銅 直径;16mm 先端の曲率半径;60,80又は00mm インサート材; 塗布量;0.25g/cm2 塗布面積;900mm2 組成;マグネシウム粉末(300μm以下)とアルミニ
ウム粉末(150μm以下)との混合物又は、金属酸化
物粉末とマグネシウム粉末とアルミニウム粉末との混合
物。
Embodiments of the present invention will be described below. Less than,
Examples of the present invention will be shown, but the present invention is not limited thereto. Examples 1 to 3 and Comparative Examples 1 and 2: Material to be welded (base material); Material; Al-Mg based aluminum alloy (A5182 material)
Rolled material shape; 00 mm x 30 mm x 1.2 mm Welding conditions; Power source; Inverter type current; 12 or 18 kA Pressurizing force; 400 kgf electrode; Material; Oxygen-free copper diameter; 16 mm Tip curvature radius; 60, 80 or 00 mm Insert material; Application amount: 0.25 g / cm 2 Application area: 900 mm 2 Composition: A mixture of magnesium powder (300 μm or less) and aluminum powder (150 μm or less) or a mixture of metal oxide powder, magnesium powder and aluminum powder.

【0015】インサート材としての混合粉末の組成を次
の表1に示す通りに実施例1〜3,比較例2,3でそれ
ぞれ変更し、比較例1はインサート材を介在させないこ
とを条件にスポット溶接し、生成したナゲット部のマグ
ネシウムの含有量、合金化層が生成されたか否か、及び
引張剪断強度を調べた。なお、引張剪断荷重は引張荷重
によって接着面に剪断応力を加え、接着接合面が破断し
た時の荷重をいう。
The composition of the mixed powder as the insert material was changed in each of Examples 1 to 3 and Comparative Examples 2 and 3 as shown in Table 1 below, and Comparative Example 1 was spotted under the condition that no insert material was interposed. The content of magnesium in the nugget portion produced by welding, whether an alloyed layer was produced, and the tensile shear strength were examined. The tensile shear load means a load when the adhesive bonding surface is broken by applying shear stress to the adhesive surface by the tensile load.

【0016】[0016]

【表1】 [Table 1]

【0017】比較例1は、溶接電流を18kAとし、イ
ンサート材なしの従来の抵抗溶接法によったものであ
る。比較例1の溶接部の顕微鏡写真は、前記図3に示す
通りであり、ナゲット部の周囲にクラックが発生してい
るので、強度は低下する。具体的には、ナゲット部のM
g含有量は5.0wt%であり、合金化層は形成され
ず、その結果、引張剪断強度は6.8kg/mm2であ
り、引張剪断強度が10.0kg/mm2以上で評価を
「○」、10.0kg/mm2未満で「×」とすれば、
比較例1の評価は「×」である。なお、インサート材な
しなのでナゲット部の含有Mgは、母材中のMg成分が
源となる。
In Comparative Example 1, the welding current was 18 kA and the conventional resistance welding method without insert material was used. The micrograph of the welded portion of Comparative Example 1 is as shown in FIG. 3 above. Since cracks are generated around the nugget portion, the strength is reduced. Specifically, M of the nugget part
The g content was 5.0 wt% and no alloyed layer was formed. As a result, the tensile shear strength was 6.8 kg / mm 2 , and the evaluation was made when the tensile shear strength was 10.0 kg / mm 2 or more. ◯ ”, if less than 10.0 kg / mm 2 and“ x ”,
The evaluation of Comparative Example 1 is “x”. Since there is no insert material, the Mg content in the nugget portion comes from the Mg component in the base material.

【0018】比較例2は、60wt%Mg−Alを成分
としたインサート材を介在させて、図1の要領で抵抗溶
接したもので、ナゲット部のMg含有量は8.9wt%
と増加したが、合金化層は形成されず、その結果、引張
剪断強度は9.1kg/mm2であり、評価は「×」で
ある。即ち、インサート材に金属酸化物が含まれていな
いので、期待したテルミット反応が得られず、合金化層
が得られなかったので、ナゲット部の周囲に微細な窪み
(ノッチ)が発生し、強度が低くなったと考える。
In Comparative Example 2, resistance welding was carried out as in FIG. 1 with an insert material containing 60 wt% Mg-Al as a component, and the Mg content in the nugget portion was 8.9 wt%.
However, the alloyed layer was not formed, and as a result, the tensile shear strength was 9.1 kg / mm 2 , and the evaluation was “x”. That is, since the insert material does not contain a metal oxide, the expected thermite reaction was not obtained, and the alloyed layer was not obtained, so a minute recess (notch) occurred around the nugget portion, and the strength was increased. I think that has become low.

【0019】実施例1は、金属酸化物を含むところの1
0wt%MnO2−65wt%Mg−Alのインサート
材を介在させて、比較例1より低い12kAで抵抗溶接
を実施した。すると、ナゲット部のMg含有量は7.6
wt%で、合金化層は形成され、その結果、引張剪断強
度は11.7kg/mm2と高まり、評価は「○」であ
る。
Example 1 is one containing a metal oxide.
Resistance welding was performed at 12 kA, which is lower than in Comparative Example 1, with an insert material of 0 wt% MnO 2 -65 wt% Mg-Al interposed. Then, the Mg content of the nugget portion is 7.6.
At wt%, the alloyed layer was formed, and as a result, the tensile shear strength was increased to 11.7 kg / mm 2, and the evaluation was “◯”.

【0020】図2は本発明の実施例1のアルミニウム合
金溶接構造物の溶接部の顕微鏡写真(倍率=400)で
あり、ナゲット部の周囲(図では左端)で且つ上下母材
の接合面に合金化層(図1(d)の符号8に相当)が認
められる。ナゲット部のMg含有量は比較例2に比べて
減少したにもかかわらず、金属酸化物(MnO2)とM
gとのテルミット反応により、酸化膜が破壊され、合金
化層が形成されたので強度が上がったと考えられる。テ
ルミット反応が期待できるので、溶接電流を12kAに
下げたにもかかわらず良好な溶接部が得られた。従っ
て、本発明によれば溶接電流を下げることができる。
FIG. 2 is a photomicrograph (magnification = 400) of the welded portion of the aluminum alloy welded structure of Example 1 of the present invention, which is around the nugget portion (left end in the figure) and on the joint surfaces of the upper and lower base materials. An alloyed layer (corresponding to reference numeral 8 in FIG. 1 (d)) is recognized. Although the Mg content of the nugget part was reduced as compared with Comparative Example 2, the metal oxide (MnO 2 ) and M
It is believed that the thermite reaction with g destroyed the oxide film and formed an alloyed layer, resulting in increased strength. Since a thermite reaction can be expected, a good weld was obtained even though the welding current was reduced to 12 kA. Therefore, according to the present invention, the welding current can be reduced.

【0021】比較例3は、電極の先端の曲率半径を80
mmから60mmに変更し、他の条件は前記実施例1と
同じにしたものである。ナゲット部のMg含有量は7.
3wt%であったが、合金化層は形成されず、その結
果、引張剪断強度は9.4kg/mm2と減少し、評価
は「×」である。電極の先端の曲率半径が小さくなった
ために、ナゲット部の周囲における母材同士の圧着が弱
まり、この部分では十分なジュール熱の発生がなかった
ためと考えられる。
In Comparative Example 3, the radius of curvature of the tip of the electrode is set to 80.
mm was changed to 60 mm, and the other conditions were the same as in Example 1 above. The Mg content of the nugget part is 7.
Although it was 3 wt%, an alloyed layer was not formed, and as a result, the tensile shear strength was reduced to 9.4 kg / mm 2, and the evaluation was “x”. It is considered that because the radius of curvature of the tip of the electrode was reduced, the pressure bonding between the base materials around the nugget portion was weakened, and sufficient Joule heat was not generated in this portion.

【0022】実施例2は、逆に電極の先端の曲率半径を
00mmに増加し、他の条件は前記実施例1と同じにし
たものである。ナゲット部のMg含有量は7.3wt%
であったが、合金化層は形成され、その結果、引張剪断
強度は11.5kg/mm2で、評価は「○」である。
比較例3,実施例1及び実施例2から、電極の先端の曲
率半径は80mm以上であることが望ましい。
In the second embodiment, on the contrary, the radius of curvature of the tip of the electrode is increased to 00 mm, and the other conditions are the same as those in the first embodiment. Mg content of the nugget part is 7.3 wt%
However, the alloyed layer was formed, and as a result, the tensile shear strength was 11.5 kg / mm 2 , and the evaluation was “◯”.
From Comparative Example 3, Example 1 and Example 2, it is desirable that the radius of curvature of the tip of the electrode be 80 mm or more.

【0023】実施例3は、インサート材を20wt%C
23−55wt%Mg−Alとし、他の条件は前記実
施例1と同じにしたものである。ナゲット部のMg含有
量は6.9wt%であったが、合金化層は形成され、そ
の結果、引張剪断強度は11.1kg/mm2で、評価
は「○」である。従って、金属酸化物を含むインサート
材、テルミット反応、合金化層形成の要素から溶接部の
強度を高め得ることが確認できた。
In Example 3, the insert material is 20 wt% C
r 2 O 3 -55 wt% Mg-Al, and the other conditions are the same as those in the first embodiment. Although the Mg content in the nugget portion was 6.9 wt%, the alloyed layer was formed, and as a result, the tensile shear strength was 11.1 kg / mm 2 , and the evaluation was “◯”. Therefore, it has been confirmed that the strength of the welded portion can be increased from the factors of the insert material containing the metal oxide, the thermite reaction, and the alloying layer formation.

【0024】尚、前記金属酸化物は、MnO2、Cr2
3の他、TiO2、SiO2、Fe23、CuO、Ti2
3が適当である。
The metal oxides are MnO 2 and Cr 2 O.
3 , TiO 2 , SiO 2 , Fe 2 O 3 , CuO, Ti 2 O
3 is appropriate.

【0025】[0025]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1の溶接構造物は、その溶接部が、ナゲッ
ト部と、このナゲット部の周囲に形成された合金化層と
からなり、この合金化層に母材より多くのマグネシウム
を含ませたことを特徴とする。抵抗溶接の際にマグネシ
ウム成分で自己発熱反応を起こさせ、その熱で酸化膜を
破壊する。そして、ナゲット部の周囲に合金層を形成し
たことにより、従来発生していたナゲット部端部の酸化
膜の発生を抑えることができる。酸化膜がクラックの起
点となりやすいので、酸化膜の発生を抑えることで、高
強度が得られる。テルミット反応が期待できるので、溶
接電流を大幅に下げることができ、ランニングコストを
削減できる。
The present invention has the following effects due to the above configuration. The welded structure according to claim 1, wherein the welded portion includes a nugget portion and an alloyed layer formed around the nugget portion, and the alloyed layer contains more magnesium than the base material. Is characterized by. During resistance welding, the magnesium component causes a self-heating reaction, and the heat destroys the oxide film. By forming the alloy layer around the nugget portion, it is possible to suppress the generation of the oxide film at the end portion of the nugget portion, which has been conventionally generated. Since the oxide film easily becomes a starting point of cracks, high strength can be obtained by suppressing the generation of the oxide film. Since the thermite reaction can be expected, the welding current can be significantly reduced and the running cost can be reduced.

【0026】請求項2の溶接構造物は、合金化層に、ナ
ゲット部より多くのマグネシウムを含ませたことを特徴
とする。マグネシウムリッチの合金化層は、ナゲット部
より強度が大きくなり、溶接部の強度向上に寄与する。
A welded structure according to a second aspect is characterized in that the alloyed layer contains more magnesium than the nugget portion. The magnesium-rich alloyed layer has a higher strength than the nugget portion and contributes to improving the strength of the welded portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る抵抗溶接の工程図FIG. 1 is a process diagram of resistance welding according to the present invention.

【図2】本発明の実施例1のアルミニウム合金溶接構造
物の溶接部の顕微鏡写真(倍率=400)
FIG. 2 is a micrograph (magnification = 400) of a welded portion of the aluminum alloy welded structure of Example 1 of the present invention.

【図3】従来の抵抗溶接法によるアルミニウム合金溶接
構造物の溶接部の顕微鏡写真(倍率=400)
FIG. 3 is a micrograph (magnification = 400) of a welded portion of an aluminum alloy welded structure by a conventional resistance welding method.

【符号の説明】[Explanation of symbols]

1,3…母材、2…混合粉末(インサート材)、4,5
…電極、6…溶融部、7…ナゲット部、7a…ナゲット
の端部、8…合金化層。
1, 3 ... Base material, 2 ... Mixed powder (insert material), 4, 5
... electrode, 6 ... fusion part, 7 ... nugget part, 7a ... end of nugget, 8 ... alloying layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム合金を母材とし、これら母
材同士を抵抗溶接による溶接部を介して接合したアルミ
ニウム合金溶接構造物において、前記溶接部は、ナゲッ
ト部と、このナゲット部の周囲に形成された合金化層と
からなり、この合金化層に前記母材より多くのマグネシ
ウムを含ませたことを特徴とするアルミニウム合金溶接
構造物。
1. An aluminum alloy welded structure in which an aluminum alloy is used as a base material and the base materials are joined together via a welded portion by resistance welding, the welded portion being formed around a nugget portion and the periphery of the nugget portion. And an alloyed layer formed from the base material, the alloyed layer containing more magnesium than the base metal.
【請求項2】 前記合金化層に、前記ナゲット部より多
くのマグネシウムを含ませたことを特徴とする請求項1
記載のアルミニウム合金溶接構造物。
2. The alloyed layer contains more magnesium than the nugget portion.
The aluminum alloy welded structure described.
JP7212548A 1995-07-28 1995-07-28 Welded structure of aluminum alloy Pending JPH0938783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7212548A JPH0938783A (en) 1995-07-28 1995-07-28 Welded structure of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7212548A JPH0938783A (en) 1995-07-28 1995-07-28 Welded structure of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH0938783A true JPH0938783A (en) 1997-02-10

Family

ID=16624515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7212548A Pending JPH0938783A (en) 1995-07-28 1995-07-28 Welded structure of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0938783A (en)

Similar Documents

Publication Publication Date Title
US5599467A (en) Aluminum weldment and method of welding aluminum workpieces
WO2010026892A1 (en) Dissimilar metal joining method for magnesium alloy and steel
JP5120864B2 (en) Dissimilar materials joining method
JP5198528B2 (en) Dissimilar material joining material and dissimilar material joining method
JP2005334971A (en) Resistance spot welding method for aluminum material and steel material, and weld joint
JP3296649B2 (en) Resistance welding of aluminum alloy
JPH07328774A (en) Dissimilar material joining method of aluminum and steel
JP2006224147A (en) Method for joining different materials and filler metal therefor
JP4614223B2 (en) Dissimilar material joining material and dissimilar material joining method
JP2006326612A (en) Method of welding different kind of metal by resistance seam welding
JPH0811302B2 (en) Dissimilar metal joining method
JP3941001B2 (en) Bonding method of dissimilar metal materials
JP2003033865A (en) Method for bonding aluminum or aluminum alloy and steel material and bonding joint
JPS63278679A (en) Resistance welding method for al materials
JPH0724581A (en) Resistance welding method for aluminum and steel
JP3555698B2 (en) Resistance welding method for aluminum material and T-shaped aluminum structure
JPH0938783A (en) Welded structure of aluminum alloy
JPH07178565A (en) Resistance welding method for different kind of metal
JP2531052B2 (en) Resistance welding method for dissimilar metals
KR102165115B1 (en) Enhanced resistance spot welding using cladding aluminum alloy
JP2898227B2 (en) Resistance spot welding method for aluminum material
JPH04253578A (en) Method for joining different metals
JP3359398B2 (en) Resistance welding of aluminum
JPH031106B2 (en)
WO2007108079A1 (en) Filler metal for bonding different materials and method of bonding different materials