JPH0935742A - Sodium-sulfur secondary battery and its manufacture - Google Patents

Sodium-sulfur secondary battery and its manufacture

Info

Publication number
JPH0935742A
JPH0935742A JP7188810A JP18881095A JPH0935742A JP H0935742 A JPH0935742 A JP H0935742A JP 7188810 A JP7188810 A JP 7188810A JP 18881095 A JP18881095 A JP 18881095A JP H0935742 A JPH0935742 A JP H0935742A
Authority
JP
Japan
Prior art keywords
sodium
sulfur
positive electrode
solid electrolyte
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7188810A
Other languages
Japanese (ja)
Inventor
Kazushige Kono
一重 河野
Shigeoki Nishimura
成興 西村
Yasushi Sato
康司 佐藤
Seiji Koike
清二 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7188810A priority Critical patent/JPH0935742A/en
Publication of JPH0935742A publication Critical patent/JPH0935742A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sodium-sulfur secondary battery with high charge/ discharge characteristic stability and its manufacturing process. SOLUTION: In a sodium-sulfur secondary battery, a low electronic conductive material is mixed with ceramic precursor to form slurry or paste, the slurry or the paste is stuck between a solid electrolyte 1 tube and an electronic conductive material 3 by heat treatment. Direct contact of the solid electrolyte 1 with the electronic conductive material 3 is prevented, equipotential on the electrolyte surface is continued, and charge/discharge characteristics are stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はナトリウム−硫黄電池に
関するもので、さらに詳しく言えば充放電抵抗安定性の
優れた電池の構造およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery, and more particularly to a structure of a battery having excellent charge / discharge resistance stability and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ナトリウム−硫黄電池は、負極活物質の
ナトリウムと、正極活物質の硫黄および多硫化ナトリウ
ムが電槽内でβ−アルミナおよびβ″−アルミナのごと
きナトリウムイオン伝導性を有する固体電解質で分離し
て、300−350℃の温度で作動させる密封型の2次
電池である。この電池は図2のごとき構造であり、固体
電解質管1の上端に絶縁体リング4が接合され、管内部
に金属ナトリウムを主体とする負極室2が形成されてい
る。硫黄および/または多硫化ナトリウムを含浸した電
子伝導材3と耐硫黄および多硫化ナトリウムに優れた物
質層7を配置した正極室が形成されている。負極容器5
および正極容器6は絶縁リング4に熱圧接合,密封され
ている。
2. Description of the Related Art A sodium-sulfur battery is a solid electrolyte in which sodium as a negative electrode active material and sulfur and sodium polysulfide as a positive electrode active material have sodium ion conductivity such as β-alumina and β ″ -alumina in a battery case. 2 is a sealed secondary battery which is operated at a temperature of 300-350 ° C. This battery has a structure as shown in FIG. A negative electrode chamber 2 composed mainly of metallic sodium is formed inside the positive electrode chamber in which an electron conductive material 3 impregnated with sulfur and / or sodium polysulfide and a material layer 7 excellent in sulfur resistance and sodium polysulfide are arranged. The negative electrode container 5 is formed.
The positive electrode container 6 is thermocompression bonded and sealed to the insulating ring 4.

【0003】上記構造のナトリウム−硫黄電池は、電池
の充電深度を向上させるために耐硫黄および多硫化ナト
リウムに優れた、セラミック質のウエブまたは繊布を固
体電解質管1と正極活物質を含浸した電子伝導材3の間
に介在させる技術が特開平6−283203号公報および特開
平6−80593号公報等でしられている。しかし、これらの
手法で用いられているウエブおよびシートは電気絶縁性
であり、電池の初期放電を行うために電子伝導材が若干
固体電解質と接触する構造になっており、固体電解質面
を等電位にすることが困難であった。さらに、ウエブま
たは繊布と固体電解質または電子伝導材間に存在する隙
間に硫黄が蓄積し、充放電サイクルの増加と共に充放電
抵抗が増加する問題があった。また、セラミック質のウ
エブまたは繊布の替わりに、炭素粉末とアルミナ粉末を
硫黄と混合、固体電解質管又は電子伝導材に塗布,成膜
する手法が特開平4−71171号公報でしられている。しか
し、この手法で調製した膜は、電池の作動温度が硫黄の
融点以上であるため、充放電を繰り返すことにより、膜
形状の保持が困難になる問題があった。
In the sodium-sulfur battery having the above structure, a ceramic web or fiber cloth, which is excellent in sulfur resistance and sodium polysulfide in order to improve the charging depth of the battery, is impregnated with the solid electrolyte tube 1 and the positive electrode active material. Techniques for interposing between the conductive materials 3 are disclosed in JP-A-6-283203 and JP-A-6-80593. However, the webs and sheets used in these methods are electrically insulative, and have a structure in which the electron conductive material slightly contacts with the solid electrolyte in order to perform the initial discharge of the battery, and the solid electrolyte surface is equipotential. Was difficult to do. Further, there is a problem that sulfur accumulates in the gaps existing between the web or fiber and the solid electrolyte or the electron conductive material, and the charge / discharge resistance increases as the charge / discharge cycle increases. Further, Japanese Patent Laid-Open No. 4-71171 discloses a method of mixing carbon powder and alumina powder with sulfur instead of a ceramic web or fiber cloth, applying the mixture to a solid electrolyte tube or an electron conductive material, and forming a film. However, the membrane prepared by this method has a problem that it is difficult to maintain the membrane shape by repeating charge and discharge because the operating temperature of the battery is equal to or higher than the melting point of sulfur.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記欠点を
解決するもので、充放電抵抗安定性の優れたナトリウム
−硫黄電池の構造およびその製造方法を提供することに
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned drawbacks, and to provide a structure of a sodium-sulfur battery excellent in charge / discharge resistance stability and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】正極集電体を兼ねる正極
容器と固体電解質管の間の正極室に硫黄および/または
多硫化ナトリウムを含浸した電子伝導材を配し、前記固
体電解質と接着した耐硫黄および多硫化ナトリウムに優
れた物質層を電子伝導材の間に介在させた構造のナトリ
ウム−硫黄電池において、前記物質層を固体電解質管と
接着させるために、セラミックス先駆体を接合材として
用いることを特徴とするナトリウム−硫黄電池。
An electronic conductive material impregnated with sulfur and / or sodium polysulfide is placed in a positive electrode chamber between a positive electrode container which also serves as a positive electrode current collector and a solid electrolyte tube, and is bonded to the solid electrolyte. In a sodium-sulfur battery having a structure in which a material layer excellent in sulfur resistance and sodium polysulfide is interposed between electron conductive materials, a ceramic precursor is used as a bonding material to bond the material layer to a solid electrolyte tube. A sodium-sulfur battery characterized by the following.

【0006】また、正極集電体を兼ねる正極容器と固体
電解質管の間の正極室に硫黄および/または多硫化ナト
リウムを含浸した電子伝導材を配し、前記固体電解質と
接着した耐硫黄および多硫化ナトリウムに優れた物質層
を電子伝導材の間に介在させた構造のナトリウム−硫黄
電池において、前記物質層を電子伝導材と接着させるた
めに、セラミックス先駆体を接合材として用いることを
特徴とするナトリウム−硫黄電池。
Further, an electron conductive material impregnated with sulfur and / or sodium polysulfide is arranged in a positive electrode chamber between the positive electrode container, which also serves as the positive electrode current collector, and the solid electrolyte tube. In a sodium-sulfur battery having a structure in which a material layer excellent in sodium sulfide is interposed between electron conductive materials, a ceramic precursor is used as a bonding material in order to adhere the material layer to the electron conductive material. Sodium-sulfur battery.

【0007】前記セラミックス先駆体を構成する成分が
チタン,硅素,アルミニウム,ジルコニウムのうち少な
くとも1種類以上を含むことを特徴とするナトリウム−
硫黄電池。
Sodium characterized in that the constituents of the ceramic precursor include at least one of titanium, silicon, aluminum and zirconium.
Sulfur battery.

【0008】また、正極集電体を兼ねる正極容器と固体
電解質管の間の正極室に硫黄および/または多硫化ナト
リウムを含浸した電子伝導材を配し、前記固体電解質と
接着した耐硫黄および多硫化ナトリウムに優れた物質層
を電子伝導材の間に介在させた構造のナトリウム−硫黄
電池の製造方法において、セラミックス先駆体に耐硫黄
および多硫化ナトリウムに優れた粒子を添加して、スラ
リーまたはペーストを調製し、それを固体電解質に塗
布,乾燥固化することにより物質層を形成することを特
徴とするナトリウム−硫黄電池の製造方法。
Further, an electron conductive material impregnated with sulfur and / or sodium polysulfide is arranged in the positive electrode chamber between the positive electrode container, which also serves as the positive electrode current collector, and the solid electrolyte tube, and the sulfur-resistant and high-polyelectrolyte bonded to the solid electrolyte is disposed. In a method for producing a sodium-sulfur battery having a structure in which a material layer excellent in sodium sulfide is interposed between electron conductive materials, particles excellent in sulfur resistance and sodium polysulfide are added to a ceramic precursor to prepare a slurry or paste. A method for producing a sodium-sulfur battery, characterized in that a substance layer is formed by preparing a solid electrolyte, coating it on a solid electrolyte, and drying and solidifying.

【0009】また、正極集電体を兼ねる正極容器と固体
電解質管の間の正極室に硫黄および/または多硫化ナト
リウムを含浸した電子伝導材を配し、前記固体電解質と
接着した耐硫黄および多硫化ナトリウムに優れた物質層
を電子伝導材の間に介在させた構造のナトリウム−硫黄
電池の製造方法において、セラミックス先駆体に耐硫黄
および多硫化ナトリウムに優れた粒子を添加混合して、
スラリーまたはペーストを調製し、それを電子伝導材に
塗布,乾燥固化することにより物質層を形成することを
特徴とするナトリウム−硫黄電池の製造方法。
Further, an electron conducting material impregnated with sulfur and / or sodium polysulfide is arranged in the positive electrode chamber between the positive electrode container which also serves as the positive electrode current collector and the solid electrolyte tube, and the sulfur-resistant and high-polyelectrolyte bonded to the solid electrolyte is provided. In a method for manufacturing a sodium-sulfur battery having a structure in which a material layer excellent in sodium sulfide is interposed between electron conductive materials, in a ceramic precursor, particles excellent in sulfur resistance and sodium polysulfide are added and mixed,
A method for producing a sodium-sulfur battery, which comprises forming a material layer by preparing a slurry or paste, applying the slurry or paste to an electron conductive material, and drying and solidifying.

【0010】前記物質層が、塗装,Dip−coating,印
刷,スリップキャストのいずれかで塗布形成されたこと
を特徴とするナトリウム−硫黄電池の製造方法。
A method for manufacturing a sodium-sulfur battery, wherein the material layer is formed by coating by any one of painting, dip-coating, printing and slip casting.

【0011】前記乾燥固化した物質層を加熱処理,セラ
ミックス先駆体を酸化物としたことを特徴とするナトリ
ウム−硫黄電池の製造方法。
A method for producing a sodium-sulfur battery, characterized in that the dried and solidified material layer is heat-treated and the ceramic precursor is an oxide.

【0012】前記物質層が電子伝導材に対して5倍より
大きく107 倍より小さい電子伝導率を有することを特
徴とするナトリウム−硫黄電池の製造方法。
A method of manufacturing a sodium-sulfur battery, wherein the material layer has an electronic conductivity of more than 5 times and less than 10 7 times that of the electron conducting material.

【0013】前記物質層が10μmより大きく3000
μmより小さい厚みを有することを特徴とするナトリウ
ム−硫黄電池の製造方法を提供する。
The material layer has a thickness of more than 10 μm and 3000
Provided is a method for manufacturing a sodium-sulfur battery having a thickness smaller than μm.

【0014】[0014]

【作用】本発明によって得られるナトリウム−硫黄電池
は、耐硫黄および多硫化ナトリウムに優れ電子伝導性の
低い物質層7を固体電解質管1又は電子伝導材3とをセ
ラミックス質接合剤を用い接着させて配置した。耐硫黄
および多硫化ナトリウムに優れ電子伝導性の低い物質層
7は、化学的に結合しているため、充放電を繰り返して
も膜の性状は容易に保持することが可能で、電池の充放
電抵抗特性は安定する。また、膜の性状が充放電サイク
ル数が増加しても保たれることにより、固体電解質と電
子伝導材の直接接触が発生することなく、電解質表面の
等電位が持続されるため、充放電抵抗が安定する。セラ
ミックス先駆体の加熱処理は、先駆体の全てが酸化物結
晶質に転移することなく非晶質であっても同様の効果が
得られる。また、耐硫黄および多硫化ナトリウムに優れ
た物質層7の電子伝導率を電子伝導材3と比較して5倍
より大きく107 倍より小さい電子伝導率に設定するこ
とにより、充電末期に発生する固体電解質表面での硫黄
析出反応を抑制することが可能になり、充電抵抗の増加
を抑制することが可能である。耐硫黄および多硫化ナト
リウムに優れた物質層7の電子伝導率が、電子伝導材の
5倍以下であると充電時における電荷移動反応が層内で
集中するために、硫黄が析出し充電抵抗が大きくなる。
また、107 倍より大きくなると層内がイオン伝導支配
になるため、電池の初期放電抵抗が大きくなる。耐硫黄
および多硫化ナトリウムに優れた物質層7の厚みが10
ミクロンより小さくなると、充電末期時の層内に保持さ
れる多硫化ナトリウムの量が少ないため放電が困難にな
る。また、3000ミクロンより厚くなると、層内のイ
オン伝導抵抗が大きくなるため、電池の充放電抵抗が大
きくる。
In the sodium-sulfur battery obtained by the present invention, the substance layer 7 having excellent sulfur resistance and sodium polysulfide and low electron conductivity is bonded to the solid electrolyte tube 1 or the electron conductive material 3 by using a ceramic bonding agent. I placed it. Since the substance layer 7 which is excellent in sulfur resistance and sodium polysulfide and has a low electron conductivity is chemically bonded, the property of the film can be easily maintained even if charge and discharge are repeated, and the charge and discharge of a battery Resistance characteristics are stable. In addition, since the property of the film is maintained even if the number of charge / discharge cycles increases, the equipotential on the surface of the electrolyte is maintained without direct contact between the solid electrolyte and the electron conductive material. Is stable. The heat treatment of the ceramic precursor has the same effect even if all of the precursor is amorphous without being transformed into oxide crystalline. Also, by setting the electronic conductivity of the substance layer 7 excellent in sulfur resistance and sodium polysulfide to be more than 5 times and less than 10 7 times as high as that of the electronic conductive material 3, it occurs at the end of charging. It is possible to suppress the sulfur precipitation reaction on the surface of the solid electrolyte, and it is possible to suppress an increase in charging resistance. If the electron conductivity of the substance layer 7 excellent in sulfur resistance and sodium polysulfide is 5 times or less that of the electron conductive material, the charge transfer reaction during charging is concentrated in the layer, so that sulfur is deposited and charging resistance is increased. growing.
On the other hand, if it exceeds 10 7 times, the inside of the layer is dominated by ionic conduction, so that the initial discharge resistance of the battery increases. The material layer 7 having excellent sulfur resistance and sodium polysulfide has a thickness of 10
When the particle size is smaller than micron, it becomes difficult to discharge because the amount of sodium polysulfide retained in the layer at the end of charging is small. On the other hand, if the thickness is more than 3000 μm, the ionic conduction resistance in the layer increases, and the charging / discharging resistance of the battery increases.

【0015】[0015]

【実施例】以下に本発明の実施例を示す。ここに示す実
施例は、本発明を適応した代表的な例を示したものであ
り、ここに示した実施例に限定されるものではない。ま
た、電池の構造も図2に示した有底円筒固体電解質に限
定されるものではない。
Examples of the present invention will be described below. The embodiment shown here is a typical example to which the present invention is applied, and is not limited to the embodiment shown here. Further, the structure of the battery is not limited to the bottomed cylindrical solid electrolyte shown in FIG.

【0016】(実施例1)図1に本発明で提案した固体
電解質1に物質層7を形成する手法の一例を示す。ここ
では、Dip−coatingによる手法を示したが、本発明はこ
の手法に限定されるものではない。
Example 1 FIG. 1 shows an example of a method for forming a substance layer 7 on the solid electrolyte 1 proposed by the present invention. Here, the method by Dip-coating is shown, but the present invention is not limited to this method.

【0017】(実施例2)図3に本発明の手法を用い作
成した物質層7の微小構造観察結果を示す。(A)は固体
電解質側に層を形成した例であり、(B)は電子伝導材
3に層を形成した例である。いずれの場合においても、
物質層7は無機系接合材を化学結合していることが確認
された。
Example 2 FIG. 3 shows the results of observing the microstructure of the material layer 7 produced by the method of the present invention. (A) is an example in which a layer is formed on the solid electrolyte side, and (B) is an example in which a layer is formed on the electron conductive material 3. In each case,
It was confirmed that the material layer 7 was chemically bonded to the inorganic bonding material.

【0018】(実施例3)図4に本発明を利用して作成
した物質層7をもちいて調製した、ナトリウム−硫黄電
池の充放電サイクルにともなう充放電抵抗の変化を示
す。本発明(A)および(B)は、図3(A)および
(B)に記載した構造の物質層を用いた電池である。こ
こに併せて示した比較例1は、加熱処理を行っていない
物質層7を用いた電池である。また、比較例2は物質層
7にアルミナ製の繊布を用いた電池である。
(Embodiment 3) FIG. 4 shows changes in charge / discharge resistance with charge / discharge cycles of a sodium-sulfur battery prepared by using the material layer 7 prepared by utilizing the present invention. The present invention (A) and (B) is a battery using the material layer having the structure shown in FIGS. 3 (A) and 3 (B). Comparative Example 1 also shown here is a battery using the material layer 7 which is not subjected to the heat treatment. Comparative Example 2 is a battery in which the material layer 7 is made of a fibrous material made of alumina.

【0019】図より本発明の物質層7を用いた電池は、
充放電サイクル数が増加しても、充放電抵抗は初期の性
能を保ち、抵抗上昇しないことが確認された。
From the figure, the battery using the material layer 7 of the present invention is
It was confirmed that even if the number of charge / discharge cycles increased, the charge / discharge resistance maintained the initial performance and did not increase.

【0020】(実施例4)図5に本発明を利用して作成
した物質層7の電子伝導率を集電材の抵抗率に対して、
1倍から107 倍変化させて調製したナトリウム−硫黄
電池の充放電抵抗変化率を示す。ここで変化率は、初期
充放電抵抗を基準とし、20サイクル目に測定した充放
電抵抗に対する増減率とした。ここで用いた物質層7の
厚みは100ミクロンとした。
(Embodiment 4) FIG. 5 shows the electron conductivity of the material layer 7 produced by using the present invention with respect to the resistivity of the current collector.
The charging / discharging resistance change rate of the sodium-sulfur battery prepared by changing from 1 times to 10 7 times is shown. Here, the rate of change was an increase / decrease rate with respect to the charge / discharge resistance measured at the 20th cycle with reference to the initial charge / discharge resistance. The thickness of the material layer 7 used here was 100 μm.

【0021】図より物質層7の電子伝導率を集電材の抵
抗率に対して、5倍より大きく107倍より小さくするこ
とにより、電池の充放電抵抗に変化が生じないことが確
認された。
From the figure, it was confirmed that the charge / discharge resistance of the battery did not change by making the electron conductivity of the material layer 7 larger than 5 times and smaller than 10 7 times the resistivity of the current collector. .

【0022】(実施例5)図6に本発明を利用して作成
した物質層7の厚みを0ミクロンから3000ミクロン
まで変化させて調製した、ナトリウム−硫黄電池の充放
電抵抗変化率を示す。ここで変化率は、初期充放電抵抗
を基準とし、20サイクル目に測定した充放電抵抗に対
する増減率とした。ここで用いた物質層7の電子伝導率
を集電材の抵抗率に対して105 倍とした。
(Embodiment 5) FIG. 6 shows the rate of change in charge / discharge resistance of a sodium-sulfur battery prepared by changing the thickness of the material layer 7 formed by utilizing the present invention from 0 micron to 3000 micron. Here, the rate of change was an increase / decrease rate with respect to the charge / discharge resistance measured at the 20th cycle with reference to the initial charge / discharge resistance. The electron conductivity of the material layer 7 used here was 10 5 times the resistivity of the current collector.

【0023】図より物質層7の厚みを、10ミクロンよ
り大きく3000ミクロンより小さくすることにより、
電池の充電深度が大きくなることが確認された。
From the figure, by making the thickness of the material layer 7 larger than 10 microns and smaller than 3000 microns,
It was confirmed that the charging depth of the battery was increased.

【0024】[0024]

【発明の効果】本発明によって得られるナトリウム−硫
黄電池は、耐硫黄および多硫化ナトリウムに優れ電子伝
導性の低い物質層7を固体電解質1又は電子伝導材3と
セラミックス質接合材を用い接着させて配置することに
より、充放電を繰り返しても膜の性状は容易に保持する
ことが可能で、充放電サイクルに伴う硫黄の蓄積が発生
することなく充放電抵抗は安定した。また、耐硫黄およ
び多硫化ナトリウムに優れた物質層7の電子伝導率を電
子伝導材3と比較して5倍より大きく107 倍より小さ
いの電子伝導率に設定することにより、充電末期に発生
する固体電解質表面での硫黄析出反応を抑制し、電解質
を等電位に保つことが可能で、電池の充放電抵抗は安定
する。
In the sodium-sulfur battery obtained by the present invention, the substance layer 7 having excellent sulfur resistance and sodium polysulfide and low electron conductivity is bonded to the solid electrolyte 1 or the electron conductive material 3 by using the ceramic bonding material. By arranging in such a manner, it is possible to easily maintain the properties of the film even when charging and discharging are repeated, and the charge and discharge resistance is stable without the accumulation of sulfur accompanying the charge and discharge cycle. Also, by setting the electron conductivity of the substance layer 7 excellent in sulfur resistance and sodium polysulfide to be more than 5 times and less than 10 7 times as high as that of the electron conductive material 3, the latter occurs at the end of charging. It is possible to suppress the sulfur deposition reaction on the surface of the solid electrolyte, which can maintain the electrolyte at an equipotential, and to stabilize the charge / discharge resistance of the battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかわる耐硫黄および多硫化ナトリウ
ムに優れ電子伝導性の低い物質層7の調製方法の一例。
FIG. 1 is an example of a method for preparing a substance layer 7 which is excellent in sulfur resistance and sodium polysulfide and has low electron conductivity according to the present invention.

【図2】従来のナトリウム−硫黄電池の縦断面図。FIG. 2 is a longitudinal sectional view of a conventional sodium-sulfur battery.

【図3】本発明にかかわる耐硫黄および多硫化ナトリウ
ムに優れ電子伝導性の低い物質層7の微構造。
FIG. 3 is a microstructure of a substance layer 7 which is excellent in sulfur resistance and sodium polysulfide and has low electron conductivity according to the present invention.

【図4】従来のナトリウム−硫黄電池と本発明のナトリ
ウム−硫黄電池のサイクル数に伴う充放電抵抗特性比較
を示すグラフ。
FIG. 4 is a graph showing a comparison of charge / discharge resistance characteristics with the number of cycles of a conventional sodium-sulfur battery and the sodium-sulfur battery of the present invention.

【図5】本発明の耐硫黄および多硫化ナトリウムに優れ
電子伝導性の低い物質層7と電子伝導材の抵抗比と抵抗
変化率を示すグラフ。
FIG. 5 is a graph showing the resistance ratio and the rate of change in resistance of the substance layer 7 and the electron conductive material which are excellent in sulfur resistance and sodium polysulfide of the present invention and have low electron conductivity.

【図6】本発明の耐硫黄および多硫化ナトリウムに優れ
電子伝導性の低い物質層7の厚みと抵抗変化率を示すグ
ラフ。
FIG. 6 is a graph showing the thickness and resistance change rate of the substance layer 7 which is excellent in sulfur resistance and sodium polysulfide of the present invention and has low electron conductivity.

【符号の説明】[Explanation of symbols]

1…固体電解質、2…ナトリウムを主とする負極室、3
…硫黄および/または多硫化ナトリウムを含浸した電子
伝導材、4…絶縁リング、5…負極容器、6…正極容
器、7…耐硫黄および多硫化ナトリウムに優れ電子伝導
性の低い物質層、8…セラミック質接合材、9…正極
室。
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte, 2 ... Negative electrode chamber mainly containing sodium, 3
... Electron conductive material impregnated with sulfur and / or sodium polysulfide, 4 ... Insulating ring, 5 ... Negative electrode container, 6 ... Positive electrode container, 7 ... Material layer excellent in sulfur resistance and sodium polysulfide and having low electron conductivity, 8 ... Ceramic bonding material, 9 ... Positive electrode chamber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小池 清二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiji Koike 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】正極集電体を兼ねる正極容器と固体電解質
管の間の正極室に硫黄および/または多硫化ナトリウム
を含浸した電子伝導材を配し、前記固体電解質と接着し
た耐硫黄および多硫化ナトリウムに優れた物質層を電子
伝導材の間に介在させた構造のナトリウム−硫黄電池に
おいて、前記物質層を固体電解質管と接着させるため
に、セラミックス先駆体を接合材として用いることを特
徴とするナトリウム−硫黄電池。
1. An electron conductive material impregnated with sulfur and / or sodium polysulfide is arranged in a positive electrode chamber between a positive electrode container which also serves as a positive electrode current collector and a solid electrolyte tube, and a sulfur-resistant and high polyelectrolyte bonded to the solid electrolyte is provided. In a sodium-sulfur battery having a structure in which a material layer excellent in sodium sulfide is interposed between electron conductive materials, a ceramic precursor is used as a bonding material in order to bond the material layer to a solid electrolyte tube. Sodium-sulfur battery.
【請求項2】正極集電体を兼ねる正極容器と固体電解質
管の間の正極室に硫黄および/または多硫化ナトリウム
を含浸した電子伝導材を配し、前記固体電解質と接着し
た耐硫黄および多硫化ナトリウムに優れた物質層を電子
伝導材の間に介在させた構造のナトリウム−硫黄電池に
おいて、前記物質層を電子伝導材と接着させるために、
セラミックス先駆体を接合材として用いることを特徴と
するナトリウム−硫黄電池。
2. An electron conductive material impregnated with sulfur and / or sodium polysulfide is arranged in a positive electrode chamber between a positive electrode container which also serves as a positive electrode current collector and a solid electrolyte tube, and a sulfur-resistant and high polyelectrolyte bonded to the solid electrolyte is provided. In a sodium-sulfur battery having a structure in which a material layer excellent in sodium sulfide is interposed between electron conductive materials, in order to adhere the material layer to the electron conductive material,
A sodium-sulfur battery characterized by using a ceramic precursor as a bonding material.
【請求項3】前記セラミックス先駆体を構成する成分が
チタン,硅素,アルミニウム,ジルコニウムのうち少な
くとも1種類以上を含むことを特徴とするナトリウム−
硫黄電池。
3. A sodium-characterizing component of the ceramic precursor containing at least one of titanium, silicon, aluminum and zirconium.
Sulfur battery.
【請求項4】正極集電体を兼ねる正極容器と固体電解質
管の間の正極室に硫黄および/または多硫化ナトリウム
を含浸した電子伝導材を配し、前記固体電解質と接着し
た耐硫黄および多硫化ナトリウムに優れた物質層を電子
伝導材の間に介在させた構造のナトリウム−硫黄電池の
製造方法において、セラミックスの先駆体に耐硫黄およ
び多硫化ナトリウムに優れた粒子を添加して、スラリー
またはペーストを調製し、それを固体電解質に塗布,乾
燥固化することにより物質層を形成することを特徴とす
るナトリウム−硫黄電池の製造方法。
4. An electron conductive material impregnated with sulfur and / or sodium polysulfide is arranged in a positive electrode chamber between a positive electrode container which also serves as a positive electrode current collector and a solid electrolyte tube, and a sulfur-resistant and high polyelectrolyte bonded to the solid electrolyte is provided. In a method for producing a sodium-sulfur battery having a structure in which a material layer excellent in sodium sulfide is interposed between electron conductive materials, particles excellent in sulfur resistance and sodium polysulfide are added to a precursor of ceramics to prepare a slurry or A method for producing a sodium-sulfur battery, comprising preparing a paste, applying the paste to a solid electrolyte, and drying and solidifying the paste to form a substance layer.
【請求項5】正極集電体を兼ねる正極容器と固体電解質
管の間の正極室に硫黄および/または多硫化ナトリウム
を含浸した電子伝導材を配し、前記固体電解質と接着し
た耐硫黄および多硫化ナトリウムに優れた物質層を電子
伝導材の間に介在させた構造のナトリウム−硫黄電池の
製造方法において、セラミックス先駆体に耐硫黄および
多硫化ナトリウムに優れた粒子を添加混合して、スラリ
ーまたはペーストを調製し、それを電子伝導材に塗布,
乾燥固化することにより物質層を形成することを特徴と
するナトリウム−硫黄電池の製造方法。
5. An electron conductive material impregnated with sulfur and / or sodium polysulfide is arranged in a positive electrode chamber between a positive electrode container which also serves as a positive electrode current collector and a solid electrolyte tube, and a sulfur-resistant and high polyelectrolyte bonded to the solid electrolyte is provided. In a method for producing a sodium-sulfur battery having a structure in which a material layer excellent in sodium sulfide is interposed between electron conductive materials, particles excellent in sulfur resistance and sodium polysulfide are added to and mixed with a ceramic precursor to form a slurry or Prepare a paste and apply it to the electron conducting material,
A method for producing a sodium-sulfur battery, which comprises forming a substance layer by drying and solidifying.
【請求項6】前記物質層が、塗装,Dip−coating,印
刷,スリップキャストのいずれかで塗布形成されたこと
を特徴とする請求項4および5に記載したナトリウム−
硫黄電池の製造方法。
6. The sodium layer according to claim 4, wherein the material layer is formed by coating, dip coating, printing or slip casting.
Manufacturing method of sulfur battery.
【請求項7】前記乾燥固化した物質層を加熱処理,セラ
ミックス先駆体を酸化物としたことを特徴とした請求項
6に記載したナトリウム−硫黄電池の製造方法。
7. The method for producing a sodium-sulfur battery according to claim 6, wherein the dried and solidified material layer is heat-treated and the ceramic precursor is an oxide.
【請求項8】前記物質層が電子伝導材に対して5倍より
大きく107 倍より小さい電子伝導率を有することを特
徴とする請求項7に記載したナトリウム−硫黄電池の製
造方法。
8. The method of claim 7, wherein the material layer has an electronic conductivity of more than 5 times and less than 10 7 times that of the electron conductive material.
【請求項9】前記物質層が10μmより大きく3000
μmより小さい厚みを有することを特徴とする請求項8
に記載したナトリウム−硫黄電池の製造方法。
9. The material layer is greater than 10 μm and 3000.
9. It has a thickness smaller than μm.
The method for producing a sodium-sulfur battery described in 1.
JP7188810A 1995-07-25 1995-07-25 Sodium-sulfur secondary battery and its manufacture Pending JPH0935742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7188810A JPH0935742A (en) 1995-07-25 1995-07-25 Sodium-sulfur secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7188810A JPH0935742A (en) 1995-07-25 1995-07-25 Sodium-sulfur secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH0935742A true JPH0935742A (en) 1997-02-07

Family

ID=16230214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7188810A Pending JPH0935742A (en) 1995-07-25 1995-07-25 Sodium-sulfur secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH0935742A (en)

Similar Documents

Publication Publication Date Title
JP5907654B2 (en) Material for battery electrode, battery electrode containing the same, battery equipped with these electrodes, and method for preparing material for battery electrodes
KR102512505B1 (en) Separators for three-dimensional batteries
KR102193422B1 (en) Method for manufacturing all-solid-state batteries in a multilayer structure
US7947397B1 (en) Battery components employing a silicate binder
JPH05211059A (en) Battery using ceramic film
KR20170110583A (en) Electrodes and electrochemical devices and methods of making electrodes and electrochemical devices
WO2014020654A1 (en) All-solid ion secondary cell
CN111095626A (en) Negative active material for lithium secondary battery and method for preparing same
CN115997306A (en) Method for manufacturing an assembly consisting of a separator and a porous electrode, and microbattery comprising said assembly
US4686320A (en) Electronically and ionically conducting electrodes for thermoelectric generators
KR20130136150A (en) Solid high-ionic conductor for lithium battery and lithium battery using the same
CN115803903A (en) Method for manufacturing assembly composed of separator and porous electrode, and electrochemical device comprising same
JP4827222B2 (en) Manufacturing method of all-solid-state battery
KR100294467B1 (en) Process for producing solid electrolyte for sodium-sulfur battery
TWI695536B (en) Laminate body and manufacturing method thereof
JPH11288707A (en) Primer material containing electrochemical inactive particle, electrode for battery, and their manufacture
JPH0935742A (en) Sodium-sulfur secondary battery and its manufacture
KR101919048B1 (en) Manufacturing method of anode for lithium secondary battery
JP7188224B2 (en) All-solid battery
CN113394398A (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing same, and secondary battery
JPH0935741A (en) Sodium-sulfur secondary battery
JPH0450707B2 (en)
JP2574516B2 (en) Method for manufacturing sodium-sulfur battery
JP3446393B2 (en) Electric double layer capacitor and method of manufacturing the same
US20200020930A1 (en) Thixotropic Nanoparticle Silicon Anodes and Deoxygenated Lithium Metal Oxide Cathodes