JPH0935727A - Electrolyte replenishing device of fuel cell - Google Patents

Electrolyte replenishing device of fuel cell

Info

Publication number
JPH0935727A
JPH0935727A JP7178334A JP17833495A JPH0935727A JP H0935727 A JPH0935727 A JP H0935727A JP 7178334 A JP7178334 A JP 7178334A JP 17833495 A JP17833495 A JP 17833495A JP H0935727 A JPH0935727 A JP H0935727A
Authority
JP
Japan
Prior art keywords
electrolyte
liquid
fuel cell
reservoir plate
replenishing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7178334A
Other languages
Japanese (ja)
Inventor
Masato Hanazawa
真人 花沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7178334A priority Critical patent/JPH0935727A/en
Publication of JPH0935727A publication Critical patent/JPH0935727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably replenish an electrolyte corresponding to the electrolyte scattering amount to each unit cell by installing a liquid leading part whose both ends are connected to a replenishing tank and a reservoir plate with rib, and which leads the electrolyte to the reservoir plate with rib. SOLUTION: Height of a liquid leading part 21 exposed to the liquid surface of an electrolyte reservoir 13 is lowered than suction height by capillary action as much as possible to smoothly transfer phosphoric acid. By lowering water head difference to a connection part 24 than the suction height by capillary action, cut of continued liquid flow is not generated, phosphoric acid holding factor depending on capillary action is held, and phosphoric acid is stably supplied to a reservoir plate with rib 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、多孔質のマトリック
スに電解質を保持させた単位セルの積層体からなるマト
リックス型燃料電池において、運転中減少するマトリッ
クス中の電解質を外部から補給する電解質補給装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte replenishing device for replenishing the electrolyte in the matrix, which decreases during operation, from the outside in a matrix type fuel cell comprising a laminate of unit cells in which an electrolyte is held in a porous matrix. Regarding

【0002】[0002]

【従来の技術】マトリックス型燃料電池では、単位セル
を構成するマトリックスに電解質,例えばりん酸を保持
させる構造がとられ、発電運転中徐々に減少する電解質
を外部から常時補給する電解質補給装置を設けることに
より、電解質が不足することによる出力電力の低下を防
止するよう構成されたマトリックス型燃料電池が知られ
ており、この場合、電解質の補給を燃料電池を分解する
ことなく外部から連続して行えることが求められる。
2. Description of the Related Art A matrix type fuel cell has a structure in which an electrolyte such as phosphoric acid is held in a matrix which constitutes a unit cell, and is provided with an electrolyte replenishing device for constantly replenishing an electrolyte which gradually decreases during power generation operation from the outside. Therefore, a matrix fuel cell configured to prevent a decrease in output power due to lack of electrolyte is known, and in this case, electrolyte replenishment can be continuously performed from the outside without disassembling the fuel cell. Is required.

【0003】図4はマトリックス型燃料電池における従
来の電解質補給装置を模式化して示す断面図であり、マ
トリックス型燃料電池1は、複数層のマトリックス型単
位セル2と、ガス不透過性のセパレ−ト板6との積層体
(セルスタック)として構成される。単位セル2は、多
孔質の絶縁材に電解質としての例えばりん酸液9を含浸
したマトリックス3を挟んで、燃料電極4および空気電
極5を積層したものからなり、両電極に互いに直交する
方向に反応ガス通路4A,5Aが形成され、4A側に燃
料ガス,5A側に反応空気を供給することにより、一対
の電極4,5間で電気化学的電極反応に基づく発電が行
われる。
FIG. 4 is a schematic cross-sectional view showing a conventional electrolyte replenishing device for a matrix type fuel cell. A matrix type fuel cell 1 comprises a matrix type unit cell 2 having a plurality of layers and a gas impermeable separator. It is configured as a laminated body (cell stack) with the plate 6. The unit cell 2 is formed by stacking a fuel electrode 4 and an air electrode 5 with a matrix 3 impregnated with, for example, a phosphoric acid solution 9 serving as an electrolyte in a porous insulating material, and is arranged in a direction orthogonal to each other. The reaction gas passages 4A and 5A are formed, and the fuel gas is supplied to the 4A side and the reaction air is supplied to the 5A side, whereby power generation based on the electrochemical electrode reaction is performed between the pair of electrodes 4 and 5.

【0004】燃料電池の電極反応は、水素と酸素が反応
して電子と水を生成する発熱反応であり、りん酸型燃料
電池の場合その温度を190°C 程度に保持して運転が
行われ、その際生ずる発電生成水は高温の水蒸気となっ
て電極を透過し、反応ガス通路を通って外部に排出され
る。また、水蒸気が電極を透過する際、マトリックス3
中の電解質9が微量ながら水蒸気中に溶解して反応ガス
中に飛散するため、運転時間の経過に伴ってマトリック
ス3中の電解質の量が徐々に減少する。このため、マト
リックス型燃料電池1には電解質補給装置10を付加
し、マトリックス中で不足する電解質9を外部から補給
するよう構成される。
The electrode reaction of a fuel cell is an exothermic reaction in which hydrogen and oxygen react with each other to generate electrons and water. In the case of a phosphoric acid fuel cell, the operation is carried out while maintaining the temperature at about 190 ° C. The generated water generated at that time becomes high-temperature steam, permeates the electrode, and is discharged to the outside through the reaction gas passage. Also, when water vapor permeates the electrodes, the matrix 3
A slight amount of the electrolyte 9 therein is dissolved in water vapor and scattered into the reaction gas, so that the amount of the electrolyte in the matrix 3 gradually decreases as the operation time elapses. Therefore, an electrolyte replenishing device 10 is added to the matrix fuel cell 1 to replenish the electrolyte 9 deficient in the matrix from the outside.

【0005】すなわち、マトリックス型燃料電池1の各
単位セル2の両方の電極,あるいはいずれか一方の電極
(図の場合燃料電極4)にはマトリックス3に連通する
電解質の補給通路7が形成され、この補給通路7に吐出
端11Bが連通した電解質の補給管11と、この補給管
11の吸入端11A側に連結された電解質の補給タンク
12とで構成される電解質補給装置10を設けてマトリ
ックスで不足した電解質を補充するよう構成した燃料電
池が知られている。また、補給タンク12内には、補給
管11に対応して異なる高さ位置に電解質溜め13A,
13B等が設けられ、電解質タンク12の上部から供給
される電解質9が各電解質溜めを13A,13Bの順で
満たして順次オ−バ−フロ−することにより、各電解質
溜めの液面高さと、これに補給管を介して連通する単位
セルのマトリックス3の高さとの間に高さHなるレベル
差が保持される。
That is, an electrolyte replenishment passage 7 communicating with the matrix 3 is formed in both electrodes of each unit cell 2 of the matrix fuel cell 1 or in either one of the electrodes (fuel electrode 4 in the figure). An electrolyte replenishing device 10 including an electrolyte replenishing pipe 11 having a discharge end 11B communicating with the replenishing passage 7 and an electrolyte replenishing tank 12 connected to a suction end 11A side of the replenishing pipe 11 is provided in a matrix. Fuel cells configured to replenish the deficient electrolyte are known. In addition, in the replenishment tank 12, the electrolyte reservoirs 13A at different height positions corresponding to the replenishment pipe 11,
13B and the like are provided, and the electrolyte 9 supplied from the upper portion of the electrolyte tank 12 fills each electrolyte reservoir in the order of 13A and 13B and sequentially overflows, thereby increasing the liquid level of each electrolyte reservoir, A level difference of the height H is held between the height and the height of the matrix 3 of the unit cells communicating with this via the supply pipe.

【0006】したがって、補給管をサイホン状に湾曲さ
せ、高度差Hに相応する水頭差を利用して電解質溜め1
3中の電解質9を補給通路7側に移送するよう構成され
た水頭差方式の電解質補給装置が知られている。また、
補給管11の長さ方向の全域に渡って電解質に対して親
水性を有する繊維15を充填し、その毛細管現象を利用
して電解質の移送を行うことにより、補給管内での電解
質9の液切れを防止した電解質補給装置も知られている
(特開昭61−107667号公報)。
Therefore, the supply pipe is bent in a siphon shape, and the electrolyte head 1 is utilized by utilizing the water head difference corresponding to the height difference H.
There is known a head difference type electrolyte replenishing device which is configured to transfer the electrolyte 9 in 3 to the replenishment passage 7 side. Also,
By filling the fiber 15 having hydrophilicity to the electrolyte over the entire length of the supply pipe 11 and transferring the electrolyte by utilizing the capillary phenomenon, the electrolyte 9 runs out of liquid in the supply pipe. There is also known an electrolyte replenishing device that prevents the above (Japanese Patent Laid-Open No. 61-107667).

【0007】また、補給管11内の液切れ防止手段とし
ての親水性の繊維充填材15を、電解質溜め13の液面
より低い補給管吐出側の部分を残して補給管内に充填す
るよう構成し、サイホン状の補給管の立ち上がり部分で
は充填された親水性の繊維質充填材15の毛細管現象に
よる吸い上げ作用により液切れを生ずることなく補給管
11内に電解質を移送させ、繊維質充填材が充填されて
いない補給管の吐出端11Bに近い立ち下がり部分では
この部分を満たす電解質の水頭差により低抵抗で電解質
を補給通路7内に移送するようにした電解質補給装置も
提案されている(特開平6−36787号公報)。
Further, a hydrophilic fiber filler 15 as a liquid running-out preventing means in the replenishing pipe 11 is configured to be filled in the replenishing pipe, leaving a portion of the electrolyte reservoir 13 on the side of the replenishing pipe discharging lower than the liquid surface. At the rising portion of the siphon-shaped supply pipe, the electrolyte is transferred into the supply pipe 11 without causing liquid drainage due to the sucking action by the capillary action of the filled hydrophilic fibrous filler 15, and the fibrous filler is filled. There is also proposed an electrolyte replenishing device that transfers the electrolyte into the replenishment passage 7 with low resistance due to the difference in the water heads of the electrolyte that fills this falling portion near the discharge end 11B of the replenishment pipe (Japanese Patent Application Laid-Open No. Hei 10 (1999)). 6-36787).

【0008】[0008]

【発明が解決しようとする課題】補給管内に親水性繊維
を充填することにより、水頭差方式では液切れを防止し
て電解質の補給を安定化できる利点が得られる。しかし
ながら、単位セルそれぞれに連通する多数条の補給管の
全長または一部に親水性繊維を充填する作業工数が嵩
み、これが装置のコストダウンを阻害するという問題が
ある。また、各単位セル2からの電解質としてのりん酸
の飛散量は単位セル相互の温度差や運転条件の差に影響
されてその正確な把握は極めて困難であり、また単位セ
ル毎の水頭差の調整も不可能である。このため、飛散量
以上にりん酸が単位セルに供給され、過剰となったりん
酸が反応ガス通路に溢れ出して反応ガスの正常な流れを
阻害することがあり、これが原因で燃料電池の発電性能
の低下を招くという問題も発生する。
By filling the inside of the replenishment pipe with hydrophilic fibers, the water head difference method has the advantage that the liquid supply can be prevented and electrolyte replenishment can be stabilized. However, there is a problem in that the number of man-hours required to fill the entire length or a part of the multiple supply pipes communicating with each unit cell with the hydrophilic fiber increases, which hinders the cost reduction of the apparatus. Further, the amount of phosphoric acid as an electrolyte scattered from each unit cell 2 is affected by the temperature difference between the unit cells and the difference in the operating conditions, and it is extremely difficult to accurately grasp the amount. Adjustment is also impossible. For this reason, phosphoric acid is supplied to the unit cell in excess of the scattered amount, and the excess phosphoric acid may overflow into the reaction gas passage and hinder the normal flow of the reaction gas. There is also a problem that performance is degraded.

【0009】この発明の目的は、電解質の飛散量に相応
した電解質を各単位セルに安定して補給できる、簡素な
構造の電解質補給装置を備えた燃料電池を提供すること
にある。
An object of the present invention is to provide a fuel cell provided with an electrolyte replenishing device having a simple structure capable of stably replenishing each unit cell with an electrolyte corresponding to the amount of scattered electrolyte.

【0010】[0010]

【課題を解決するための手段】前述の目的を達成するた
めに、請求項1記載の発明は、電解質を保持するマトリ
ックス,これを挟持する燃料電極,空気電極の積層体か
らなる単位セルを単位セル間にセパレート板を介在させ
て複数層積層された燃料電池に設けられ、運転中前記マ
トリックスで不足する電解質を外部に設けた電解質の補
給タンクから補給する電解質補給装置において、前記各
単位セルとセパレート板との間に積層されて電解質を保
持する多孔質カーボン材からなるリブ付きリザーバ板
と、このリブ付きリザーバ板と同程度の毛管力を有する
多孔質材からなり,両端部が前記補給タンクとリブ付き
リザーバ板とに連結されて電解質をリブ付きリザーバ板
側に導く導液部とを備える。
In order to achieve the above-mentioned object, the invention according to claim 1 is a unit cell composed of a matrix holding an electrolyte, a fuel electrode sandwiching the matrix and an air electrode. An electrolyte replenishing device for replenishing an electrolyte, which is lacking in the matrix during operation, from an electrolyte replenishing tank provided outside, which is provided in a fuel cell in which a plurality of layers are laminated with a separate plate interposed between cells, and each unit cell is A ribbed reservoir plate made of a porous carbon material laminated between a separate plate and holding an electrolyte, and a porous material having a capillary force similar to that of the ribbed reservoir plate, both ends of which are the replenishment tank. And a liquid guiding part which is connected to the ribbed reservoir plate and guides the electrolyte to the ribbed reservoir plate side.

【0011】ここで、請求項2に記載の発明は、請求項
1に記載の電解質補給装置において、リブ付きリザーバ
板および導液部を、ともに同じ材質,製法の多孔質カー
ボン材で構成すると良い。また、請求項3に記載の発明
は、請求項1に記載の燃料電池の電解質補給装置におい
て、導液部がその少なくとも一部分に耐湿性を有する絶
縁被覆を有するよう構成すると良い。
According to a second aspect of the present invention, in the electrolyte replenishing device according to the first aspect, the ribbed reservoir plate and the liquid-conducting portion may both be made of a porous carbon material of the same material and manufacturing method. . Further, in the invention according to claim 3, in the electrolyte replenishing device for the fuel cell according to claim 1, it is preferable that at least a part of the liquid conducting portion has an insulating coating having moisture resistance.

【0012】さらに、請求項4に記載の発明は、請求項
1に記載の燃料電池の電解質補給装置において、リブ付
きリザーバ板の溝に導液部の端部が挿入され、導液性を
有する連結部を形成するよう構成すると良い。
Further, the invention according to claim 4 is, in the electrolyte replenishing device for a fuel cell according to claim 1, wherein the end of the liquid guiding part is inserted into the groove of the ribbed reservoir plate, and the liquid guiding property is provided. It is preferable to form the connecting portion.

【0013】[0013]

【作用】請求項1に記載の発明では、外部に設けた電解
質の補給タンクから各単位セルのマトリックスに電解質
を補給する電解質補給装置を、電解質の補給タンクと、
各単位セルとセパレート板との間に積層されたリブ付き
リザーバ板と、両者を連結する導液部とで構成し、リブ
付きリザーバ板および導液部を同程度の毛管力を有する
多孔質カーボン材としたことにより、導液部がその毛管
力によって電解質の補給タンクから吸い出した電解質
は、導液部の電解質保持率(導液部の全重量に対する電
解質重量の比,wt%)がリブ付きリザーバ板の電解質
保持率とほぼ等しい値に平衡するようリブ付きリザーバ
板に向けて移送される。したがって、リブ付きリザーバ
板はその毛管力によって決まる電解質保持率で電解質を
保持することになり、運転中各単位セルのマトリックス
で不足する電解質を例えば電極に形成された親水部分を
透過してマトリックスに補給し、かつ補給分は導液部を
介して補給タンクから補給される。また、燃料電池温度
の変化などによってリブ付きリザーバ板に過剰な電解質
が生じた場合は、導液部を介して補給タンクに過剰な電
解質を送り返す平衡作用も生ずるので、リブ付きリザー
バ板で過剰になった電解質が反応ガス通路に溢れ出して
反応ガスの正常な流れを阻害するという不都合も排除さ
れる。
According to the first aspect of the invention, an electrolyte replenishing device for replenishing the matrix of each unit cell with an electrolyte from an electrolyte replenishing tank provided outside, is provided.
Porous carbon composed of a ribbed reservoir plate laminated between each unit cell and a separate plate and a liquid conducting part connecting the two, and the ribbed reservoir plate and the liquid conducting part have a similar capillary force Due to the material, the electrolyte sucked out from the electrolyte replenishment tank by the capillary force of the electrolyte is ribbed in the electrolyte retention rate (ratio of the weight of the electrolyte to the total weight of the electrolyte) of the electrolyte. Transferred toward the ribbed reservoir plate to equilibrate to a value approximately equal to the electrolyte retention of the reservoir plate. Therefore, the ribbed reservoir plate retains the electrolyte at an electrolyte retention rate determined by its capillary force, and during operation, the electrolyte lacking in the matrix of each unit cell permeates the hydrophilic portion formed on the electrode to form the matrix. Replenishment, and the replenishment amount is replenished from the replenishment tank via the liquid conducting section. In addition, when excessive electrolyte is generated in the ribbed reservoir plate due to changes in the fuel cell temperature, etc., an equilibrium action of sending excess electrolyte back to the replenishment tank via the liquid transfer part is also created, and therefore excessive ribbed reservoir plate is used. It is also possible to eliminate the inconvenience that the resulting electrolyte overflows into the reaction gas passage and hinders the normal flow of the reaction gas.

【0014】ここで、請求項2に記載の発明では、リブ
付きリザーバ板および導液部を、ともに同じ材質,製法
の多孔質カーボン材で構成することにより、毛管力が互
いに等しいリブ付きリザーバ板および導液部が容易に得
られる。また、請求項3に記載の発明では、導液部がそ
の少なくとも一部分に耐湿性を有する絶縁被覆を有する
ことにより、導液部での電解質の吸湿を防止できるとと
もに、導電体でもある導液部が相互に接触することによ
って生ずる短絡事故が回避される。さらに、絶縁被覆が
導液部と外気の接触を阻止するので、導液部への外気の
侵入が遮断され、水頭差を併用してリブ付きリザーバ板
への電解質の補給量を調整する作用が得られる。
According to the second aspect of the present invention, the ribbed reservoir plate and the liquid-conducting portion are made of a porous carbon material of the same material and manufacturing method, so that the ribbed reservoir plate has the same capillary force. And the liquid conducting part can be easily obtained. Further, in the invention according to claim 3, since the liquid guiding part has an insulating coating having moisture resistance on at least a part thereof, the liquid guiding part can prevent moisture absorption of the electrolyte in the liquid guiding part and is also a conductor. A short-circuit accident caused by the mutual contact of the two is avoided. Furthermore, since the insulating coating prevents contact between the liquid-conducting portion and the outside air, the invasion of the outside air into the liquid-conducting portion is blocked, and the effect of adjusting the amount of electrolyte replenished to the ribbed reservoir plate by using the head difference is also provided. can get.

【0015】さらに、請求項4の発明では、リブ付きリ
ザーバ板の溝に導液部の端部が挿入され、導液性を有す
る連結部を形成したので、連結部の着脱が可能になると
ともに、この導液部を取り外して秤量し,電解質保持率
を求めることにより、リブ付きリザーバ板の電解質保持
率が正常か否かをチェックすることも可能になる。
Further, according to the invention of claim 4, since the end portion of the liquid guiding portion is inserted into the groove of the ribbed reservoir plate to form the liquid conducting connecting portion, the connecting portion can be attached and detached. It is also possible to check whether or not the electrolyte retention rate of the ribbed reservoir plate is normal by removing the liquid conducting portion and weighing it to obtain the electrolyte retention rate.

【0016】[0016]

【実施例】以下、この発明を実施例に基づいて説明す
る。なお、従来例と同じ参照符号を付けた部材は従来例
のそれと同じ機能をもつので、その説明を省略する。図
1はこの発明の燃料電池の電解質補給装置の一実施例を
模式化して示す断面図である。図において、燃料電池の
外部に設けた電解質9の補給タンク12から各単位セル
2のマトリックス3に電解質を補給する電解質補給装置
は、電解質の補給タンク12と、燃料電池の各単位セル
2とセパレート板6との間に積層されたリブ付きリザー
バ板23と、このリブ付きリザーバ板23と補給タンク
12とを連結する導液部21とで構成され、導液部21
の一方の端部がリブ付きリザーバ板と一定長さ密接した
連結部24を形成するとともに、他方端が補給タンク1
2の電解質溜め13の液面上から液状の電解質9内に挿
入されることにより、燃料電池の電解質補給装置20が
形成される。
EXAMPLES The present invention will be described below based on examples. Since the members having the same reference numerals as those of the conventional example have the same functions as those of the conventional example, the description thereof will be omitted. FIG. 1 is a schematic sectional view showing an embodiment of an electrolyte replenishing device for a fuel cell according to the present invention. In the figure, an electrolyte replenishing device for replenishing the matrix 3 of each unit cell 2 with an electrolyte from a replenishment tank 12 of an electrolyte 9 provided outside the fuel cell is shown as an electrolyte replenishment tank 12, each unit cell 2 of a fuel cell, and a separate cell. The reservoir plate 23 with ribs laminated between the plate 6 and the liquid guide portion 21 connecting the reservoir plate 23 with ribs and the replenishment tank 12 are connected to each other.
One end of the replenishing tank 1 forms a connecting portion 24 which is in close contact with the ribbed reservoir plate for a certain length.
The electrolyte replenishing device 20 for the fuel cell is formed by inserting the second electrolyte reservoir 13 into the liquid electrolyte 9 from above the liquid surface.

【0017】ここで、リブ付きリザーバ板23は単位セ
ル2の燃料電極4または空気電極5に接する側に反応ガ
ス通路4Aまたは5Aを有する多孔質カーボン材で構成
され、また、導液部21もリブ付きリザーバ板23と同
じ材質と製造条件で製作された多孔質カーボン材で構成
されることにより、りん酸9に対してほぼ等しい毛管力
を持つリブ付きリザーバ板23および導液部21が容易
に形成される。
Here, the ribbed reservoir plate 23 is made of a porous carbon material having a reaction gas passage 4A or 5A on the side in contact with the fuel electrode 4 or the air electrode 5 of the unit cell 2, and the liquid introducing portion 21 is also formed. Since the ribbed reservoir plate 23 is made of the same porous carbon material manufactured under the same manufacturing conditions as those of the ribbed reservoir plate 23, the ribbed reservoir plate 23 and the liquid transfer part 21 having substantially the same capillary force against phosphoric acid 9 can be easily formed. Is formed.

【0018】図2はこの発明の一実施例におけるリブ付
きリザーバ板材および導液部材の毛管力を比較して示す
特性線図であり、母材から短冊状に切り出した試験片の
一方端をりん酸液に垂直に一定深さ挿入し、一定雰囲気
温度中で一定放置時間ごとに試験片を秤量し、その重量
変化からりん酸保持率を求めた。図において、リザーバ
板材および導液部材ともに、最初りん酸液中に挿入した
部分にりん酸液が浸透してりん酸保持率が急速に上昇し
た後、毛管力により時間の経過とともに空気中に露出し
た部分にりん酸液が吸い上げられてりん酸保持率が徐々
に上昇し、ある時点で共にほぼ一定の飽和値に到達する
飽和特性を示している。
FIG. 2 is a characteristic diagram showing a comparison of the capillary forces of the ribbed reservoir plate member and the liquid guiding member in one embodiment of the present invention. One end of the test piece cut out from the base material in a strip shape is phosphorus. The test piece was vertically inserted into the acid solution at a constant depth, and the test piece was weighed at a constant standing time in a constant atmosphere temperature, and the phosphoric acid retention rate was determined from the weight change. In the figure, after the phosphoric acid solution permeates the part that was first inserted into the phosphoric acid solution and the phosphoric acid retention rate rises rapidly in both the reservoir plate and the liquid guiding member, it is exposed to the air due to capillary force over time. The phosphoric acid solution is sucked up by the above-mentioned portion, the phosphoric acid retention rate gradually increases, and both show a saturation characteristic that they reach a substantially constant saturation value at a certain point.

【0019】ところで、細管の毛管力は、その端部を垂
直に液体中に挿入したとき、細管内の液面を外部の液面
より上昇させる吸い上げ高さhで表され、吸い上げ高さ
hで表される毛管力hは同一液体に対して液体との接触
角に比例し、多孔体の細孔径に逆比例することが知られ
ている。図2はこの吸い上げ高さhをりん酸保持率に置
き換えて表しており、両曲線が近接していることから、
実施例におけるリザーバ板材および導液部材が互いにほ
ぼ等しい毛管力を持つことが実証された。また、上述の
原理から、図1において電解質溜め13の液面上に露出
する導液部21の高さohを、前記毛管力による吸い上
げ高さhよりなるべく低く抑えることによりりん酸の移
送が円滑化される。また、連結部24との水頭差Hを毛
管力による吸い上げ高さhより大きくすると、導液部2
1がその外周面から外気を吸い込んで液切れの発生原因
となるので、水頭差Hも毛管力による吸い上げ高さhと
同等以下とすることにより、液切れを生ずることなく、
毛管力によって決まるりん酸保持率を保持してリブ付き
リザーバ板23にりん酸が安定供給される。
By the way, the capillary force of a thin tube is expressed by the suction height h which raises the liquid level in the capillary from the external liquid level when the end of the capillary is vertically inserted into the liquid. It is known that the capillary force h represented is proportional to the contact angle of the same liquid with the liquid and inversely proportional to the pore diameter of the porous body. Fig. 2 shows this suction height h by replacing it with the phosphoric acid retention rate. Since both curves are close,
It was demonstrated that the reservoir plate material and the liquid guiding member in the examples have substantially equal capillary forces. Further, from the above-described principle, the height of the liquid conducting portion 21 exposed on the liquid surface of the electrolyte reservoir 13 in FIG. 1 is kept as low as possible from the suction height h due to the capillary force, so that the phosphoric acid can be transferred smoothly. Be converted. Further, when the water head difference H with the connecting portion 24 is made larger than the suction height h due to the capillary force, the liquid conducting portion 2
1 causes the liquid to run out by sucking the outside air from the outer peripheral surface thereof. Therefore, by setting the water head difference H to be equal to or less than the suction height h due to the capillary force, the liquid will not run out.
Phosphoric acid is stably supplied to the ribbed reservoir plate 23 while maintaining the phosphoric acid retention rate determined by the capillary force.

【0020】この実施例では、リブ付きリザーバ板23
および導液部21を同程度の毛管力を有する多孔質カー
ボン材としたことにより、導液部がその毛管力によって
電解質の補給タンクから吸い出した電解質は、導液部の
電解質保持率がリブ付きリザーバ板の電解質保持率とほ
ぼ等しい値に平衡するようリブ付きリザーバ板に向けて
移送されるので、水頭差を利用した従来の電解質補給装
置と異なり、導液部での液切れや、過剰供給による反応
ガスの通流障害などのトラブルを生ずることなく、各単
位セルのりん酸の飛散量に対応したりん酸を安定供給し
て燃料電池の発電性能を安定して維持できる利点が得ら
れる。また、導液部は従来の補給管に親水性繊維を充填
した方式に比べて構造が簡単で、かつ親水性繊維を充填
するための手間の掛かる加工を必要としないので、製造
コストの低減を促進する効果が得られる。
In this embodiment, the ribbed reservoir plate 23
Since the liquid guiding part 21 is made of a porous carbon material having a similar capillary force, the liquid guiding part sucks the electrolyte from the electrolyte replenishing tank by the capillary force, and the electrolyte holding ratio of the liquid guiding part is ribbed. Since it is transferred toward the reservoir plate with ribs so as to equilibrate to a value that is almost equal to the electrolyte retention rate of the reservoir plate, unlike the conventional electrolyte replenishing device that uses the head difference, the liquid run-out at the liquid transfer part and excessive supply It is possible to stably supply the phosphoric acid corresponding to the scattered amount of phosphoric acid in each unit cell and to stably maintain the power generation performance of the fuel cell, without causing troubles such as a reaction gas flow failure due to. In addition, the liquid-conducting part has a simpler structure than the conventional refill tube filled with hydrophilic fibers, and does not require a labor-intensive process for filling the hydrophilic fibers, thus reducing the manufacturing cost. The effect of promoting is obtained.

【0021】また、導液部21に耐湿性を有する絶縁被
覆を施すよう構成すれば、燃料電池外部の補給タンク1
2近傍で導液部が大気に触れることによって生ずるりん
酸の吸湿を防ぎ、高濃度のりん酸を単位セル2に供給で
きるとともに、導電体でもある導液部21が相互に接触
することによって生ずる短絡事故を回避できる利点も得
られる。また、絶縁被覆が導液部への空気などの侵入を
阻止するので、水頭差Hを利用した電解質の補給が可能
になり、この水頭差の調整によって電解質の補給量を制
御することも可能になるので、単位セル間の温度差や運
転条件の差に起因して発生するりん酸の飛散量の差に対
応して、電解質の供給量を制御できる利点が得られる。
Further, if the liquid introducing portion 21 is constructed so as to be provided with an insulating coating having moisture resistance, the replenishing tank 1 outside the fuel cell 1
In the vicinity of 2, the absorption of phosphoric acid caused by the contact of the liquid conducting portion with the atmosphere can be prevented, a high concentration of phosphoric acid can be supplied to the unit cell 2, and the liquid conducting portion 21 which is also a conductor comes into contact with each other. There is also an advantage that a short circuit accident can be avoided. In addition, since the insulating coating prevents the invasion of air or the like into the liquid-conducting portion, it becomes possible to replenish the electrolyte using the head difference H, and it is also possible to control the replenishment amount of the electrolyte by adjusting the head difference. Therefore, there is an advantage that the supply amount of the electrolyte can be controlled according to the difference in the scattering amount of phosphoric acid generated due to the difference in temperature between the unit cells and the difference in operating conditions.

【0022】図3はこの発明の燃料電池の電解質補給装
置の異なる実施例を示す要部の拡大図である。図におい
て、この実施例が図1に示す実施例と異なるところは、
リブ付きリザーバ板23の反応ガス通路4Aまたは5A
の一部に導液部21の端部が挿入され、導液性を有する
連結部を形成した点にある。このように構成することに
より、導液部21の着脱が可能になるとともに、この導
液部21を取り外して秤量し,その電解質保持率を求め
ることにより、リブ付きリザーバ板23の電解質保持率
が正常か否かをチェックできるので、従来燃料電池を分
解しなければチェックできなかった電解質補給装置の機
能を、燃料電池を分解することなく簡単にチェックでき
る利点が得られる。
FIG. 3 is an enlarged view of the essential parts showing a different embodiment of the electrolyte replenishing device for a fuel cell according to the present invention. In the figure, the difference between this embodiment and the embodiment shown in FIG.
Reaction gas passage 4A or 5A of the ribbed reservoir plate 23
The end of the liquid-conducting portion 21 is inserted into a part of the above to form a connecting portion having a liquid-conducting property. With such a configuration, the liquid guiding portion 21 can be attached and detached, and the liquid holding portion 21 is detached and weighed, and the electrolyte holding ratio thereof is obtained, whereby the electrolyte holding ratio of the ribbed reservoir plate 23 is increased. Since it can be checked whether it is normal or not, there is an advantage that the function of the electrolyte replenishing device which could not be conventionally checked without disassembling the fuel cell can be easily checked without disassembling the fuel cell.

【0023】なお、前述の実施例では、リブ付きリザー
バ板を燃料電極,空気電極の双方に設けた場合を例に説
明したが、いずれか一方の電極側にのみ設けて装置の構
成を簡素化してもよい。また、リブ付きリザーバ板およ
び導液部に同じ素材と製造条件で製造した多孔質カーボ
ン材を用いた場合を例に説明したが、互いの毛管力がほ
ぼ等しければその素材がカーボン繊維,カーボン粉末な
ど異なってもよく、さらに導液部は異なる材質,製造方
法の多孔質体であってもよい。
In the above-mentioned embodiment, the case where the reservoir plate with ribs is provided on both the fuel electrode and the air electrode has been described as an example, but it is provided on only one of the electrode sides to simplify the structure of the apparatus. May be. Also, the case where a porous carbon material manufactured under the same material and manufacturing conditions is used for the ribbed reservoir plate and the liquid conducting part has been described as an example. However, if the mutual capillary forces are almost equal, the material is carbon fiber or carbon powder. Etc., and the liquid conducting portion may be a porous body made of a different material and having a manufacturing method.

【0024】[0024]

【発明の効果】この発明は前述のように、燃料電池外部
の補給タンクから各単位セルに電解質を補給する電解質
補給装置に、毛管力が互いにほぼ等しいリブ付きリザー
バ板およびと導液部を用いるよう構成した。その結果、
リブ付きリザーバ板およびと導液部が互いにほぼ等しい
電解質保持率の平衡状態を保持し、電解質の飛散によっ
てマトリックスに生ずる電解質の不足分を補給するの
で、水頭差方式の従来の電解質補給装置で問題になった
電解質の液切れや過剰補給による反応ガスの通流障害を
生ずることなく電解質の不足分を安定供給できる電解質
補給装置を備えた燃料電池を提供することができる。ま
た、導液部の構造が簡素で、補給管に親水性繊維を充填
するなどの加工も必要としないので、電解質の不足分を
安定供給できる電解質補給装置を備えた燃料電池を経済
的にも有利に提供できる利点が得られる。
As described above, according to the present invention, the electrolyte replenishing device for replenishing the electrolyte from the replenishing tank outside the fuel cell to each unit cell uses the ribbed reservoir plate and the liquid conducting portion having substantially the same capillary force. Configured as as a result,
Since the ribbed reservoir plate and the liquid conducting section maintain an equilibrium state of electrolyte retention rate that is almost equal to each other and replenish the electrolyte shortage generated in the matrix due to the scattering of the electrolyte, there is a problem with the conventional electrolyte replenishment device of the water head difference method. It is possible to provide a fuel cell provided with an electrolyte replenishing device capable of stably supplying a shortage of the electrolyte without causing the flow of the reaction gas due to the exhaustion of the electrolyte and the excessive replenishment of the electrolyte. In addition, since the structure of the liquid guiding portion is simple and there is no need to perform processing such as filling the supply pipe with hydrophilic fibers, a fuel cell equipped with an electrolyte replenishing device that can stably supply a shortage of electrolyte is economically provided. The advantage that can be advantageously provided is obtained.

【0025】また、導液部に耐湿性の絶縁被覆を施せ
ば、電解質の吸湿防止効果および導液部相互の短絡防止
効果が得られるとともに、絶縁被覆が外気の遮断機能を
有することにより、水頭差を利用した電解質の供給量制
御も可能になるなど、電解質補給装置の機能を向上する
効果が得られる。さらに、導液部をリブ付きリザーバ板
の反応ガス供給溝に挿入して連結部を形成すれば、導液
部の着脱が可能になり、外した導液部の秤量によってリ
ブ付きリザーバ板の電解質保持率を判定するチェック機
能を備えた電解質補給装置を提供できる利点も得られ
る。
If the liquid-conducting portion is provided with a moisture-resistant insulating coating, the effect of preventing moisture absorption of the electrolyte and the effect of preventing short-circuiting between the liquid-conducting portions can be obtained, and the insulating coating has a function of shutting off the outside air. The effect of improving the function of the electrolyte replenishing device can be obtained such that the amount of electrolyte supply can be controlled by utilizing the difference. Furthermore, if the liquid guiding part is inserted into the reaction gas supply groove of the ribbed reservoir plate to form the connecting part, the liquid guiding part can be attached / detached, and the electrolyte of the ribbed reservoir plate can be removed by weighing the removed liquid guiding part. There is also an advantage that an electrolyte replenishing device having a check function for determining the retention rate can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の燃料電池の電解質補給装置の一実施
例を模式化して示す断面図
FIG. 1 is a sectional view schematically showing an embodiment of an electrolyte replenishing device for a fuel cell according to the present invention.

【図2】この発明の一実施例におけるリブ付きリザーバ
板材および導液部材の毛管力を比較して示す特性線図
FIG. 2 is a characteristic diagram showing a comparison between the capillary force of a reservoir plate member with ribs and the liquid guiding member in one embodiment of the present invention.

【図3】この発明の燃料電池の電解質補給装置の異なる
実施例を示す要部の拡大図
FIG. 3 is an enlarged view of a main part showing a different embodiment of the electrolyte replenishing device for a fuel cell according to the present invention.

【図4】マトリックス型燃料電池における従来の電解質
補給装置を模式化して示す断面図
FIG. 4 is a sectional view schematically showing a conventional electrolyte replenishing device in a matrix fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料電池 2 単位セル 3 マトリックス 4 燃料電極 5 空気電極 6 セパレ−ト板 7 電解質の補給通路 9 電解質 10 電解質補給装置 11 補給管 12 補給タンク 13 電解質溜め 15 親水性繊維(充填材) 20 電解質補給装置 21 導液部 23 リブ付きリザーバ板 24 連結部 1 Fuel Cell 2 Unit Cell 3 Matrix 4 Fuel Electrode 5 Air Electrode 6 Separate Plate 7 Electrolyte Supply Channel 9 Electrolyte 10 Electrolyte Supply Device 11 Supply Pipe 12 Supply Tank 13 Electrolyte Reservoir 15 Hydrophilic Fiber (Filler) 20 Electrolyte Supply Device 21 Liquid transfer part 23 Reservoir plate with ribs 24 Connection part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電解質を保持するマトリックス,これを挟
持する燃料電極,空気電極の積層体からなる単位セルを
単位セル間にセパレート板を介在させて複数層積層され
た燃料電池に設けられ、運転中前記マトリックスで不足
する電解質を外部に設けた電解質の補給タンクから補給
する電解質補給装置において、前記各単位セルとセパレ
ート板との間に積層されて電解質を保持する多孔質カー
ボン材からなるリブ付きリザーバ板と、このリブ付きリ
ザーバ板と同程度の毛管力を有する多孔質材からなり,
両端部が前記補給タンクとリブ付きリザーバ板とに連結
されて電解質をリブ付きリザーバ板側に導く導液部とを
備えたことを特徴とする燃料電池の電解質補給装置。
1. A unit cell comprising a matrix holding an electrolyte, a fuel electrode sandwiching the matrix, and an air electrode is provided in a fuel cell in which a plurality of layers are stacked with a separate plate interposed between the unit cells, and the operation is performed. In an electrolyte replenishing device for replenishing the electrolyte deficient in the matrix from an electrolyte replenishing tank provided outside, with ribs made of a porous carbon material laminated between the unit cells and the separate plate to hold the electrolyte. It consists of a reservoir plate and a porous material that has the same capillary force as this ribbed reservoir plate.
An electrolyte replenishing device for a fuel cell, characterized in that both ends thereof are connected to the replenishment tank and the ribbed reservoir plate, and a liquid conducting part for guiding the electrolyte to the ribbed reservoir plate side.
【請求項2】請求項1に記載の燃料電池の電解質補給装
置において、リブ付きリザーバ板および導液部が、とも
に同じ材質,製法の多孔質カーボン材からなることを特
徴とする燃料電池の電解質補給装置。
2. The electrolyte replenishing device for a fuel cell according to claim 1, wherein the ribbed reservoir plate and the liquid-conducting portion are both made of the same material and made of a porous carbon material. Supply device.
【請求項3】請求項1に記載の燃料電池の電解質補給装
置において、導液部がその少なくとも一部分に耐湿性を
有する絶縁被覆を有することを特徴とする燃料電池の電
解質補給装置。
3. The electrolyte replenishing device for a fuel cell according to claim 1, wherein the liquid conducting portion has an insulating coating having moisture resistance on at least a part thereof.
【請求項4】請求項1に記載の燃料電池の電解質補給装
置において、リブ付きリザーバ板の溝に導液部の端部が
挿入され、導液性を有する連結部が形成されたことを特
徴とする燃料電池の電解質補給装置。
4. The electrolyte replenishing device for a fuel cell according to claim 1, wherein an end portion of the liquid conducting portion is inserted into a groove of the ribbed reservoir plate to form a liquid conducting connecting portion. And a fuel cell electrolyte replenishing device.
JP7178334A 1995-07-14 1995-07-14 Electrolyte replenishing device of fuel cell Pending JPH0935727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178334A JPH0935727A (en) 1995-07-14 1995-07-14 Electrolyte replenishing device of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7178334A JPH0935727A (en) 1995-07-14 1995-07-14 Electrolyte replenishing device of fuel cell

Publications (1)

Publication Number Publication Date
JPH0935727A true JPH0935727A (en) 1997-02-07

Family

ID=16046679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178334A Pending JPH0935727A (en) 1995-07-14 1995-07-14 Electrolyte replenishing device of fuel cell

Country Status (1)

Country Link
JP (1) JPH0935727A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914247A1 (en) * 1999-03-29 2000-10-19 Siemens Ag HTM fuel cell with reduced electrolyte flushing, HTM fuel cell battery and method for starting an HTM fuel cell and / or an HTM fuel cell battery
KR101256072B1 (en) * 2011-04-25 2013-04-18 삼성에스디아이 주식회사 Fuel cell stack
EP2339677A4 (en) * 2008-10-10 2013-05-01 Toyota Motor Co Ltd Fuel cell
DE102014104310A1 (en) 2014-03-27 2015-10-01 Siqens Gmbh Device and method for lifetime extension of HT-PEM fuel cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914247A1 (en) * 1999-03-29 2000-10-19 Siemens Ag HTM fuel cell with reduced electrolyte flushing, HTM fuel cell battery and method for starting an HTM fuel cell and / or an HTM fuel cell battery
EP2339677A4 (en) * 2008-10-10 2013-05-01 Toyota Motor Co Ltd Fuel cell
KR101256072B1 (en) * 2011-04-25 2013-04-18 삼성에스디아이 주식회사 Fuel cell stack
US9653741B2 (en) 2011-04-25 2017-05-16 Samsung Sdi Co., Ltd. Fuel cell stack
DE102014104310A1 (en) 2014-03-27 2015-10-01 Siqens Gmbh Device and method for lifetime extension of HT-PEM fuel cells
WO2015144912A1 (en) 2014-03-27 2015-10-01 Siqens Gmbh Device and method for increasing the service life of ht-pem fuel cells

Similar Documents

Publication Publication Date Title
US5322744A (en) Method for feeding water of inclusion and gases for solid polymer electrolyte fuel cell system
US20020187374A1 (en) Fuel cell power generating apparatus, and operating method and combined battery of fuel cell power generating apparatus
US4366211A (en) Control of electrolyte fill to fuel cell stack
JP4678132B2 (en) Fuel cell system
JP2006210004A (en) Fuel cell system
JP4379987B2 (en) Fuel cell control device
JP6274197B2 (en) Fuel cell and fuel cell system
CA1202068A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
KR100896900B1 (en) Oxygen generator using a fuel cell and water electrolysis
JP5168859B2 (en) Fuel cell system
JP4733514B2 (en) Fuel supply device for direct liquid fuel cell
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
JPH0935727A (en) Electrolyte replenishing device of fuel cell
JP5915730B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
US20140106243A1 (en) Fuel cell
JP2008034301A (en) Accelerating drainage of fuel cell
JP2590526B2 (en) Method of replenishing electrolyte for matrix fuel cell
JPS624832B2 (en)
JPH0636787A (en) Electrolyte supplying device for matrix type fuel cell
JPH0414469B2 (en)
JP5489093B2 (en) Fuel cell system and operation method thereof
CN105098212B (en) Fuel cell system and its control method
JPH09115539A (en) Electrolyte replenishing device of layer-built fuel cell
JPS624831B2 (en)
JP3374039B2 (en) Fuel cell and method of operating fuel cell