JPH0938575A - Rotary vibration generator and control method therefor - Google Patents
Rotary vibration generator and control method thereforInfo
- Publication number
- JPH0938575A JPH0938575A JP19484195A JP19484195A JPH0938575A JP H0938575 A JPH0938575 A JP H0938575A JP 19484195 A JP19484195 A JP 19484195A JP 19484195 A JP19484195 A JP 19484195A JP H0938575 A JPH0938575 A JP H0938575A
- Authority
- JP
- Japan
- Prior art keywords
- eccentric weight
- eccentric
- shafts
- weights
- gear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、杭打ち用のロータ
リ式起振機を回転駆動するとともに、起振機能を制御す
る方法、および同装置に関するものである。ただし、杭
打ち用途以外のロータリ式起振機に適用することも可能
であり、かつ、杭打ち用途以外でも実用的な効果を奏す
ることができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a rotary type exciter for driving a pile and for controlling an exciting function, and an apparatus therefor. However, the present invention can be applied to a rotary type vibration exciter other than a pile driving application, and a practical effect can be obtained in a non-piling driving application.
【0002】[0002]
【従来の技術】土木建設工事に用いられる振動装置は一
般に、偏心重錘を取り付けた複数対の回転軸を平行に配
設した構造である。このような構成によれば、反対方向
に回転する偏心重錘の遠心起振力を所望の方向について
は相加せしめるとともに、不要の方向については相殺せ
しめることができる。図5はこの種のロータリ式起振機
の模式的な説明図であって、ケース1に対して4本の回
軸2A,2B,2C,2Dが配置され、それぞれ偏心重
錘3A,3B,3C,3Dが取り付けられるとともに、
それぞれ歯車4A,4B,4C,4Dが取り付けられて
相互に噛合して同期回転するように拘束されている。2. Description of the Related Art Generally, a vibration device used for civil engineering construction has a structure in which a plurality of pairs of rotating shafts having eccentric weights attached thereto are arranged in parallel. According to such a configuration, the centrifugal excitation force of the eccentric weight rotating in the opposite direction can be added in the desired direction and can be canceled in the unnecessary direction. FIG. 5 is a schematic explanatory view of this type of rotary type vibration exciter, in which four rotating shafts 2A, 2B, 2C, 2D are arranged for a case 1, and eccentric weights 3A, 3B, 3C and 3D are attached,
Gears 4A, 4B, 4C, and 4D are attached to each other and restrained so as to mesh with each other and rotate synchronously.
【0003】[0003]
【発明が解決しようとする課題】上述した起振機を用い
て杭打作業を行う場合、振動公害の防止と騒音公害の防
止とが重要な問題となる。次に、図6,図7について振
動公害に関する技術的問題について説明する。図6は杭
打ち作業における振動公害を説明するための模式図であ
る。本図は、クレーンブーム5で振動装置6を吊持する
とともに、該振動装置6のチャック6aで杭7の上端を
把持し、この杭7に振動を与えて地中に打設している状
態を描いてある。When the pile driving work is performed using the above-mentioned vibration oscillating machine, prevention of vibration pollution and prevention of noise pollution are important problems. Next, a technical problem relating to vibration pollution will be described with reference to FIGS. Drawing 6 is a mimetic diagram for explaining vibration pollution in pile driving work. This figure shows a state in which the vibration device 6 is suspended by the crane boom 5, the upper end of the pile 7 is grasped by the chuck 6a of the vibration device 6, and the pile 7 is vibrated and placed in the ground. Is drawn.
【0004】杭7の下端を地表に接せしめて杭打作業を
開始する際、最初から振動装置6をフル稼動させると、
杭打ち地点の地表で発生する地表波aがほとんど減衰せ
ずに付近の民家8に到達するので振動公害の問題を生じ
る。ここで、振動装置6の起振力を任意に調節できるな
らば、杭7の自重に加えて僅かな振動を与えながら杭打
ち作業を開始し、数メートル打ち込んでから次第に振動
を強くすれば良い。杭7の下端に相当する音源位置が深
くなれば、地中波bは民家8に到達する途中で減衰する
ので振動公害は軽微である。[0004] When starting the pile driving operation by bringing the lower end of the pile 7 into contact with the ground surface, when the vibration device 6 is fully operated from the beginning,
The surface wave a generated on the ground at the stakeout point reaches the nearby private house 8 with almost no attenuation, which causes a problem of vibration pollution. Here, if the exciting force of the vibration device 6 can be arbitrarily adjusted, the pile driving work may be started while giving a slight vibration in addition to the weight of the pile 7, and the vibration may be gradually strengthened after driving for several meters. . If the sound source position corresponding to the lower end of the pile 7 is deepened, the underground wave b is attenuated on the way to the private house 8, so that the vibration pollution is negligible.
【0005】図7は振動装置の運転開始時および運転停
止時における振動数の変化を示す図表で、横軸は時間で
ある。運転開始時点t0から、定格回転状態に到達する
時点t1までの間、振動数は矢印cのごとく急激に上昇
する。上記の振動数上昇中に、地盤の固有振動数n1、
及びクレーンブームの固有振動数n2を通過する。しか
し、運転開始時における回転数上昇期間T1は一般に短
時間(例えば約3秒間)であるから、振動装置の振動数
が固有振動数に一致したときの共振の問題は実用上無視
することができる程度に軽微な場合も有る。しかし、振
動装置のモータ(図示せず)の通電を停止した時点t2
から、回転軸が停止する時点t3までの間は、回転軸が
慣性で回転を続けながら矢印dの如く次第に減速する。
上記の回転数低下期間T2は、別段のブレーキ操作を加
えない限り比較的長時間(例えば約50秒間)であるか
ら、その途中でクレーンブームの固有振動数n2を通過
する際、該クレーンブームが共振して損傷を被る虞れが
有る。また、地盤の固有振動数n1を通過する際、地盤
の共振により振動公害を支持る虞れが有る。前記の時刻
t2でモータの通電を停止するとともに、振動装置の偏
心重錘の回転位相を変化させて起振力を零にすることが
できれば、振動装置の運転開始操作や停止操作の際の共
振に関する問題を防止することができる。FIG. 7 is a chart showing the change in the vibration frequency at the time of starting and stopping the operation of the vibration device. The horizontal axis represents time. Start of operation time t 0, between time t 1 to reach the rated rotational state, frequency rises rapidly as indicated by the arrow c. During the above frequency rise, the natural frequency n 1 of the ground,
And the natural frequency n 2 of the crane boom. However, it because revolutions increase time T 1 at the start operation is generally short (e.g., about 3 seconds), the problem of resonance when the frequency of the vibration device matches the natural frequency of practically negligible In some cases, it may be as minor as possible. However, at the time t 2 when the energization of the motor (not shown) of the vibration device is stopped.
From between time t 3 when the rotary shaft is stopped is gradually decelerated as indicated by the arrow d while continuing to rotate at a rotational axis of inertia.
Rotational speed reducing period T 2 of the above, because it is a relatively long time unless added otherwise braking operation (e.g., about 50 seconds), passing through the natural frequency n 2 of the crane boom on its way, the crane The boom may resonate and suffer damage. In addition, when passing through the natural frequency n 1 of the ground, there is a possibility that vibration pollution may be supported by resonance of the ground. If it is possible to stop the energization of the motor at the time t 2 and change the rotational phase of the eccentric weight of the vibration device to make the exciting force zero, the operation at the time of starting or stopping the operation of the vibration device can be performed. Problems with resonance can be prevented.
【0006】次に、振動装置に供給されるエネルギー量
について見ると、前記の時刻t0からt1まで振動装置6
の回転数が上昇する間、該振動装置の偏心重錘(図示せ
ず)によって振動を発生させつつ増速すると、これを駆
動するために大容量のモータや大容量の電源設備(上記
のモータを油圧駆動する場合は大規模の油圧源装置)が
必要になる。この場合、振動装置の偏心重錘の回転位相
を変化させて起振力を零にした状態で運転を開始し、定
格回転数に達した後に起振力を発揮させることが出来れ
ば、モータ容量や電源容量(もしくは油圧源容量)を縮
少できるので経済的である。定格回転数に達した後は、
回転部材にそれ以上回転エネルギーを蓄積する必要が無
く、振動の減衰を補うだけのエネルギーを補充すること
によって運転を継続できる。Next, looking at the amount of energy supplied to the vibrating device, the vibrating device 6 from the time t 0 to t 1 described above.
When the rotation speed of the vibration device is increased, the speed is increased while generating vibrations by an eccentric weight (not shown) of the vibration device, and a large-capacity motor or a large-capacity power supply equipment (the motor , A large-scale hydraulic power source device is required. In this case, the operation is started in a state in which the oscillating force is reduced to zero by changing the rotation phase of the eccentric weight of the vibration device, and if the oscillating force can be exerted after reaching the rated rotational speed, the motor capacity is increased. It is economical because the power source capacity (or hydraulic power source capacity) can be reduced. After reaching the rated speed,
There is no need to store any more rotational energy in the rotating member, and operation can be continued by replenishing enough energy to compensate for vibration damping.
【0007】運転を継続しつつ起振力を増減調節するた
め、2系統の偏心重錘回転駆動系列を設けて、該2系統
に偏心重錘回転駆動系列を相互に連繋せしめつつ制御す
る技術が提案されている(例えば特願平5−79797
号)。しかし乍ら、偏心重錘を固着されて回転駆動され
る偏心重錘軸の配置および力学的な支持バランスについ
て次に述べるような技術的困難が有る。図8は偏心重錘
を固着された偏心重錘軸と、該偏心重錘軸に固着された
同期伝動歯車と、該同期伝動歯車に噛合した駆動歯車
と、該駆動歯車を回転駆動するモータとの配置を模式的
に描いた正面図であって、(a)は偏心重錘の配置個数
が1個の場合を、(b)は偏心重錘の配置個数が1対の
場合を、(c)は偏心重錘の配置個数が2対の場合を、
(d),(e)および(f)は偏心重錘の配置個数が2
対であり、かつ駆動歯車が同期伝動歯車の上方もしくは
下方に配置されている場合を、それぞれ表わしている。In order to increase or decrease the vibrating force while the operation is continued, there is a technique of providing two systems of eccentric weight rotation drive systems and controlling the two systems with the eccentric weight rotation drive system connected to each other. It has been proposed (for example, Japanese Patent Application No. 5-79797).
issue). However, there are technical difficulties described below regarding the arrangement of the eccentric weight shaft to which the eccentric weight is fixed and driven to rotate, and the dynamic support balance. FIG. 8 shows an eccentric weight shaft to which the eccentric weight is fixed, a synchronous transmission gear fixed to the eccentric weight shaft, a driving gear meshed with the synchronous transmission gear, and a motor for rotating and driving the driving gear. (A) is a case where the number of eccentric weights is one, (b) is a case where the number of eccentric weights is a pair, (c) ) Indicates the case where the number of eccentric weights is two pairs,
(D), (e) and (f) show that the number of eccentric weights is 2
It represents a pair and the case where the drive gear is disposed above or below the synchronous transmission gear, respectively.
【0008】単に振動を発生させるだけであれば、本図
8(a)のように1個の偏心重錘9を設け、モータMで
回転駆動される駆動歯車10を被動歯車11′に噛合さ
せて回転させれば良いのであるが、これでは上下,左右
に振動するので実用に供し難い。そこで本図(b)のよ
うに配置すると2個の偏心重錘9,9′が反対方向に同
回転数で同期回転するので、左右方向の起振力が相殺さ
れて上下方向の振動が発生する。この場合、図示の歯車
11は前記の被動歯車11′と同様の部材であるが単な
る伝動歯車ではなく同期歯車としての作用を兼ねる同期
伝動歯車として機能する。If only vibration is to be generated, a single eccentric weight 9 is provided as shown in FIG. 8 (a), and a driving gear 10 rotated and driven by a motor M is meshed with a driven gear 11 '. Although it is sufficient to rotate it, it vibrates up and down and left and right, so it is difficult to put it to practical use. Therefore, when the two eccentric weights 9 and 9 'are arranged as shown in FIG. 9B, the two eccentric weights 9 and 9' rotate synchronously in the opposite direction at the same rotational speed, so that the right and left vibrating forces are canceled and vertical vibration occurs. I do. In this case, the illustrated gear 11 is a member similar to the above-described driven gear 11 ', but functions not as a mere transmission gear but as a synchronous transmission gear that also functions as a synchronous gear.
【0009】上述した(b)図の構成では、モータMの
回転数を変えることなく起振力を増減調節することがで
きない。そこで、本図8(c)のように1対の偏心重錘
軸S1,S2のそれぞれに偏心重錘W1,W2を固着して、
同期伝動歯車11を介してモータM1で回転駆動すると
ともに、(c)図について以上に述べたのと同様の構成
部分をその下方に配置して上下2段構造とし、1対の偏
心重錘軸S3,S4のそれぞれに偏心重錘W3,W4を固着
して、同期伝動歯車11を介してモータM2で回転駆動
すると、前記2個のモータM1,M2の回転数を調節して
上段の系統の偏心重錘W1,W2と下段の系統の偏心重錘
W3,W4との回転位相差を制御することができる。例え
ば本図(c)に実線で描かれている状態から180度の
位相差を与えて、下段の偏心重錘W3,W4を破線で示し
た位置W3′,W4′にすると起振力はほぼ零になる。以
上に述べたようにして本図(c)の構成によれば起振機
の運転を中断することなく継続しながら起振力の増減操
作が可能になる。In the configuration shown in FIG. 1B, it is impossible to increase or decrease the vibrating force without changing the rotation speed of the motor M. Therefore, as shown in FIG. 8C, the eccentric weights W 1 and W 2 are fixed to the pair of eccentric weight shafts S 1 and S 2 , respectively,
As well as rotated by the motor M 1 via a synchronous transmission gear 11, the same components as those described above for (c) diagram and disposed below the upper and lower two-stage structure, a pair of eccentric weight by fixing the shaft S 3, S 4 of the eccentric to each weight W 3, W 4, when rotated by the motor M 2 via the synchronous transmission gear 11, the rotational speed of the two motors M 1, M 2 Can be adjusted to control the rotational phase difference between the eccentric weights W 1 and W 2 of the upper system and the eccentric weights W 3 and W 4 of the lower system. For example, when a phase difference of 180 degrees is given from the state drawn by the solid line in FIG. 10C, the lower eccentric weights W 3 and W 4 are set to the positions W 3 ′ and W 4 ′ shown by the broken lines. Vibration force becomes almost zero. As described above, according to the configuration of FIG. 9C, the operation of increasing or decreasing the excitation force can be performed while continuing the operation of the excitation device without interruption.
【0010】ところが、(c)図の構成では装置の横幅
寸法Lxが大きくなるので、起振機を使用する工事の施
工条件によっては、高さ寸法を増加しても横幅寸法Lx
を短縮しなければならない場合も有るるこのような場合
には本図(d)の構造が考えられる。この(d)図に描
かれている構成部材は前掲の(c)図と同じであって、
その配置を異にするのみである。このような上下3段構
造(図8(c))を用いれば横幅寸法を短縮できること
は容易に理解することができる。However, in the configuration shown in FIG. 1C, the width Lx of the apparatus becomes large, so that the width Lx may be increased even if the height is increased, depending on the construction conditions of the construction using the vibration exciter.
In such a case, it may be necessary to reduce the length of the line. In this case, the structure shown in FIG. The components depicted in FIG. (D) are the same as those in FIG.
Only the arrangement is different. It can be easily understood that the width dimension can be reduced by using such an upper and lower three-stage structure (FIG. 8C).
【0011】しかし、この(c)図の構造によれば、偏
心重錘を固着されて大きい遠心荷重を受ける偏心重錘軸
S1と同S2とが上段に配置されるとともに、同様に大き
い遠心荷重を受ける偏心重錘軸S3と同S4とが下段に配
置されているので、これら4本の偏心重錘軸S1,S2,
S3,S4の軸受(図示せず)を支持する構造体の強度バ
ランスをとることが難しく、該構造体の剛性を上げるた
めに起振機全体が大型,大重量となる。However, according to the structure shown in FIG. 3C, the eccentric weight shafts S 1 and S 2 to which the eccentric weight is fixed and which receives a large centrifugal load are arranged in the upper stage and are similarly large. Since the eccentric weight shafts S 3 and S 4 that receive the centrifugal load are arranged in the lower stage, these four eccentric weight shafts S 1 , S 2 ,
S 3, (not shown) bearing the S 4 it is difficult to take the strength balance of the structure supporting the entire exciter is large, a large weight in order to increase the rigidity of the structure.
【0012】本発明は上述の事情に鑑みて為されたもの
であって、2系統の伝動系よりなり、各系統はそれぞれ
偏心重錘を固着された1対の偏心重錘軸と駆動用のモー
タを備えた起振機を改良して、軸受支持の強度バランス
が良く、しかも横幅寸法を縮少した回転式起振機を提供
するとともに、該回転式起振機を用いて振動公害を防止
するための制御方法を提供することを目的とする。The present invention has been made in view of the above circumstances, and is composed of two transmission systems, each system having a pair of eccentric weight shafts to which eccentric weights are fixed and a drive system. By improving the vibration exciter equipped with a motor, the bearing support has a good balance of strength, and a rotary exciter with a reduced lateral width is provided, and vibration pollution is prevented by using the rotary exciter. It aims at providing the control method for doing.
【0013】[0013]
【課題を解決するための手段】上記の目的を達成するた
めに創作した本発明に係る回転式起振機の基本的原理に
ついて、その1実施例に対応する図8(e)と図8
(f)とを参照しつつ略述すると次のとおりである。1
基の起振機を構成している二つの伝動系統について、説
明の便宜上、A系統,B系統と名付けることにする。本
図8(f)はA系統を描き、(e)はB系統を描いてあ
る。これら(e),(f)両図の構成を総合すると、4
個の偏心重錘よりなる1基の起振機としての機能を発揮
し、かつ、A,B両系統相互の回転位相差を変えること
によって、運転を中断することなく継続しつつ起振力を
増減させることができる。FIG. 8 (e) and FIG. 8 corresponding to one embodiment of the basic principle of the rotary vibration exciter according to the present invention created to achieve the above object.
Brief description with reference to (f) is as follows. 1
The two transmission systems constituting the basic exciter will be named A system and B system for convenience of explanation. FIG. 8F illustrates the A system, and FIG. 8E illustrates the B system. When the configurations of these figures (e) and (f) are combined, 4
It functions as a single exciter composed of two eccentric weights, and by changing the rotational phase difference between both A and B systems, it is possible to reduce the excitatory force while continuing operation without interruption. Can be increased or decreased.
【0014】A系統を描いた図8(f)には、B系統の
主要構成部材の位置を破線で示し、B系統を描いた図8
(e)には、A系統の主要構成部材の位置を破線で示し
た。図8(e)に実線で描いたB系統の構成部分は、先
に試案として述べた図8(d)の中で、鎖線で囲んだ構
成部分と同様であって、それぞれ偏心重錘W3,W4を固
着された1対の偏心重錘軸S3,S4のそれぞれに同期伝
動歯車G3,G4が取り付けられ、これら1対の同期伝動
歯車G3,G4が相互に噛合して反対方向に同一回転数で
同期回転するように拘束されるとともに、駆動歯車10
bを介してモータM2で回転駆動されるようになってい
る。このようにして、B系統の振動発生機構部分は中段
に、その駆動モータは上段に、それぞれ配置されてい
る。FIG. 8 (f), which depicts the A system, shows the positions of the main constituent members of the B system by broken lines, and FIG.
In (e), the positions of the main components of the A system are indicated by broken lines. Components of the B lineage drawn by the solid line in FIG. 8 (e) in FIG. 8 described as tentative above (d), be the same as component surrounded by a chain line, respectively eccentric weight W 3 , W 4 are attached to the pair of eccentric weight shafts S 3 , S 4 , respectively, and the synchronous transmission gears G 3 , G 4 are attached to each other, and the pair of synchronous transmission gears G 3 , G 4 mesh with each other. To rotate synchronously at the same rotational speed in the opposite direction,
It is adapted to be rotated by the motor M 2 through b. In this way, the vibration generating mechanism portion of the B system is arranged in the middle stage and the drive motor thereof is arranged in the upper stage.
【0015】図8(f)に実線で描いたA系統は、1対
の偏心重錘W1,W2と、1対の偏心重錘軸S1,S2と、
1対の同期伝動歯車G1,G2とからなる振動発生機構部
分が下段に配置されている。そして、駆動モータM1と
駆動歯車10aとは上段に配置されている。そして、上
段に配置された駆動歯車10aと下段に配置された同期
伝動歯車G1とが中間歯車12を介して伝動される。こ
の図8(f)は作動原理を模式的に例示したものであっ
て、上段のモータM1の回転出力を下段の偏心重錘軸S1
に伝動する手段は必ずしも中間歯車12に限られるもの
ではなく、例えばチェーンや歯付きベルト(別称タイミ
ングベルト)などの伝動部材を用いることも可能であ
る。The system A drawn by a solid line in FIG. 8F has a pair of eccentric weights W 1 and W 2 , a pair of eccentric weight shafts S 1 and S 2 ,
A vibration generating mechanism portion including a pair of synchronous transmission gears G 1 and G 2 is arranged at a lower stage. Then, it is disposed in the upper and the drive motor M 1 and the driving gear 10a. Then, the drive gear 10 a arranged in the upper stage and the synchronous transmission gear G 1 arranged in the lower stage are transmitted via the intermediate gear 12. FIG. 8 (f) is a by the operating principle that schematically illustrates the eccentric rotational output of the upper motor M 1 lower weight shaft S 1
The transmission means is not necessarily limited to the intermediate gear 12, and for example, a transmission member such as a chain or a toothed belt (also known as a timing belt) can be used.
【0016】図8(e),(f)について以上に述べた
原理に基づいて創作した本発明に係る回転式起振機の具
体的な構成を、その1実施例に対応する図1〜図3を参
照して述べると、それぞれ偏心重錘(W1,W2)を固定
されて互いに反対方向に同期回転する1対のA系統の偏
心重錘軸(S1,S2)がそれぞれ水平に相互に平行に配
置されるとともに、それぞれ上記と異なる偏心重錘(W
3,W4)を固定されて互いに反対方向に同期回転する1
対のB系統の偏心重錘軸(S3,S4)がそれぞれ水平に
相互に平行に配置され、かつ、前記A系統を回転駆動す
るモータ(M1)を備えた駆動軸(13a)およびB系
統を回転駆動するモータ(M2)を備えた駆動軸(13
b)が設けられている回転式起振機において、起振機ケ
ーシング(13)内の軸配置が上下3段構成になってい
て、下段に前記A系統の1対の偏心重錘軸(S1,S2)
が配設されており、中段に前記B系統の1対の偏心重錘
軸(S3,S4)が配設されており、上段に前記2本の駆
動軸(13a,13b)が、それぞれ水平に相互に平行
に配設されていて、かつ、上段に配設されたA系統の駆
動軸(13a)と、下段に配設されたA系統の1対の偏
心重錘軸(S1,S2)の内の何れか一方の偏心重錘軸と
が、中段に配置された伝動部材(12)を介して連結さ
れていることを特徴とする。FIGS. 8 (e) and 8 (f) show a specific configuration of a rotary vibration exciter according to the present invention created on the basis of the principle described above. 3, the eccentric weights (W 1 , W 2 ) are fixed, and a pair of eccentric weight axes (S 1 , S 2 ) of the A-system that rotate synchronously in opposite directions to each other are respectively horizontal. And eccentric weights (W
3 , W 4 ) is fixed and rotates synchronously in opposite directions to each other 1
Arranged parallel to each other horizontally eccentric weight shafts of the pairs of B lineage (S 3, S 4) respectively, and said drive shaft having a motor (M 1) for rotating the A line (13a) and A drive shaft (13) provided with a motor (M 2 ) for rotating the B system
In the rotary type exciter provided with b), the exciter casing (13) has a vertically arranged three-stage configuration, and a pair of eccentric weight shafts (S 1, S 2)
Are disposed, and a pair of eccentric weight shafts (S 3 , S 4 ) of the B system are disposed in a middle stage, and the two drive shafts (13a, 13b) are disposed in an upper stage, respectively. A system drive shaft (13a) arranged horizontally and parallel to each other and arranged in the upper stage, and a pair of eccentric weight shafts (S 1 , S 1 ) of the system A arranged in the lower stage One of the eccentric weight shafts in S 2 ) is connected via a transmission member (12) arranged in the middle stage.
【0017】また、上述した本発明に係る回転式起振機
の構成を前提として、この回転式起振機を使用するため
に創作した本発明に係る回転式起振機の制御方法は、定
常的に最大起振力を発生させるための準備操作として、
予め前記A系統の偏心重錘(W1,W2)の回転位相とB
系統の偏心重錘(W3,W4)の回転位相との位相差を調
節可能な範囲内で最大角度にして、起振力最小の状態な
らしめるとともに、この状態でA系統とB系統とを同期
させつつ回転させてその回転数を上昇させ、上記A,B
両系統の回転数が上昇した後、前記A系統の偏心重錘と
B系統の偏心重錘との回転位相差を零ならしめて最大起
振力を発生させる状態で定常運転を遂行することを特徴
とする。On the premise of the configuration of the rotary vibration exciter according to the present invention described above, the control method of the rotary vibration exciter according to the present invention created for using the rotary vibration exciter is a stationary method. As a preparatory operation for generating the maximum vibratory force,
The rotational phase of the eccentric weights (W 1 , W 2 ) of the system A and B
The phase difference between the rotational phase of the eccentric weights (W 3 , W 4 ) of the system is set to the maximum angle within the adjustable range, and the state of the vibrating force is minimized. Are rotated in synchronization with each other to increase the number of rotations thereof, and the above A, B
After the rotation speeds of both systems increase, the steady-state operation is performed in a state where the rotational phase difference between the eccentric weight of the A system and the eccentric weight of the B system is reduced to zero to generate the maximum vibrating force. And
【0018】前記の「位相差を調節可能な範囲内で最大
角度にして」という操作における「調節可能な範囲」と
は次のような意味である。すなわち、本発明方法は本発
明に係る回転式起振機の使用を必須の要件としている。
そして本発明に係る回転式起振機は請求項3に記載した
ストッパ手段によってA,B両系統間の回転位相差が制
約されている場合が有るなどして、回転位相差の調節は
必ずしも無制限ではない。また、位相差調節が制限され
ていない場合も、位相差を零以下のマイナスには出来な
い。また、180度を越えると実質的に偏心モーメント
が却って増加するので、180度以上の有意義な位相差
を与え得ない。本発明方法における調節可能範囲とは、
技術的に可能でありかつ有意義な調節が可能な範囲を意
味するものである。The "adjustable range" in the operation of "making the phase difference the maximum angle within the adjustable range" has the following meaning. That is, the method of the present invention requires the use of the rotary vibration exciter according to the present invention as an essential requirement.
In the rotary vibration exciter according to the present invention, the rotational phase difference between the A and B systems may be restricted by the stopper means, and the adjustment of the rotational phase difference is not necessarily limited. is not. Further, even when the phase difference adjustment is not restricted, the phase difference cannot be set to a minus value equal to or less than zero. On the other hand, when the angle exceeds 180 degrees, the eccentric moment substantially increases, so that a meaningful phase difference of 180 degrees or more cannot be given. The adjustable range in the method of the present invention is:
It is intended to mean a range that is technically possible and allows for significant adjustment.
【0019】前述した本発明に係る回転式起振機の構成
によると、A系統の偏心重錘を固着された1対の偏心重
錘軸が下段に配置されるとともにB系統の偏心重錘を固
着された1対の偏心重錘軸が中段に配置されているの
で、大きい遠心加速度を受ける偏心重錘軸が中,下段
に、ほぼ正方形の頂点に相当するように位置する。この
ため、上記偏心重錘軸の軸受、並びに該軸受を支持する
構造物の強度バランスが良い。その上、上記A,B,両
系統の振動発生機構部分を回転駆動する2個のモータが
上段に配置されて上下3段構造をなしているので、起振
機の横幅寸法が短縮される。このように、A系統の回転
駆動用モータを上段に配置しても、本発明の構成によれ
ば伝動部材を介して、下段に位置しているA系統の振動
発生機構を駆動することができる。According to the configuration of the rotary vibration exciter according to the present invention described above, a pair of eccentric weight shafts to which the eccentric weights of the A system are fixed are arranged in the lower stage, and the eccentric weights of the B system are connected to Since the fixed pair of eccentric weight shafts is arranged in the middle stage, the eccentric weight shafts receiving a large centrifugal acceleration are positioned in the middle and lower stages so as to correspond to the vertices of substantially squares. Therefore, the bearing of the eccentric weight shaft and the structure supporting the bearing have good strength balance. In addition, since the two motors for rotating and driving the vibration generating mechanisms of the A, B and both systems are arranged in the upper stage to form a three-stage structure, the width of the exciter can be reduced. Thus, according to the configuration of the present invention, the A-system vibration generation mechanism located at the lower stage can be driven via the transmission member even if the A-system rotational drive motor is arranged at the upper stage. .
【0020】上記の伝動部材として各種の機械要素を適
用することができるが、中間歯車を用いると伝動系の構
成が簡単で、該中間歯車の支持構造の構成が容易である
から好都合である。この場合中間歯車は必然的に中段に
位置するので、中段に配置されているB系統の偏心重錘
軸によって回転自在に支持することができる。このよう
に中段の偏心重錘軸を中間歯車軸に兼用すると構成部品
点数を節減することができる。上記の中間歯車と、中段
に配置されている2個の同期伝動歯車の内で中間歯車と
同じ方向に回転する同期伝動歯車とを対向させて、対向
する双方の歯車相互の回転位相差を規制する手段を設け
れば、A系統の偏心重錘とB系統の偏心重錘との回転位
相差を制限的にコントロールできるので、振動公害防止
のための運転制御を容易に行うことができる。以上に述
べた本発明装置に係る回転式起振機を運転する際、本発
明に係る制御方法によれば、運転開始の準備操作として
A系統の偏心重錘とB系統の偏心重錘との回転位相差を
調節可能な範囲内で最大ならしめて起振力を最小の状態
にしておいてから回転数を上昇させるので、回転数上昇
の途中で地盤と共振したりクレーンブームと共振したり
してトラブルを生じる虞れが無く、回転数を上昇させた
後にA系統の偏心重錘とB系統の偏心重錘との回転位相
差を零にして最大起振力を発揮しながら定格回転数で定
常運転を行うことができる。Although various types of mechanical elements can be used as the transmission member, the use of an intermediate gear is advantageous because the structure of the transmission system is simple and the structure of the support structure for the intermediate gear is easy. In this case, since the intermediate gear is necessarily located at the middle stage, the intermediate gear can be rotatably supported by the eccentric weight shaft of the B system arranged at the middle stage. When the middle eccentric weight shaft is also used as the intermediate gear shaft, the number of components can be reduced. The intermediate gear and the synchronous transmission gear rotating in the same direction as the intermediate gear among the two synchronous transmission gears arranged in the middle stage are opposed to each other, and the rotational phase difference between the opposed two gears is regulated. With such a means, the rotational phase difference between the eccentric weight of the system A and the eccentric weight of the system B can be controlled in a limited manner, so that operation control for preventing vibration pollution can be easily performed. When the rotary exciter according to the present invention described above is operated, according to the control method according to the present invention, the eccentric weight of the A system and the eccentric weight of the B system are used as a preparation operation for starting operation. Since the rotational speed is increased after the vibrating force is minimized by maximizing the rotational phase difference within the adjustable range, it may resonate with the ground or crane boom during the increase in the rotational speed. After increasing the rotation speed, the rotational phase difference between the eccentric weight of the A system and the eccentric weight of the B system is reduced to zero, and the maximum vibration force is exerted at the rated rotation speed. Steady-state operation can be performed.
【0021】[0021]
【発明の実施の形態】次に、図1ないし図3を併せて参
照しつつ、本発明に係る回転式起振機およびその制御方
法について、最良と思われる実施の形態を説明する。図
1は、上下3段構成よりなる本発明の回転式起振機の1
実施例における上段部分の平面図である。この上段部分
には当該起振機の動力源機構が配置されており、14は
起振機のケーシングである。上記の起振機ケーシング1
4は、防振ゴム15を介してハンガーボックス16に取
り付けられている。このハンガーボックスは前記の起振
機ケーシング14を収納して支持するとともに、クレー
ンによって吊持される部材である。上記の起振機ケーシ
ング14がハンガーボックス16に対して垂直軸(紙面
に直角)まわりの捩れ変位量を制限するとともに緩衝す
るようにストッパゴム17が設けられている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a preferred embodiment of a rotary vibration exciter and a control method thereof according to the present invention will be described with reference to FIGS. FIG. 1 shows one embodiment of a rotary vibration exciter of the present invention having a three-tiered structure.
It is a top view of the upper part in an example. The power source mechanism of the exciter is arranged in the upper part, and 14 is a casing of the exciter. Exciter casing 1 described above
Reference numeral 4 is attached to a hanger box 16 via an anti-vibration rubber 15. The hanger box is a member that accommodates and supports the exciter casing 14 and is hung by a crane. A stopper rubber 17 is provided so that the exciter casing 14 limits the amount of torsional displacement around a vertical axis (perpendicular to the paper) with respect to the hanger box 16 and buffers the hanger box 16.
【0022】A系統の振動発生機構(図3を参照して後
に詳述)を駆動するための駆動歯車10aを固着された
駆動軸13aと、B系統の振動発生機構(図2を参照し
て後に詳述)を駆動するための駆動歯車10bを固着さ
れた駆動軸13bとが、それぞれ水平に、かつ相互に平
行に、起振機ケーシング14に対して回転自在に支承さ
れている。図面参照符号「k」を付した部材はキーであ
る。図1〜図3において、図面参照符号「k」の有無に
かかわらず、キーが図示されていることは、軸部材と回
転部材とが相互に固定されていることを表す。前記A系
統の駆動軸13aの片方の端に油圧モータM1が取り付
けられ(詳しくは油圧モータの回転出力が連結され)る
とともに、他方の端にロータリーエンコーダ18aが装
着されており、これと同様に、B系統の駆動軸13bの
片方の端に油圧モータM2が取り付けられるとともに、
他方の端にロータリーエンコーダ18bが装着されてい
る。本実施例においては駆動源として油圧モータM1,
M2を用いたが、この駆動源は必ずしも油圧モータに限
られるものではなく、例えば水圧モータなどの液圧モー
タを用いることができる。水圧モータは油圧モータに比
して潤滑保持が難しく、防錆に格別の考慮を必要とする
などの短所は有るが、水は油よりも冷却効率が良く、安
価である等の長所も有り、特に水中杭打工事用起振機に
おいて実用価値が有る。さらに、油圧モータに限らず電
気モータを用いることも可能かつ有用である。液圧モー
タを用いる場合は、1対の油圧モータを同期回転させる
ことができ、かつ該1対の油圧モータ相互の位相差の増
減調節を行い得る制御機構を備えた油圧モータを用い
る。また電気モータを用いる場合は上記制御機構と同様
の機能(同期回転,位相差調節)を有する制御回路を備
えた電気モータを用いる。A drive shaft 13a to which a drive gear 10a for driving a system A vibration generating mechanism (to be described in detail later with reference to FIG. 3) is fixed, and a system B vibration generating mechanism (see FIG. 2). A drive shaft 13b to which a drive gear 10b for driving the drive shaft (described later) is fixed is rotatably supported on the exciter casing 14 horizontally and parallel to each other. The member denoted by reference numeral “k” in the drawing is a key. In FIGS. 1 to 3, regardless of the presence or absence of the reference numeral “k” in the drawings, the fact that the key is illustrated indicates that the shaft member and the rotating member are fixed to each other. The hydraulic motor M 1 is mounted on one end of the drive shaft 13a of system A (details rotating output of the hydraulic motor is connected) Rutotomoni, rotary encoder 18a is mounted on the other end, similar to this to, together with the hydraulic motor M 2 is attached to one end of the drive shaft 13b of the B lineage,
The rotary encoder 18b is mounted on the other end. In this embodiment, the hydraulic motors M 1 ,
Was used M 2, the driving source is not necessarily limited to the hydraulic motor, it is possible to use the hydraulic pressure motor, such as a hydraulic motor. Hydraulic motors have disadvantages such as difficulty in maintaining lubrication compared to hydraulic motors and require special consideration for rust prevention, but water also has advantages such as better cooling efficiency and lower cost than oil. In particular, it has practical value in a vibration exciter for underwater pile driving work. Further, it is possible and useful to use an electric motor instead of the hydraulic motor. When a hydraulic motor is used, a hydraulic motor having a control mechanism capable of synchronously rotating the pair of hydraulic motors and adjusting the phase difference between the pair of hydraulic motors is used. When an electric motor is used, an electric motor provided with a control circuit having the same functions (synchronous rotation and phase difference adjustment) as the above control mechanism is used.
【0023】図1に表されているように、1対の駆動軸
13a,13bに直交する2枚の垂直な仮想の面h1,
h2を想定し、これら2枚の垂直面に挟まれた空間を伝
動空間と名付ける。この伝動空間を厚さ方向に2分し
て、その片方をA系統の伝動空間と呼び、他方をB系統
の伝動空間と呼ぶ。これらの伝動空間は本図1に表され
ている上段部分のみでなく、中段を描いた図2や下段を
描いた図3においても図示のごとく想定される。先に、
原理図として示した図8(e),図8(f)において示
した図面参照記号および構成部材の名称、すなわちモー
タM1,M2、偏心重錘W1,W2,W3,W4、偏心重錘軸
S1,S2,S3,S4、および同期伝動歯車G1,G2,G
3,G4、並びに中間歯車12は、本実施例を描いた図1
〜図3に記入した図面参照符号および構成部材名称と対
応し、それぞれ整合させてある。[0023] As represented in FIG. 1, a pair of drive shafts 13a, face h 1 of the two vertical imaginary perpendicular to 13b,
assuming h 2, named a space sandwiched between the two vertical faces and the transmission space. This transmission space is divided into two in the thickness direction, one of which is referred to as an A-system transmission space and the other is referred to as a B-system transmission space. These transmission spaces are assumed not only in the upper part shown in FIG. 1 but also in FIG. 2 showing the middle part and FIG. 3 showing the lower part as shown in FIG. First,
The drawing reference symbols and the names of the constituent members shown in FIGS. 8 (e) and 8 (f), which are shown as a principle diagram, that is, the motors M 1 and M 2 , the eccentric weights W 1 , W 2 , W 3 and W 4 , Eccentric weight shafts S 1 , S 2 , S 3 , S 4 , and synchronous transmission gears G 1 , G 2 , G
3 , G 4 and the intermediate gear 12 are shown in FIG.
Corresponding to the drawing reference numerals and component member names written in FIGS.
【0024】以上のようにして本実施例の上段部分に
は、大きい偏心荷重を受ける偏心重錘軸は配設されてお
らず、比較的軽量の構成部材である油圧モータとロータ
リーエンコーダとが配設されている。As described above, the eccentric weight shaft receiving a large eccentric load is not provided in the upper part of this embodiment, and the hydraulic motor and the rotary encoder, which are relatively lightweight components, are provided. Has been established.
【0025】図2は、上下3段構成よりなる本発明の回
転式起振機の1実施例における中段部分の平面図であ
る。中段には、B系統の1対の偏心重錘W3,W4をそれ
ぞれ固着された1対の偏心重錘軸S3,S4が、それぞれ
水平に、相互に平行に配列されている。図に表されてい
るように、1対の偏心重錘W3,W4は、それぞれが軸心
方向について2分割されていて、分割された2個の偏心
重錘W3,同W3と、分割された2個の偏心重錘W4,W4
と、計4個の偏心重錘が設けられている。分割されたそ
れぞれの偏心重錘は、伝動空間を避けて偏心重錘軸の両
端付近に、軸受に接近させて固着される。そして、B系
統の同期伝動歯車G3,G4は相互に噛合せしめられてB
系統の伝動空間に配設されている。19は歯車及び偏心
重錘の位置を決めるためのスペーサである。上段を描い
た図1と中段を描いた図2とを対照して容易に理解され
るように、B系統の伝動空間に配設された駆動歯車10
bと同期伝動歯車G3とが噛合し、同期伝動歯車G3と同
G4とは反対方向に等速で回転せしめられる。これらの
歯車の噛合関係は、前掲の原理図である図8(e)に示
したところと全く同様である。これらの歯車により伝動
されて、偏心重錘軸S3に固着された2個の偏心重錘
W3,同W3と、偏心重錘軸S4に固着された2個の偏心
重錘W4,同W4とは反対方向に同一回転数で回転せしめ
られる。FIG. 2 is a plan view of the middle stage portion of an embodiment of the rotary exciter of the present invention having a three-stage configuration of upper and lower stages. In the middle stage, a pair of eccentric weight shafts S 3 , S 4 to which a pair of eccentric weights W 3 , W 4 of the B system are respectively fixed are arranged horizontally and parallel to each other. As represented in the figures, a pair of eccentric weight W 3, W 4, each have been divided into two for axial, divided two eccentric weight W 3, and the W 3 , The two divided eccentric weights W 4 , W 4
, And a total of four eccentric weights are provided. Each of the divided eccentric weights is fixed to the vicinity of both ends of the eccentric weight shaft avoiding the transmission space and close to the bearing. The synchronous transmission gears G 3 and G 4 of the B system are meshed with each other to
It is installed in the transmission space of the system. 19 is a spacer for determining the positions of the gear and the eccentric weight. As can be easily understood in comparison with FIG. 1 depicting the upper stage and FIG. 2 depicting the middle stage, the drive gear 10 disposed in the transmission space of the B system is easily understood.
meshes b and the synchronous transmission gear G 3 is caused to rotate at a constant speed in the direction opposite to the same G 4 and the synchronous transmission gear G 3. The meshing relationship of these gears is exactly the same as that shown in FIG. Is transmission by the gears, the eccentric weight shaft S 3 two eccentric secured to the weight W 3, the W 3 and the eccentricity of the two secured to the weight shaft S 4 eccentric weight W 4 , it is rotated at the same rotational speed in the opposite direction to the same W 4.
【0026】本実施例に示したように偏心重錘を分割し
て偏心重錘軸の両端付近に配置するとともに、分割され
た2個の偏心重錘の間に配置するという構成は、回転式
起振機に特有の技術的条件に基づいて本発明が創作した
ものである。従来技術においては一般に、歯車の噛合状
態を高精度に保つため、歯車の近くを軸受で支持するこ
とが常識であった。しかし、偏心重錘の大きい遠心加速
度の反力を支持しなければならない回転式起振機におい
ては、偏心重錘軸を撓ませる主因が偏心重錘であるか
ら、歯車を軸受から離間させても偏心重錘の近くを軸受
で支持することによって軸の撓みを軽減し、ひいては歯
車の噛合精度を保持することができる。さらに、回転式
起振機においては歯車が伝動すべき回転エネルギーは、
主として、振動の減衰を補うためのエネルギー量であ
り、歯車の荷重は比較的軽いので、こうした構成部材配
置が合理的である。その上、本図2を全体的に眺めて理
解し得るように、4個の軸受の荷重が均等かつ対称に分
布されていて、軸受寿命についても、また軸受を支持す
る構造体である起振機ケーシング14の強度バランスに
ついても好都合である。As shown in this embodiment, the configuration in which the eccentric weight is divided and disposed near both ends of the eccentric weight shaft and disposed between the two divided eccentric weights is a rotary type. The present invention has been created based on technical conditions specific to an exciter. In the prior art, in general, it has been common sense to support the vicinity of the gear with a bearing in order to maintain the meshing state of the gear with high accuracy. However, in a rotary vibration exciter that must support the reaction force of the large centrifugal acceleration of the eccentric weight, the eccentric weight is mainly deflected by the eccentric weight shaft. By supporting the vicinity of the eccentric weight with a bearing, it is possible to reduce the bending of the shaft, and to maintain the meshing accuracy of the gear. Furthermore, in the rotary exciter, the rotational energy that the gear must transmit is
It is mainly the amount of energy for compensating for the damping of vibration, and the load on the gear is relatively light. In addition, as can be understood from an overall view of FIG. 2, the loads of the four bearings are evenly and symmetrically distributed. The strength balance of the machine casing 14 is also advantageous.
【0027】中段を描いた本図2に現れている中間歯車
12は、前掲の原理図である図8(f)について説明し
た中間歯車12であって、A系統の伝動部材である。こ
の中間歯車12はA系統伝動空間に配置され、中間歯車
軸受20を介して、偏心重錘軸S4により回転自在に支
承されている。上記中間歯車12と同期伝動歯車G4と
は同じ方向に回転するように構成され、かつ、定常運転
状態においては同一回転数で回転せしめられ、後に述べ
るようにほぼ角度180度以内で位相差を与えられるよ
うに制御される。そこで、中間歯車12にストッパ突起
12aを突設するとともに、該ストッパ突起12aと係
合する円弧状のストッパ溝Waを設けて、B系統の同期
伝動歯車G4とA系統の中間歯車12との位相差がほぼ
180度以内に制約され、その結果、A系統の偏心重錘
とB系統の偏心重錘との位相差がほぼ108度以内に制
約される。The intermediate gear 12 shown in FIG. 2 depicting the middle stage is the intermediate gear 12 described with reference to FIG. 8 (f), which is the principle diagram, and is a transmission member of the A system. The intermediate gear 12 is arranged in the A system transmission space, via the intermediate gear bearing 20, is rotatably supported by the eccentric weight shaft S 4. The synchronous transmission gear G 4 and the intermediate gear 12 is configured to rotate in the same direction, and are rotated at the same rotational speed in the steady operating state, the phase difference within approximately an angle of 180 degrees as described later Controlled as given. Therefore, while projecting the stopper projection 12a to the intermediate gear 12, is provided an arc-shaped stopper groove Wa to be engaged with the stopper projection 12a, the synchronous transmission gear G 4 and A strains of B lineage of the intermediate gear 12 The phase difference is restricted to within approximately 180 degrees, and as a result, the phase difference between the eccentric weight of the A system and the eccentric weight of the B system is restricted to within approximately 108 degrees.
【0028】図3は、上下3段構成よりなる本発明の回
転式起振機の1実施例における下段部分の平面図であ
る。下段には、A系統の1対の偏心重錘W1,W2をそれ
ぞれ固着された1対の偏心重錘軸S1,S2がそれぞれ水
平に、相互に平行に配置されている。それぞれの偏心重
錘が2分割されて偏心重錘軸の両端付近に固着されてい
ることは、前掲の図2に示した中段の構成と類似であ
る。A系統の同期伝動歯車G1,G2はそれぞれ偏心重錘
軸S1,S2に固着されるとともに、相互に噛合せしめら
れて、A系統伝動空間内に配置されている。上記1対の
同期伝動歯車の内の1個の同期伝動歯車G1は、図2に
示した中段に配置されているA系統の中間歯車12と噛
合し、図1に示した上段に配置されているA系統の駆動
歯車10aを介してA系統の油圧モータM1によって回
転駆動される。これらの歯車の噛合関係は、原理図であ
る前掲の図8(f)に示した通りである。FIG. 3 is a plan view of a lower portion of the rotary vibration exciter according to the embodiment of the present invention having a three-stage configuration of upper and lower stages. In the lower stage, a pair of eccentric weight shafts S 1 , S 2 to which a pair of eccentric weights W 1 , W 2 of the A system are fixed are arranged horizontally and parallel to each other. The fact that each eccentric weight is divided into two and fixed near both ends of the eccentric weight shaft is similar to the configuration of the middle stage shown in FIG. 2 described above. The synchronous transmission gears G 1 and G 2 of the A system are fixed to the eccentric weight shafts S 1 and S 2 , respectively, and meshed with each other to be disposed in the A system transmission space. One synchronous transmission gear G 1 of said pair of synchronous transmission gear, an intermediate gear 12 meshes with the A strains are located in the middle of FIG. 2, are arranged in the upper stage shown in FIG. 1 It is rotated by the hydraulic motor M 1 of system a via the drive gear 10a of system a to have. The meshing relationship of these gears is as shown in FIG. 8 (f), which is the principle diagram and is shown above.
【0029】図1〜図3に示した実施例における伝動空
間の幅寸法は、同期伝動歯車G1〜G4の歯幅の2〜3倍
に設定される。その理由は次の通りである。A系統とB
系統とは伝動エネルギーも消費エネルギーもほぼ等しい
ので、A,B両系統の伝動歯車は歯幅もモジュールも等
しく構成することが合理的である。The width of the transmission space in the embodiment shown in FIGS. 1 to 3 is set to be two to three times the tooth width of the synchronous transmission gears G 1 to G 4 . The reason is as follows. A and B
Since the transmission energy and the consumed energy are almost equal to those of the system, it is reasonable that the transmission gears of both the A and B systems have the same tooth width and the same module.
【0030】そして、図1〜図3に表されているよう
に、前記伝動空間は幅寸法を2分する形に区画してA系
統伝動空間とB系統伝動空間とを想定し、それぞれの伝
動空間内に同期伝動歯車G1〜G4を配設する。従って、
前記伝動空間の幅寸法は少なくとも同期伝動歯車の歯幅
寸法の2倍を必要とする。2倍以上、何倍であっても同
期伝動歯車を配置することは出来るが、この伝動空間の
幅寸法を必要以上に大きくすると起振機の横幅寸法を無
益に増大させることになる。こうした事情を勘案する
と、分割された2個の偏心重錘(例えばW1とW1,W2
とW2)の間隔寸法は、同期伝動歯車の歯幅寸法の2倍
以上、3倍以下に設定するすることが適正である。As shown in FIG. 1 to FIG. 3, the transmission space is divided into two sections each having a width dimension, and an A-system transmission space and a B-system transmission space are assumed. disposing a synchronous transmission gear G 1 ~G 4 into the space. Therefore,
The width of the transmission space needs to be at least twice the tooth width of the synchronous transmission gear. Although the synchronous transmission gears can be arranged no less than twice or any number of times, if the width of the transmission space is made unnecessarily large, the lateral width of the exciter will be increased unnecessarily. In consideration of these circumstances, it divided two eccentric weight (eg W 1 and W 1, W 2
It is appropriate that the distance between W 2 ) and W 2 ) is set to be twice or more and three times or less the tooth width of the synchronous transmission gear.
【0031】図1〜図3について説明した実施例の回転
式起振機よりもさらに横幅寸法を縮小させるために、偏
心重錘の外周に、同期伝動歯車の一部分として機能し得
る歯を設けて、同期伝動歯車と偏心重錘とを板に構成す
ると有効である。図4は、前記と異なる実施例における
同期伝動歯車と偏心重錘とを抽出して描いた斜視図であ
る。本例の偏心重錘W1′の外周の一部には、同期伝動
歯車G1′と同じ形状,寸法の、モジュールを等しくす
る歯が設けられていて、該偏心重錘W1′と同期伝動歯
車G1′とが一体に連設されている。In order to further reduce the width of the rotary vibration exciter of the embodiment described with reference to FIGS. 1 to 3, teeth which can function as a part of a synchronous transmission gear are provided on the outer periphery of the eccentric weight. It is effective to form the synchronous transmission gear and the eccentric weight on a plate. FIG. 4 is a perspective view illustrating a synchronous transmission gear and an eccentric weight in an embodiment different from the above. A part of the outer periphery of the eccentric weight W 1 ′ of the present example is provided with teeth having the same shape and dimensions as the synchronous transmission gear G 1 ′ to make the modules equal to each other, so that the tooth is synchronized with the eccentric weight W 1 ′. The transmission gear G 1 ′ is integrally connected.
【0032】本図は、同期伝動歯車G1′と、偏心重錘
W1′と偏心重錘軸S1′とを結合した部材を例示してい
る。この部材(図4)を前記実施例(図1〜図3)にお
ける「偏心重錘W1,同期伝動歯車G1および偏心重錘軸
S1の組立品」と置換することにより、前記実施例の横
幅寸法を短縮することができる。ただし、前記実施例に
おける4個の偏心重錘W1〜W4と、4個の同期伝動歯車
G1〜G4と、4本の偏心重錘軸S1〜S4との全部につい
て本図4に示した1体連設形の部材と置換する必要が有
る。その理由は、4組の振動発生部材の内の3組以内の
横幅寸法を短縮しても実際の効果は発現されず、4組の
振動発生部材前部の横幅寸法を短縮して初めて起振機ケ
ーシングの形状,寸法を短縮することができるからであ
る。This figure illustrates a member in which a synchronous transmission gear G 1 ′, an eccentric weight W 1 ′ and an eccentric weight shaft S 1 ′ are connected. By replacing this member (FIG. 4) with the “assembly of the eccentric weight W 1 , the synchronous transmission gear G 1 and the eccentric weight shaft S 1 ” in the embodiment (FIGS. 1 to 3), The width dimension of can be shortened. However, all of the four eccentric weights W 1 to W 4 , the four synchronous transmission gears G 1 to G 4, and the four eccentric weight shafts S 1 to S 4 in the embodiment are shown in FIG. It is necessary to replace it with a single-body member shown in FIG. The reason is that even if the width of three or less of the four vibration generating members is reduced, the actual effect is not exerted, and the vibration is generated only when the width of the front of the four vibration generating members is reduced. This is because the shape and dimensions of the machine casing can be reduced.
【0033】次に、図1〜図3に示した実施例の回転式
起振機を構成して本発明に係る制御方法を実施した1例
について、上記実施例に対応する図8(e),図8
(f)を参照しつつ説明すると、作業を開始する直前に
おいて、偏心重錘W1,W2、および偏心重錘W3,W4が
何のような位置に在るかは不定であるが、重力を受けて
いる関係から本図8(e),(f)に実線で描いたよう
に下向きの姿勢になっているのが通常である。上記の状
態から、モータM1を比較的緩徐に回転させて、本図8
(e)に点線で示したようにA系統の偏心重錘を
W1″,W2″の位置にする。すなわち、B系統の偏心重
錘W3,W4に対して半回転(180度)の位相差を与え
る。このような状態で、上記の位相差を保たせつつA系
統とB系統とをそれぞれモータM1,同M2で回転駆動し
て増速する。この操作を、前掲の図7に当てはめてみる
と、始動直前における回転数零(振動数零)の点oにお
いて、A,B両系統の位相差が180度であるから、
A,B両系統の起振力が打ち消し合って振動を発生しな
い。この状態で矢印Cのように回転数を増加させて定格
回転数に到達する(点i)。この点iに達したとき、
A,B両系統のモータM1,M2の回転に差を与えて、A
系統の偏心重錘W1,W2とB系統の偏心重錘W3,W4と
の位相差を零にする(図8(e),(f)に実線で描い
た状態)にすると、総合偏心モーメントが最大となり、
定常的に最大起振力を発揮しつつ定格運転に移行する。Next, one example in which the rotary exciter of the embodiment shown in FIGS. 1 to 3 is constructed and the control method according to the present invention is carried out is shown in FIG. , Fig. 8
Explaining with reference to (f), it is uncertain what position the eccentric weights W 1 and W 2 and the eccentric weights W 3 and W 4 are located immediately before the work is started. Due to the fact that it is subjected to gravity, it is usually in a downward posture as shown by the solid lines in FIGS. 8 (e) and 8 (f). From the above state, by rotating the motor M 1 relatively slowly, the figure 8
As shown by the dotted line in (e), the eccentric weight of the A system is set at the position of W 1 ″ and W 2 ″. That is, a phase difference of half a rotation (180 degrees) is given to the eccentric weights W 3 and W 4 of the B system. In such a state, the system A and the system B are driven to rotate by the motors M 1 and M 2 , respectively, while maintaining the above-mentioned phase difference, thereby increasing the speed. When this operation is applied to FIG. 7 described above, at the point o of zero rotation speed (zero frequency) immediately before the start, the phase difference between the A and B systems is 180 degrees.
Vibration does not occur because the vibrating forces of both systems A and B cancel each other. In this state, the rotational speed is increased as indicated by arrow C and reaches the rated rotational speed (point i). When this point i is reached,
A difference is given to the rotations of the motors M 1 and M 2 of both the A and B systems, and A
When the phase difference between the eccentric weights W 1 , W 2 of the system and the eccentric weights W 3 , W 4 of the B system is set to zero (the state drawn by a solid line in FIGS. 8E and 8F), The total eccentric moment becomes maximum,
The operation shifts to rated operation while constantly exhibiting the maximum vibrating force.
【0034】図7を参照して以上に説明した操作によれ
ば、位相差180度(起振力零)の状態で点oから点i
まで加速され(矢印c)起振力零の状態で共振点n1,
n2を通過するから振動公害を生じたりクレーンブーム
を共振破損させたりする虞れが無い。According to the operation described above with reference to FIG. 7, the point o to the point i in a state where the phase difference is 180 degrees (excitation force is zero).
(Arrow c), the resonance point n 1 ,
the n 2 fear is not that or the crane boom or cause vibration pollution by resonating damage from passing through.
【0035】上述のごとく、A,B両系統の位相差を1
80度にしたり零にしたりする操作は、前掲の図1に示
したロータリーエンコーダ18a,18bによってA,
B両系統の回転位相を検出しつつモータM1,同M2の回
転を制御することによって実施することができる。この
場合、前掲の図2に示したストッパ突起12aとストッ
パ溝WaとによってA,B、両系統の回転位相差が0度
以上108度以下に制約されていると容易に、かつ確実
に実施することができる。As described above, the phase difference between the A and B systems is 1
The operation of setting the angle to 80 degrees or zero is performed by the rotary encoders 18a and 18b shown in FIG.
This can be implemented by controlling the rotations of the motors M 1 and M 2 while detecting the rotation phases of both B systems. In this case, if the rotational phase difference between A and B and both systems is restricted to 0 degree or more and 108 degrees or less by the stopper protrusion 12a and the stopper groove Wa shown in FIG. be able to.
【0036】図7を参照して以上に説明した制御方法の
実施例においては、点oから起振力零で運転を開始し、
共振周波数n1,n2を通過した後、点iで起振力を最大
にして定常的に最大起振力で運転した。これは基本的な
操作であって、次に述べるような各種の応用例が有り、
それぞれの応用例が特有の効果を発揮する。 (イ)点oにおける運転開始時の起振力は必ずしも零で
あることを要せず、むしろ若干の起振力を発揮させなけ
ればならない場合が有る。その理由は、例えば図6に実
線で示した杭7のように地上に立てた形に吊持して打設
を開始する際、通常の作業条件では該杭7が重力荷重だ
けで地中に沈下してゆくことは出来ず、地表波aによる
振動が民家8に被害を与えない範囲の僅かな振動を与え
て点oから(若しくは点oの付近から)運転を開始し
て、地中波bが公害を及ぼさない程度の深さまで杭7を
打ち込まねばならないからである。このような場合、起
振機から杭に与える振動の強さを設定する目安として本
発明は重力加速度gを考える。起振機および負荷部材
(杭,チャックなど)を含めた振動系に与えられる振動
加速度が重力加速度g以下であれば、杭は顕在的な振動
を生じない。従って、起振力をほぼgとし、若しくはg
以下にして運転を開始することによって運転初期の公害
を防止することができる。上記の「ほぼg」という場合
の、「ほぼ」の範囲は、杭の下端が地表付近に位置して
いるとき公害を発生しない範囲である。 (ロ)図7において矢印cのように振動数(回転数)を
上昇させてゆく場合、図の点iに達しなくても、共振周
波数に相当するn1,n2を通過したならば、点iに達す
る以前に起振力を増加させても不具合を生じない。この
ようにして起振力の増加時期を早めると、杭打ち工事の
能力が上昇する。この場合、起振力を増加させる時期の
具体的な設定方法としては、タイマ装置(図示せず)を
用いて点oで運転を開始してから所定の時間を経過した
時に起振力を増加させても良く、または、図1に示した
ロータリーエンコーダ18a,18bによって回転数を
検出し、定格回転数未満の所定回転数に達した時に起振
力を増加させても良い。In the embodiment of the control method described above with reference to FIG. 7, the operation is started from the point o with no vibrating force,
After passing through the resonance frequencies n 1 and n 2 , the driving force was maximized at the point i and the operation was constantly performed with the maximum driving force. This is a basic operation, there are various application examples as described below,
Each application has a unique effect. (A) The vibrating force at the start of the operation at the point o is not necessarily required to be zero, but rather, it may be necessary to exert a slight vibrating force. The reason is that, for example, when the pile 7 is hung upright on the ground and the casting is started as shown by a solid line in FIG. 6, under normal working conditions, the pile 7 is buried under the ground only by gravity load. It is impossible to sink, and the ground wave a starts the operation from the point o (or from the vicinity of the point o) by giving a slight vibration within a range that does not damage the private house 8, and the underground wave This is because the pile 7 must be driven to a depth where b does not cause pollution. In such a case, the present invention considers the gravitational acceleration g as a guide for setting the magnitude of vibration applied to the pile from the exciter. If the vibration acceleration given to the vibration system including the exciter and the load member (pile, chuck, etc.) is equal to or less than the gravitational acceleration g, the pile does not generate any apparent vibration. Therefore, the vibrating force is set to substantially g, or g
By starting operation in the following manner, it is possible to prevent pollution at the beginning of operation. The range of “substantially” in the case of “substantially g” is a range where no pollution occurs when the lower end of the pile is located near the ground surface. (B) In the case where the frequency (rotational speed) is increased as indicated by arrow c in FIG. 7, even if the frequency does not reach point i in the figure, if n 1 and n 2 corresponding to the resonance frequency are passed, Even if the vibrating force is increased before reaching the point i, no problem occurs. If the timing for increasing the excitation force is accelerated in this way, the capacity of the pile driving work is increased. In this case, as a specific method of setting the timing for increasing the excitation force, the excitation force is increased when a predetermined time has elapsed since the operation was started at point o using a timer device (not shown). Alternatively, the rotational speed may be detected by the rotary encoders 18a and 18b shown in FIG. 1 and the vibrating force may be increased when the rotational speed reaches a predetermined rotational speed less than the rated rotational speed.
【0037】(ハ)図7において点iから点jまで起振
力最大の状態で杭打工事を遂行した後、点jでモータの
駆動を停止して慣性回転状態に入り、若しくはモータを
制動して回転数を減少させ(矢印d)、点mで停止させ
る際も、起動・増速時の操作(矢印c)と反対の手順で
行なう。すなわち、点jで定格回転数で回っているA系
統とB系統との位相に差を生じさせて、ほぼ180度の
回転位相差を与え、起振力をほぼ零ならしめるとともに
減速運転に入る。これにより、起振力を最小ならしめた
状態で共振周波数に相当する点n2,n1を通過し、振動
公害を防止するとともにクレーンブーム破損を防止する
ことができる。(C) In FIG. 7, after the pile driving work is performed in a state where the vibrating force is maximum from the point i to the point j, the driving of the motor is stopped at the point j to enter an inertial rotation state, or the motor is braked. Also, when the number of rotations is decreased (arrow d) and stopped at the point m, the procedure is the reverse of the operation at the time of starting and increasing the speed (arrow c). That is, a phase difference is generated between the A-system and the B-system rotating at the rated speed at the point j, a rotation phase difference of approximately 180 degrees is given, the vibrating force is almost zero, and deceleration operation is started. . As a result, the vibrating force can pass through the points n 2 and n 1 corresponding to the resonance frequency in a state where the vibrating force is minimized, thereby preventing the vibration pollution and the crane boom breakage.
【0038】(ニ)地盤の構造は一般に不規則であり、
施工条件が変化する。従って、振動が実害を生じない範
囲内でなるべく大きい振動を発生させることが杭打設工
事の能率向上のために望ましい。こうした観点から、図
7における矢印cの増速運転の途中、または矢印dの減
速運転の途中でA系統の偏心重錘とB系統の偏心重錘と
の回転位相差θを、 0≪θ≪180° ………(1) の範囲内の一定値に保って、起振力を最大,最小の間の
中等度にして杭打工事を行なうことも、公害防止と能率
向上とを両立させるために有効である。起振力を最大と
最小との何れかに制御すること、すなわち、A,B両系
統の偏心重錘の回転位相差を最大と最小との何れかなら
しめることは、前掲の図2に示したストッパ突起12a
とストッパ溝Waとのような機械的拘束によって行ない
得るが、前記の式1のように回転位相差を任意角度に保
つためには、前掲の図1に示したロータリーエンコーダ
18a,同18b(もしくはこれに相当する部材)を設
けて回転角位置を検出することと、油圧モータM1と同
M2とがそれぞれ回転数を増減せしめ得る油圧制御機
構、および該油圧モータM1,M2を同一回転数で回転せ
しめ得る油圧制御機構を具備していることが必要であ
る。(D) The structure of the ground is generally irregular,
Construction conditions change. Therefore, it is desirable to generate as large a vibration as possible within a range where the vibration does not cause actual harm, in order to improve the efficiency of the pile driving work. From such a viewpoint, the rotational phase difference θ between the eccentric weight of the A system and the eccentric weight of the B system during the speed-up operation of the arrow c or the deceleration operation of the arrow d in FIG. 180 ° ……… (1) Maintaining a constant value in the range of (1) and setting the exciting force to a moderate value between the maximum and minimum to perform pile driving work in order to achieve both pollution prevention and efficiency improvement. It is effective for Controlling the vibrating force to either the maximum or the minimum, that is, setting the rotational phase difference between the eccentric weights of both the A and B systems to the maximum or the minimum is shown in FIG. Stopper protrusion 12a
However, in order to maintain the rotational phase difference at an arbitrary angle as in the above equation 1, the rotary encoders 18a, 18b (or 18b) shown in FIG. (A member corresponding to this) to detect the rotation angle position, and the hydraulic motor M 1 and the hydraulic motor M 2 can increase or decrease the rotational speed respectively, and the hydraulic motors M 1 and M 2 are the same. It is necessary to have a hydraulic control mechanism capable of rotating at a rotational speed.
【0039】[0039]
【発明の効果】本発明の回転式起振機を適用すると、A
系統の偏心重錘を固着された1対の偏心重錘軸が下段に
配置されるとともにB系統の偏心重錘を固着された1対
の偏心重錘軸が中段に配置されているので、大きい遠心
加速度を受ける偏心重錘軸が中,下段に、ほぼ正方形の
頂点に相当するように位置する。このため、上記偏心重
錘軸の軸受、並びに該軸受を支持する構造物の強度バラ
ンスが良い。その上、上記A,B,両系統の振動発生機
構部分を回転駆動する2個のモータが上段に配置されて
上下3段構造をなしているので、起振機の横幅寸法が短
縮される。このように、A系統の回転駆動用モータを上
段に配置しても、本発明の構成によれば伝動部材を介し
て、下段に位置しているA系統の振動発生機構を駆動す
ることができる。According to the rotary vibration exciter of the present invention, A
Since a pair of eccentric weight shafts to which the eccentric weights of the system are fixed are arranged in the lower stage, and a pair of eccentric weight shafts to which the eccentric weights of the B system are fixed are arranged in the middle stage, the size is large. The eccentric weight axes receiving the centrifugal acceleration are positioned at the middle and lower stages so as to correspond to the vertices of substantially squares. Therefore, the bearing of the eccentric weight shaft and the structure supporting the bearing have good strength balance. In addition, since the two motors for rotating and driving the vibration generating mechanisms of the A, B and both systems are arranged in the upper stage to form a three-stage structure, the width of the exciter can be reduced. Thus, according to the configuration of the present invention, the A-system vibration generation mechanism located at the lower stage can be driven via the transmission member even if the A-system rotational drive motor is arranged at the upper stage. .
【0040】上記の伝動部材として各種の機械要素を適
用することができるが、中間歯車を用いると伝動系の構
成が簡単で、該中間歯車の支持構造の構成が容易である
から好都合である。この場合の中間歯車は必然的に中段
に位置するので、中段に配置されているB系統の偏心重
錘軸によって回転自在に支持することができる。このよ
うに中段の偏心重錘軸を中間歯車軸に兼用すると構成部
品点数を節減することができる。上記の中間歯車と、中
段に配置されている2個の同期伝動歯車の内で中間歯車
と同じ方向に回転する同期伝動歯車とを対向させて、対
向する双方の歯車相互の回転位相差を規制する手段を設
ければ、A系統の偏心重錘とB系統の偏心重錘との回転
位相差を制限的にコントロールできるので、振動公害防
止のための運転制御を容易に行なうことができる。以上
に述べた本発明装置に係る回転式起振機を運転する際、
本発明に係る制御方法によれば、運転開始の準備操作と
してA系統の偏心重錘とB系統の偏心重錘との回転位相
差を調節可能な範囲内で最大ならしめて起振力を最小の
状態にしておいてから回転数を上昇せしめるので、回転
数上昇の途中で地盤と共振したりクレーンブームと共振
したりしてトラブルを生じる虞れが無く、回転数を上昇
させた後にA系統の偏心重錘とB系統の偏心重錘との回
転位相差を零にして最大起振力を発揮しながら定格回転
数で定常運転を行うことができるという、優れた実用的
効果を奏する。Various mechanical elements can be applied as the above-mentioned transmission member. However, the use of an intermediate gear is convenient because the structure of the transmission system is simple and the structure of the support structure for the intermediate gear is easy. In this case, since the intermediate gear is necessarily located at the middle stage, the intermediate gear can be rotatably supported by the eccentric weight shaft of the B system disposed at the middle stage. When the middle eccentric weight shaft is also used as the intermediate gear shaft, the number of components can be reduced. The intermediate gear and the synchronous transmission gear that rotates in the same direction as the intermediate gear among the two synchronous transmission gears arranged in the middle are opposed to each other, and the rotational phase difference between the opposing gears is regulated. By providing the means for controlling, the rotational phase difference between the eccentric weight of the A system and the eccentric weight of the B system can be controlled in a restricted manner, so that operation control for preventing vibration pollution can be easily performed. When operating the rotary shaker according to the device of the present invention described above,
According to the control method of the present invention, as a preparatory operation for starting operation, the rotational phase difference between the eccentric weight of the A system and the eccentric weight of the B system is maximized within an adjustable range to minimize the vibrating force. Since the rotation speed is increased after the state is maintained, there is no danger that trouble will occur due to resonance with the ground or the crane boom during the rotation speed increase. An excellent practical effect is achieved in that the rotational phase difference between the eccentric weight and the eccentric weight of the B-system can be reduced to zero and steady operation can be performed at the rated rotation speed while exhibiting the maximum vibrating force.
【図1】上下3段構成よりなる本発明の回転式起振機の
1実施例における上段部分の平面図である。FIG. 1 is a plan view of an upper portion of a rotary vibration exciter according to an embodiment of the present invention having a three-stage configuration of upper and lower parts.
【図2】上下3段構成よりなる本発明の回転式起振機の
1実施例における中段部分の平面図である。FIG. 2 is a plan view of a middle portion of the rotary vibration exciter according to the embodiment of the present invention having a three-tiered structure.
【図3】上下3段構成よりなる本発明の回転式起振機の
1実施例における下段部分の平面図である。FIG. 3 is a plan view of a lower portion of the rotary vibration exciter according to the embodiment of the present invention having a three-stage configuration of upper and lower stages.
【図4】前記と異なる実施例における同期伝動歯車と偏
心重錘とを抽出して描いた斜視図である。FIG. 4 is a perspective view illustrating a synchronous transmission gear and an eccentric weight in an embodiment different from the above.
【図5】4本の回転軸のそれぞれに偏心重錘を取り付け
たロータリ式起振機の説明図である。FIG. 5 is an explanatory view of a rotary type vibration exciter in which an eccentric weight is attached to each of four rotating shafts.
【図6】振動装置を用いる杭打工事における地上波およ
び地中波の伝達を示す説明図である。FIG. 6 is an explanatory diagram showing transmission of ground waves and underground waves in a pile driving work using a vibration device.
【図7】振動杭打工事における共振現象を説明するため
の、時間−回転速度を表わした図表である。FIG. 7 is a chart showing time-rotation speed for explaining a resonance phenomenon in a vibrating pile driving work.
【図8】偏心重錘を固着された偏心重錘軸と、該偏心重
錘軸に固着された同期伝動歯車と、該同期伝動歯車に噛
合した駆動歯車と、該駆動歯車を回転駆動するモータと
の配置を模式的に描いた正面図であって、(a)は偏心
重錘の配置個数が1個の場合を、(b)は偏心重錘の配
置個数が1対の場合を、(c)は偏心重錘の配置個数が
2対の場合を、(d),(e)および(f)は偏心重錘
の配置個数が2対であり、かつ駆動歯車が同期伝動歯車
の上方もしくは下方に配置されている場合を、それぞれ
表している。FIG. 8 shows an eccentric weight shaft to which the eccentric weight is fixed, a synchronous transmission gear fixed to the eccentric weight shaft, a drive gear meshed with the synchronous transmission gear, and a motor for rotating the drive gear. FIGS. 4A and 4B are front views schematically illustrating the arrangement of (a), (a) shows a case where the number of arranged eccentric weights is one, (b) shows a case where the number of arranged eccentric weights is one pair, c) shows the case where the number of eccentric weights is two pairs, (d), (e) and (f) show the case where the number of eccentric weights is two pairs and the drive gear is located above the synchronous transmission gear or The case where it is arranged below is shown.
1…起振機のケース、2A〜2D…回転軸、3A〜3D
…偏心重錘、4A〜4D…同期回転用の伝動歯車、5…
クレーンブーム、6…振動装置(起振機)、7…杭、8
…民家、9,9′…偏心重錘、10a,10b…駆動歯
車、11…同期伝動歯車、12…中間歯車、12a…ス
トッパ突起、13a,13b…駆動軸、14…起振機ケ
ーシング、15…防振ゴム、16…ハンガーボックス、
17…ストッパゴム、18a,18b…ロータリーエン
コーダ、19…スペーサ、W1〜W4,W1′〜W4′…偏
心重錘、W1″,W2″…180度の位相差を与えられた
A系統の偏心重錘、Wa…ストッパ溝、G1〜G4,
G1′〜G4′…同期伝動歯車、k…キー、M1,M2…油
圧モータ、h1,h2…仮想の垂直面、Lx…横幅寸法、
S1〜S4,S1′〜S4…偏心重錘軸。1: Exciter case, 2A-2D: Rotating shaft, 3A-3D
... Eccentric weights, 4A-4D ... Transmission gears for synchronous rotation, 5 ...
Crane boom, 6… vibration device (vibrator), 7… pile, 8
.., Private houses, 9, 9 'eccentric weights, 10a, 10b drive gears, 11 synchronous transmission gears, 12 intermediate gears, 12a stopper protrusions, 13a, 13b drive shafts, 14 exciter casings, 15 ... vibration isolation rubber, 16 ... hanger box,
17 ... rubber stopper, 18a, 18b ... rotary encoder 19 ... spacer, W 1 ~W 4, W 1 '~W 4' ... eccentric weight, W 1 ", W 2" is given a phase difference of ... 180 A type of eccentric weight, Wa ... stopper groove, G 1 to G 4 ,
G 1 '~G 4' ... synchronous transmission gear, k ... key, M 1, M 2 ... hydraulic motor, h 1, h 2 ... vertical plane of a virtual, Lx ... width dimension,
S 1 ~S 4, S 1 ' ~S 4 ... eccentric weight shaft.
Claims (14)
れて互いに反対方向に同期回転する1対のA系統の偏心
重錘軸(S1,S2)がそれぞれ水平に相互に平行に配置
されるとともに、それぞれ上記と異なる偏心重錘
(W3,W4)を固定されて互いに反対方向に同期回転す
る1対のB系統の偏心重錘軸(S3,S4)がそれぞれ水
平に相互に平行に配置され、かつ、前記A系統を回転駆
動するモータ(M1)を備えた駆動軸(13a)および
B系統を回転駆動するモータ(M2)を備えた駆動軸
(13b)が設けられている回転式起振機において、 起振機ケーシング(13)内の軸配置が上下3段構成に
なっていて、 下段に前記A系統の1対の偏心重錘軸(S1,S2)が配
設されており、 中段に前記B系統の1対の偏心重錘軸(S3,S4)が配
設されており、 上段に前記2本の駆動軸(13a,13b)が、それぞ
れ水平に相互に平行に配設されていて、 かつ、上段に配設されたA系統の駆動軸(13a)と、
下段に配設されたA系統の1対の偏心重錘軸(S1,
S2)の内の何れか一方の偏心重錘軸とが、中段に配置
された伝動部材(12)を介して連結されていることを
特徴とする回転式起振機。1. A pair of eccentric weight shafts (S 1 , S 2 ) of a system A having fixed eccentric weights (W 1 , W 2 ) and synchronously rotating in opposite directions to each other, respectively, horizontally A pair of eccentric weight shafts (S 3 , S 4 ) of the B system which are arranged in parallel, fixed with eccentric weights (W 3 , W 4 ) different from the above, and synchronously rotate in opposite directions to each other are provided. A drive shaft (13a) that is horizontally and parallel to each other and has a motor (M 1 ) that rotationally drives the A-system and a drive shaft (13) that has a motor (M 2 ) that rotationally drives the B-system 13b), the shaft arrangement in the shaker casing (13) has a three-stage configuration in the upper and lower parts, and a pair of eccentric weight shafts (S 1 , S 2 ), and a pair of eccentric weight shafts (S 3 , S 4 ), and the two drive shafts (13 a, 13 b) are arranged horizontally and parallel to each other in the upper stage, and the A-system is arranged in the upper stage. A drive shaft (13a);
A pair of eccentric weight shafts (S 1 ,
A rotary vibration exciter characterized in that any one of the eccentric weight shafts of S 2 ) is connected via a transmission member (12) arranged in the middle stage.
り、かつ該中間歯車が、B系統の1対の偏心重錘軸(S
3,S4)の何れか片方に外嵌され、該何れか片方の偏心
重錘軸との相対的回動自在に支承されていることを特徴
とする、請求項1に記載の回転式起振機。2. The transmission member (12) is an intermediate gear, and the intermediate gear is a pair of eccentric weight shafts (S) of a B system.
3, S 4) either is fitted on one, characterized in that it is relatively rotatably supported with該何Re or the other of the eccentric weight shaft, rotary force as claimed in claim 1 Shaker.
支承しているB系統の偏心重錘軸との相対的な回動角を
制限するストッパ手段が設けられていることを特徴とす
る、請求項2に記載の回転式起振機。3. A stopper means for limiting a relative rotation angle between said intermediate gear (12) and an eccentric weight shaft of a B system supporting said intermediate gear. The rotary vibration exciter according to claim 2, wherein
よびB系統の偏心重錘軸(S3,S4)のそれぞれは、そ
の両端部付近を軸受によって支承されており、 かつ、
上記4本の偏心重錘軸のそれぞれに固着される偏心重錘
(W1,W2,W3,W4)のそれぞれは軸心方向に関して
分割されており、 各偏心重錘軸ごとに、両端の軸受に近接せしめて分割さ
れた偏心重錘の1個ずつが配置されていて、上記の分割
された偏心重錘相互の間に間隔が設けられていて、 上記の間隔の中に前記A系統およびB系統の部材の回転
を伝動する歯車が配置されていることを特徴とする、請
求項1に記載の回転式起振機。4. The eccentric weight shafts (S 1 , S 2 ) of the A system and the eccentric weight shafts (S 3 , S 4 ) of the B system are supported by bearings near both ends thereof. , And,
Each of the eccentric weights (W 1 , W 2 , W 3 , W 4 ) fixed to each of the four eccentric weight shafts is divided in the axial direction, and for each eccentric weight shaft, Each of the divided eccentric weights is disposed one by one in proximity to the bearings at both ends, and an interval is provided between the divided eccentric weights. The rotary vibration exciter according to claim 1, wherein a gear that transmits rotation of members of the system and the system B is arranged.
法は、前記偏心重錘軸(S1,S2,S3,S4)のそれぞ
れに固着されている同期伝動歯車(G1,G2,G3,
G4)それぞれの歯幅寸法の2倍以上3倍以下であり、
かつ、 上記の間隔は設計的に軸心方向に2分されていて、2分
された間隔空間の片方の空間に前記A系統の同期伝動歯
車(G1,G2)、および該同期伝動歯車と噛合する中間
歯車(12)、並びに、該中間歯車と噛合する駆動歯車
(10a)が配置されるとともに、 前記の2分された間隔空間の他方の空間に前記B系統の
同期伝動歯車(G3,G4)および該同期伝動歯車と噛合
する駆動歯車(10b)が配置されていることを特徴と
する、請求項4に記載の回転式起振機。5. The distance between the divided eccentric weights is such that the synchronous transmission gear (G 1 ) fixed to each of the eccentric weight shafts (S 1 , S 2 , S 3 , S 4 ). , G 2 , G 3 ,
G 4 ) Two to three times or less of each tooth width dimension,
The space is designed to be divided into two in the axial direction, and the synchronous transmission gears (G 1 , G 2 ) of the A system and the synchronous transmission gear are provided in one of the divided spaces. And a drive gear (10a) meshing with the intermediate gear, and a synchronous transmission gear (G) of the B system is provided in the other space of the divided space. 3, G 4) and characterized in that the synchronous transmission gear and meshes with the drive gear (10b) is disposed, rotary exciter according to claim 4.
W4)の内の少なくとも1個の偏心重錘の周囲に、前記
4個の同期伝動歯車(G1,G2,G3,G4)の何れかと
モジュールを等しくする歯が設けられていて、 歯を設けられた偏心重錘と、該偏心重錘に隣接する同期
伝動歯車とが一体的に連設されていることを特徴とす
る、請求項5に記載の回転式起振機。6. The four eccentric weights (W 1 , W 2 , W 3 ,
W 4 ), around at least one of the eccentric weights, there are provided teeth for making the module equal to any one of the four synchronous transmission gears (G 1 , G 2 , G 3 , G 4 ). The rotary vibration exciter according to claim 5, wherein an eccentric weight provided with teeth and a synchronous transmission gear adjacent to the eccentric weight are integrally connected.
れは、両端付近を軸受で支承されるとともに、中央部に
駆動歯車(10a,10b)を固着され、 かつ、それぞれの駆動軸の片方の端部に駆動用のモータ
(M1,M2)が取り付けられるとともに、他方の端部に
ロータリーエンコーダ(18a,18b)が取り付けら
れていることを特徴とする、請求項1に記載の回転式起
振機。7. Each of the drive shafts (13a, 13b) is supported by bearings near both ends, and a drive gear (10a, 10b) is fixed to a central portion, and one end of each of the drive shafts is provided. the motor (M 1, M 2) is mounted for driving the end portion, characterized in that the other end a rotary encoder (18a, 18b) is mounted, rotatable according to claim 1 Exciter.
ぞれ回転数を制御することができ、かつ、相互に同期回
転せしめ得る制御機構を備えた液圧モータであることを
特徴とする、請求項1ないし請求項7の何れか一つに記
載の回転式起振機。8. The two motors (M 1 , M 2 ) are hydraulic motors each having a control mechanism capable of controlling the number of revolutions and rotating in synchronization with each other. The rotary vibration exciter according to any one of claims 1 to 7, wherein
ぞれ回転数を制御することができ、かつ、相互に同期回
転せしめ得る制御回路を備えた電気モータであることを
特徴とする、請求項1ないし請求項7の何れか一つに記
載の回転式起振機。9. The electric motor according to claim 1, wherein the two motors (M 1 , M 2 ) are electric motors each having a control circuit capable of controlling the number of rotations and rotating synchronously with each other. The rotary vibration exciter according to any one of claims 1 to 7, wherein
されて互いに反対方向に同期回転する1対のA系統の偏
心重錘軸(S1,S2)がそれぞれ水平に相互に平行に配
置されるとともに、それぞれ上記と異なる偏心重錘(W
3,W4)を固定されて互いに反対方向に同期回転する1
対のB系統の偏心重錘軸(S3,S4)がそれぞれ水平に
相互に平行に配置され、かつ、前記A系統を回転駆動す
るモータ(M1)を備えた駆動軸(13a)およびB系
統を回転駆動するモータ(M2)を備えた駆動軸(13
b)が設けられている回転式起振機を制御する方法にお
いて、起振機ケーシング(13)内の軸配置が上下3段
に構成し、 下段に前記A系統の1対の偏心重錘軸(S1,S2)を配
設し、 中段に前記B系統の1対の偏心重錘軸(S3,S4)が配
設し、 上段に前記2本の駆動軸(13a,13b)を、それぞ
れ水平に相互に平行に配設して、 定常的に最大起振力を発生させるための準備操作とし
て、予め前記A系統の偏心重錘(W1,W2)の回転位相
とB系統の偏心重錘(W3,W4)の回転位相との位相差
を調節可能な範囲内で最大角度にして、起振力最小の状
態ならしめるとともに、この状態でA系統とB系統とを
同期させつつ回転させてその回転数を上昇させ、 上記A,B両系統の同期回転の回転数が上昇した後、 前記A系統の偏心重錘とB系統の偏心重錘との回転位相
差を零ならしめて最大起振力を発生させる状態で定常運
転を遂行することを特徴とする、回転式起振機の制御方
法。10. A pair of A-system eccentric weight shafts (S 1 , S 2 ) having respective eccentric weights (W 1 , W 2 ) fixed thereto and synchronously rotating in opposite directions to each other, are respectively horizontally separated from each other. The eccentric weights (W
3 , W 4 ) is fixed and rotates synchronously in opposite directions to each other 1
Arranged parallel to each other horizontally eccentric weight shafts of the pairs of B lineage (S 3, S 4) respectively, and said drive shaft having a motor (M 1) for rotating the A line (13a) and A drive shaft (13) provided with a motor (M 2 ) for rotating the B system
b) The method for controlling a rotary vibration exciter provided with b), wherein the shaft arrangement in the vibration exciter casing (13) is configured in three upper and lower stages, and a pair of eccentric weight shafts of the A system is provided in a lower stage. (S 1 , S 2 ) are arranged, a pair of eccentric weight shafts (S 3 , S 4 ) of the B system are arranged in the middle stage, and the two drive shafts (13a, 13b) are arranged in the upper stage. Are arranged horizontally and parallel to each other, and as a preparatory operation for constantly generating the maximum vibrating force, the rotational phase of the eccentric weights (W 1 , W 2 ) of the A system and B The phase difference between the rotational phase of the eccentric weights (W 3 , W 4 ) of the system is set to the maximum angle within the adjustable range, and the state of the vibrating force is minimized. Are rotated in synchronization with each other to increase the rotation speed thereof. After the rotation speeds of the synchronous rotation of the A and B systems are increased, Characterized by performing the steady operation in a state of generating Shimete maximum vibratory force if zero rotational phase difference between the eccentric weight heart weight and B strains, a control method of a rotary exciter.
回転数を上昇させた際、該同期回転の回転数が所定の値
となった時、もしくは、上記A系統とB系統とを同期さ
せつつ回転数を加速し始めてから所定の時間を経過した
時、 上記A系統の偏心重錘とB系統の偏心重錘との回転位相
差を零ならしめることを特徴とする、請求項10に記載
した回転式起振機の制御方法。11. When the rotation speed is increased while synchronizing the A system and the B system, when the rotation speed of the synchronous rotation reaches a predetermined value, or when the A system and the B system are synchronized. 11. A method according to claim 10, wherein when a predetermined time has elapsed since the start of acceleration of the rotation speed while rotating, the rotational phase difference between the eccentric weight of the A system and the eccentric weight of the B system is made zero. The described control method of the rotary vibration exciter.
て起振力を最小の状態ならしめる際、該起振力の最小値
が「当該回転式起振機が負荷部材と結合されている状態
で、振動加速度の最大値が、ほぼ重力加速度と等しい
か、又はそれ以下」となるように、偏心重錘の位相差を
制御することを特徴とする、請求項10に記載した回転
式起振機の制御方法。12. When the vibrating force is minimized in preparation for the generation of the steady maximum vibrating force, the minimum value of the vibrating force is determined to be “the rotary vibration exciter is connected to a load member. The phase difference of the eccentric weight is controlled such that the maximum value of the vibration acceleration is substantially equal to or less than the gravitational acceleration in the state. How to control the shaker.
との回転位相差を零ならしめて最大起振力を発生させつ
つ定常運転に移行する途中において、又は、定常運転に
移行した後において、 A系統の偏心重錘とB系統の偏心重錘との回転位相差θ
を、 0≪θ≪180° ………(1) 上記の式(1)の範囲内の一定値に保持して部分負荷運
転することを特徴とする、請求項10に記載した回転式
起振機の制御方法。13. A transition to a steady-state operation or a transition to a steady-state operation while reducing the rotational phase difference between the eccentric weight of the A-system and the eccentric weight of the B-system to zero and generating the maximum vibrating force. Later, the rotational phase difference θ between the eccentric weight of system A and the eccentric weight of system B
The rotational vibration excitation according to claim 10, characterized in that a partial load operation is performed while maintaining a constant value within the range of the above equation (1). Machine control method.
との回転位相差を零ならしめて最大起振力を発生させつ
つ定常運転を行った後、回転数を減速させて停止する
際、 予めA系統の偏心重錘とB系統の偏心重錘と回転位相差
を与えて起振力を最小の状態とした後、上記の起振力最
小の状態を保持しつつA系統の偏心重錘とB系統の偏心
重錘との回転数を減速させて停止させることを特徴とす
る、請求項10に記載した回転式起振機の制御方法。14. A normal operation is performed while reducing the rotational phase difference between the eccentric weight of the system A and the eccentric weight of the system B to zero to generate the maximum vibrating force, and then the rotation speed is reduced to stop. At this time, the eccentric weight of the A system and the eccentric weight of the B system are given a rotational phase difference in advance to minimize the vibrating force, and then the eccentricity of the A system is maintained while maintaining the minimum vibrating force. The control method for a rotary vibration exciter according to claim 10, wherein the rotation speed of the weight and the eccentric weight of the B system is reduced and stopped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19484195A JP2790990B2 (en) | 1995-07-31 | 1995-07-31 | Rotary shaker and control method of rotary shaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19484195A JP2790990B2 (en) | 1995-07-31 | 1995-07-31 | Rotary shaker and control method of rotary shaker |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0938575A true JPH0938575A (en) | 1997-02-10 |
JP2790990B2 JP2790990B2 (en) | 1998-08-27 |
Family
ID=16331170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19484195A Expired - Lifetime JP2790990B2 (en) | 1995-07-31 | 1995-07-31 | Rotary shaker and control method of rotary shaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2790990B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103362467A (en) * | 2013-08-09 | 2013-10-23 | 广西恒日科技有限公司 | Inline type eccentric wheel vibration mechanism |
JP5512028B1 (en) * | 2013-07-30 | 2014-06-04 | 羽生 正義 | Reaction power generator |
WO2014171416A1 (en) * | 2013-04-15 | 2014-10-23 | 株式会社キンキ | Vibration generation device |
JP2018034080A (en) * | 2016-08-29 | 2018-03-08 | 調和工業株式会社 | Exciter and construction method of pile |
CN108677951A (en) * | 2018-06-06 | 2018-10-19 | 无锡坤龙工程机械有限公司 | A kind of hydraulic vibration pile hammer of adjustable eccentric square |
CN109046908A (en) * | 2018-09-04 | 2018-12-21 | 房波 | A kind of 4Z type straight-line oscillation structure |
CN110359845A (en) * | 2019-07-30 | 2019-10-22 | 南京贻润环境科技有限公司 | A kind of synchronization mechanism and its audio frequency brill boring eccentric wheel for audio frequency |
CN111715503A (en) * | 2020-07-21 | 2020-09-29 | 武汉海德力液压技术有限公司 | 4D type vibration structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106000850B (en) * | 2016-05-16 | 2018-07-13 | 湖北航鹏化学动力科技有限责任公司 | A kind of exciting apparatus for adjusting force |
CN109225792A (en) * | 2018-09-17 | 2019-01-18 | 合肥工业大学 | A kind of exciter |
-
1995
- 1995-07-31 JP JP19484195A patent/JP2790990B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014171416A1 (en) * | 2013-04-15 | 2014-10-23 | 株式会社キンキ | Vibration generation device |
JP5969115B2 (en) * | 2013-04-15 | 2016-08-10 | 株式会社キンキ | Vibration generator |
US10263493B2 (en) | 2013-04-15 | 2019-04-16 | Kabushiki Kaisha Kinki | Vibratory sieving machine |
JP5512028B1 (en) * | 2013-07-30 | 2014-06-04 | 羽生 正義 | Reaction power generator |
CN103362467A (en) * | 2013-08-09 | 2013-10-23 | 广西恒日科技有限公司 | Inline type eccentric wheel vibration mechanism |
JP2018034080A (en) * | 2016-08-29 | 2018-03-08 | 調和工業株式会社 | Exciter and construction method of pile |
CN108677951A (en) * | 2018-06-06 | 2018-10-19 | 无锡坤龙工程机械有限公司 | A kind of hydraulic vibration pile hammer of adjustable eccentric square |
CN109046908A (en) * | 2018-09-04 | 2018-12-21 | 房波 | A kind of 4Z type straight-line oscillation structure |
CN110359845A (en) * | 2019-07-30 | 2019-10-22 | 南京贻润环境科技有限公司 | A kind of synchronization mechanism and its audio frequency brill boring eccentric wheel for audio frequency |
CN111715503A (en) * | 2020-07-21 | 2020-09-29 | 武汉海德力液压技术有限公司 | 4D type vibration structure |
Also Published As
Publication number | Publication date |
---|---|
JP2790990B2 (en) | 1998-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2790990B2 (en) | Rotary shaker and control method of rotary shaker | |
JP3794764B2 (en) | Modular double reversing eccentric mass vibration force generator | |
WO2006047932A1 (en) | A synchrodriving mechanism for a plurality of parallel installed eccentric shafts | |
KR101089557B1 (en) | Vibration exciter for vibration compensation | |
JP3731169B2 (en) | Vibration pile punching control method | |
JPH09221753A (en) | Eccentric weight type vibration-generation control method and eccentric weight type exciter | |
CN116134196A (en) | Vibrating hammer with electric motor | |
JP3212250B2 (en) | Method for supporting eccentric weight for exciter and support structure for eccentric weight for exciter | |
JP3243551B2 (en) | Exciting force control method for exciter and exciting force control device for exciter | |
JP3154597B2 (en) | Active vibration suppression device using unbalanced shaker | |
JP3384689B2 (en) | Exciting force control method | |
CN113032924A (en) | Single-mass composite synchronous driving vibrator and parameter determination method thereof | |
JP2813319B2 (en) | Oscillating force control method for eccentric weight and eccentric weight mechanism for oscillating weight | |
JP2724296B2 (en) | Excitation weight control method and control mechanism for eccentric weight | |
RU2637156C1 (en) | Method of energy generation in which harmful support vibration is used and simultaneously partially dampened (versions) | |
JP3105400B2 (en) | Moment compensator for reducing vibration of ship hull and moment compensation method | |
JP2000312859A (en) | Vibration device | |
JPS6313821Y2 (en) | ||
CN210253029U (en) | Eccentric block matched with movable balancing weight, vibrating motor, vibrator and vibrating screen | |
JP3120064B2 (en) | Exciting force generator | |
JP3144774B2 (en) | Exciting force generator | |
JP2821083B2 (en) | Drive / control method and drive / control device for exciter | |
JP2002177887A (en) | Apparatus and method for controlling vibromotive force of eccentric plumb-type vibration generator | |
KR100536657B1 (en) | Resonator exciting mechanism | |
JPH02108725A (en) | Vibrator of variable eccentricity type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080612 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090612 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090612 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100612 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110612 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120612 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130612 Year of fee payment: 15 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |