JPH09115539A - Electrolyte replenishing device of layer-built fuel cell - Google Patents
Electrolyte replenishing device of layer-built fuel cellInfo
- Publication number
- JPH09115539A JPH09115539A JP7270781A JP27078195A JPH09115539A JP H09115539 A JPH09115539 A JP H09115539A JP 7270781 A JP7270781 A JP 7270781A JP 27078195 A JP27078195 A JP 27078195A JP H09115539 A JPH09115539 A JP H09115539A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- amount
- fuel cell
- unit
- loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、電解質を保持す
る溝付きリザーバ板を備えた単位セルの積層体からなる
積層燃料電池において、運転時間の経過とともに減少す
る電解質を、その減少速度に合わせて外部から補給する
電解質補給装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated fuel cell comprising a laminated body of unit cells provided with a grooved reservoir plate for holding an electrolyte, and an electrolyte which decreases with the lapse of operating time, according to the decreasing speed thereof. The present invention relates to an electrolyte replenishing device that replenishes from the outside.
【0002】[0002]
【従来の技術】燃料電池の場合、その発電反応は水素と
酸素が反応して水と電子を生成する反応であり、例えば
りん酸型燃料電池の場合190°C 程度の運転温度を保
持して発電が行われることにより、電極触媒層で生成し
た水が水蒸気となって電極基材を透過して反応ガス通路
内に放出され、反応を終わったオフガスとともに系外に
排出される。このとき、マトリックスに保持されたりん
酸は運転温度に相応した一定の蒸気圧示すため、電極触
媒層で生成した水が水蒸気化する際、微量のりん酸蒸気
を巻き込んだ状態で電極基材を透過して反応ガス通路に
放出され、反応を終わったオフガスと共に系外に排出さ
れる。このため、運転時間の経過とともにマトリックス
が保持するりん酸が徐々に減少し、これが原因で燃料電
池の内部抵抗が上昇して出力電圧が低下するとともに、
遂には反応ガスが直接反応して電池を損傷するという事
態に進展する可能性がある。そこで、電解質の消失によ
りマトリックス中で不足する電解質を補給する電解質補
給装置を備えた積層燃料電池が知られている。また、電
解質補給装置としては、電解質を保持する電解質リザー
バーを単位セル内に設ける内部補給方式と、積層燃料電
池の外部に設けた電解質貯蔵タンクから電解質を補給す
る外部補給方式、および両者を併用した方式などが知ら
れている。さらに、外部補給方式は、定量ポンプを用い
る方式と、電解質補給タンクを用いた水頭差方式とに大
別され、水頭差方式では単位セルと電解質補給タンクと
を結ぶ電解質の補給経路について幾つかのアイデアが提
案されている。2. Description of the Related Art In the case of a fuel cell, the power generation reaction is a reaction in which hydrogen and oxygen react to generate water and electrons. For example, in the case of a phosphoric acid fuel cell, an operating temperature of about 190 ° C is maintained. When power is generated, the water generated in the electrode catalyst layer becomes water vapor, permeates the electrode substrate, is discharged into the reaction gas passage, and is discharged out of the system together with the off gas which has finished the reaction. At this time, since the phosphoric acid retained in the matrix exhibits a constant vapor pressure corresponding to the operating temperature, when the water generated in the electrode catalyst layer is vaporized, a slight amount of phosphoric acid vapor is caught in the electrode substrate. It is permeated and discharged into the reaction gas passage, and is discharged out of the system together with the off gas which has finished the reaction. Therefore, the phosphoric acid retained by the matrix gradually decreases with the passage of operating time, which causes the internal resistance of the fuel cell to increase and the output voltage to decrease.
Eventually, the reaction gas may directly react to damage the battery. Therefore, there is known a laminated fuel cell including an electrolyte replenishing device that replenishes the electrolyte lacking in the matrix due to the disappearance of the electrolyte. Further, as the electrolyte replenishing device, an internal replenishing method in which an electrolyte reservoir holding the electrolyte is provided in the unit cell, an external replenishing method in which the electrolyte is replenished from an electrolyte storage tank provided outside the laminated fuel cell, and both are used in combination. The method etc. are known. Further, the external replenishment method is roughly divided into a method using a metering pump and a water head difference method using an electrolyte replenishment tank.In the water head difference method, there are several electrolyte replenishment paths connecting a unit cell and an electrolyte replenishment tank. Ideas have been proposed.
【0003】図7は従来の積層燃料電池の電解質補給装
置をりん酸型燃料電池を例に模式化して示すシステム構
成図であり、積層燃料電池1は、複数層の単位セル2
と、ガス不透過性のセパレ−ト板6との積層体(セルス
タック)として構成される。単位セル2は、多孔質の絶
縁材に電解質としての例えばりん酸9を含浸したマトリ
ックス3を挟んで、燃料電極4および酸化剤電極(空気
電極)5を積層したものからなり、両電極の電極触媒層
を支持する電極基材には互いに直交する方向に反応ガス
通路4A,5Aが形成され、4A側に燃料ガス,5A側
に反応空気を供給することにより、一対の電極4,5間
で電気化学的電極反応に基づく発電が行われる。FIG. 7 is a system configuration diagram schematically showing a conventional electrolyte replenishing device for a laminated fuel cell, using a phosphoric acid type fuel cell as an example. The laminated fuel cell 1 comprises a unit cell 2 having a plurality of layers.
And a gas-impermeable separate plate 6 are formed as a laminated body (cell stack). The unit cell 2 is formed by stacking a fuel electrode 4 and an oxidizer electrode (air electrode) 5 with a matrix 3 impregnated with, for example, phosphoric acid 9 serving as an electrolyte in a porous insulating material, and is composed of electrodes of both electrodes. Reaction gas passages 4A and 5A are formed in the electrode base material supporting the catalyst layer in directions orthogonal to each other. By supplying fuel gas to the 4A side and reaction air to the 5A side, the reaction gas passages 4A and 5A are provided between the pair of electrodes 4 and 5. Electric power is generated based on the electrochemical electrode reaction.
【0004】また、積層燃料電池1の各単位セル2の両
方の電極,あるいはいずれか一方の電極(図の場合燃料
電極4)にはマトリックス3に連通する電解質の補給通
路7が形成される。そして、この補給通路7を電解質の
リザーバーとして、補給通路7に吐出端11Bが連通し
た電解質の補給管11と、この補給管11の吸入端11
A側に連結された電解質補給タンク12とで構成される
電解質補給装置10を設けてマトリックスで不足した電
解質を補充するよう構成されている。また、電解質補給
タンク12内には複数の補給管11に対応して異なる高
さ位置に電解質溜め13A,13B等が設けられ、電解
質タンク12の上部に連結された図示しない電解質貯蔵
タンクから供給される電解質9が各電解質溜めを13
A,13Bの順で満たして順次オ−バ−フロ−すること
により、各電解質溜めの液面高さと、これに補給管を介
して連通する単位セルのマトリックス3の高さとの間に
高さHなるレベル差が保持される。Further, an electrolyte replenishment passage 7 communicating with the matrix 3 is formed in both electrodes of each unit cell 2 of the laminated fuel cell 1 or in either electrode (fuel electrode 4 in the figure). Then, using the replenishment passage 7 as an electrolyte reservoir, an electrolyte replenishment pipe 11 having a discharge end 11B communicating with the replenishment passage 7 and a suction end 11 of the replenishment pipe 11.
An electrolyte replenishing device 10 including an electrolyte replenishing tank 12 connected to the A side is provided to replenish the electrolyte deficient in the matrix. In addition, electrolyte reservoirs 12A, 13B, etc. are provided at different height positions in the electrolyte replenishment tank 12 corresponding to the plurality of replenishment pipes 11, and are supplied from an electrolyte storage tank (not shown) connected to the upper portion of the electrolyte tank 12. Electrolyte 9 for each electrolyte reservoir 13
By filling in the order of A and 13B and sequentially overflowing, the height between the liquid level of each electrolyte reservoir and the height of the matrix 3 of the unit cell communicating with it through the replenishment pipe is increased. The level difference of H is maintained.
【0005】したがって、このように構成された水頭差
方式の電解質補給装置10によれば、補給管をサイホン
状に湾曲させ、高度差Hに相応する水頭差で決まる流量
の電解質9を電解質溜め13から各単位セル2に定量的
に補給し、マトリックス3内で不足する電解質9を補給
することができる。また、補給管11の長さ方向の全域
に渡って電解質に対して親水性を有する導電性繊維15
を充填し、その毛細管現象を利用して電解質の移送を行
うことにより、補給管11内での電解質9の液切れを防
止した電解質補給装置も知られている(特開昭61−1
07667号公報)。Therefore, according to the water head difference type electrolyte replenishing device 10 thus constructed, the replenishment pipe is curved in a siphon shape, and the electrolyte 9 having the flow rate determined by the water head difference corresponding to the height difference H is stored in the electrolyte reservoir 13. Therefore, each unit cell 2 can be quantitatively replenished, and the electrolyte 9 deficient in the matrix 3 can be replenished. In addition, the conductive fiber 15 that is hydrophilic to the electrolyte over the entire length of the supply pipe 11
There is also known an electrolyte replenishing device which prevents the electrolyte 9 from running out of liquid in the replenishing pipe 11 by filling the inside of the replenishing pipe 11 and transferring the electrolyte by utilizing the capillary phenomenon (JP-A-61-1).
No. 07667).
【0006】また、補給管11内の液切れ防止手段とし
ての親水性の繊維充填材15を、電解質溜め13の液面
より低い補給管吐出側の部分を残して補給管内に充填す
るよう構成し、サイホン状の補給管の立ち上がり部分で
は充填された親水性の繊維質充填材15の毛細管現象に
よる吸い上げ作用により液切れを生ずることなく補給管
11内に電解質を移送させ、繊維質充填材が充填されて
いない補給管の吐出端11Bに近い立ち下がり部分では
この部分を満たす電解質の水頭差により低抵抗で電解質
を補給通路7内に移送するようにした電解質補給装置も
提案されている(特開平6−36787号公報)。Further, a hydrophilic fiber filling material 15 as a liquid running-out prevention means in the supply pipe 11 is configured to be filled in the supply pipe, leaving a portion of the electrolyte reservoir 13 on the supply pipe discharge side lower than the liquid surface. At the rising portion of the siphon-shaped supply pipe, the electrolyte is transferred into the supply pipe 11 without causing liquid drainage due to the sucking action by the capillary action of the filled hydrophilic fibrous filler 15, and the fibrous filler is filled. There is also proposed an electrolyte replenishing device that transfers the electrolyte into the replenishment passage 7 with low resistance due to the difference in the water heads of the electrolyte that fills this falling portion near the discharge end 11B of the replenishment pipe (Japanese Patent Application Laid-Open No. Hei 10 (1999)). 6-36787).
【0007】図8は異なる従来の積層燃料電池の電解質
補給装置をりん酸型燃料電池を例に模式化して示すシス
テム構成図である。図において、電解質としてのりん酸
を保持するマトリックス3と、これを挟持する燃料電極
4および酸化剤電極5の積層体からなるりん酸型燃料電
池の単位セル2は、一対の電極4および5がそれぞれ電
極触媒層と、電極触媒層を支持する平板状の多孔質炭素
基材からなる電極基材とで構成され、電極基材にリブ部
分が密接して電極基材との間に反応ガス通路4A,5A
を形成する溝付きの多孔質炭素基材からなる一対の溝付
きリザーバ板8を備え、この溝付きリザーバ板8には予
めりん酸が含浸される。また、溝付きリザーバ板8を備
えた単位セル2はガス不透過性の炭素板からなるセパレ
ート板6を介在させた状態で複数層積層されることによ
り、所望の出力電圧の積層燃料電池(スタック)1が形
成される。FIG. 8 is a system configuration diagram schematically showing another conventional electrolyte replenishing device for a laminated fuel cell, using a phosphoric acid fuel cell as an example. In the figure, a unit cell 2 of a phosphoric acid fuel cell comprising a stack of a matrix 3 holding phosphoric acid as an electrolyte and a fuel electrode 4 and an oxidizer electrode 5 sandwiching the matrix 3 has a pair of electrodes 4 and 5 Each is composed of an electrode catalyst layer and an electrode base material composed of a flat plate-like porous carbon base material supporting the electrode catalyst layer, and the rib portion is in close contact with the electrode base material and a reaction gas passage is formed between the electrode base material and the electrode base material. 4A, 5A
Is provided with a pair of grooved reservoir plates 8 made of a porous carbon substrate having grooves. The grooved reservoir plates 8 are impregnated with phosphoric acid in advance. Further, the unit cell 2 provided with the grooved reservoir plate 8 is laminated in a plurality of layers with a separate plate 6 made of a gas impermeable carbon plate being interposed therebetween, whereby a laminated fuel cell (stack) having a desired output voltage is obtained. ) 1 is formed.
【0008】積層燃料電池1の外部から電解質を補給す
る電解質補給装置20は、電解質補給タンク12と、積
層燃料電池1の各単位セル2のリブ付きリザーバ板8と
補給タンク12とを連結する導液部14とで構成され、
導液部14の一方の端部がリブ付きリザーバ板21と一
定長さ密接した連結部24を形成するとともに、他方端
が補給タンク12の電解質溜め13A,13B等13の
液面上から液状の電解質9内に挿入される。ここで、リ
ブ付きリザーバ板8は単位セル2の燃料電極4または空
気電極5に接する側に反応ガス通路4Aまたは5Aを有
する多孔質カーボン材で構成され、また、導液部14も
リブ付きリザーバ板8と同じ材質と製造条件で製作され
た多孔質カーボン材で構成されることにより、りん酸9
に対してリブ付きリザーバ板21とほぼ等しい毛管力を
持つ導液部14が形成されており、これにより水頭差H
によって決まる補給量の電解質を各単位セルに均等に供
給するようにした電解質補給装置が提案されている(特
願平7−178334号)。An electrolyte replenishing device 20 for replenishing an electrolyte from the outside of the laminated fuel cell 1 includes an electrolyte replenishing tank 12, and a guiding tank for connecting the ribbed reservoir plate 8 of each unit cell 2 of the laminated fuel cell 1 to the replenishment tank 12. It is composed of the liquid part 14 and
One end of the liquid guiding part 14 forms a connecting part 24 that is in close contact with the ribbed reservoir plate 21 for a certain length, and the other end is in liquid form from the liquid surface of the electrolyte reservoirs 13A, 13B, etc. 13 of the replenishment tank 12. It is inserted into the electrolyte 9. Here, the ribbed reservoir plate 8 is made of a porous carbon material having a reaction gas passage 4A or 5A on the side in contact with the fuel electrode 4 or the air electrode 5 of the unit cell 2, and the liquid introducing portion 14 is also a ribbed reservoir. Since it is made of a porous carbon material manufactured under the same material and manufacturing conditions as the plate 8, phosphoric acid 9
On the other hand, the liquid conducting portion 14 having a capillary force substantially equal to that of the ribbed reservoir plate 21 is formed, and as a result, the head difference H
An electrolyte replenishing device has been proposed in which an amount of replenishment of electrolyte determined by each unit cell is evenly supplied (Japanese Patent Application No. 7-178334).
【0009】[0009]
【発明が解決しようとする課題】図9は一般的な積層燃
料電池の構成およびその温度分布を示す説明図である。
図において、積層燃料電池1は所定の運転温度(例えば
りん酸形燃料電池では190°C程度)を保持して発電
運転を行うために、図の場合5層の単位セル2をブロッ
クとして各ブロック間に冷却板17が積層され、冷却板
に埋め込まれた冷却パイプ18に所定の温度の冷却媒体
を通流して冷却するよう構成される。ところが、冷却板
17に接した単位セル2Bの運転温度TL と、ブロック
の中央に位置する単位セル2Aの温度TH との間には通
常10°Cを越える温度差が存在する。ところで、各単
位セルのマトリックスに含浸,保持された電解質は、運
転温度に相応した一定の蒸気圧を示し、かつマトリック
スからの電解質の消失量も前記蒸気圧に比例して増加す
るため、高温単位セル2Aで電解質の消失量が多く、低
温単位セル2Bで消失量が少ないという電解質消失量の
不均等分布が発生する。また、電解質の消失量は反応ガ
ス通路における反応ガスの流速によっても影響され、運
転中、流速の高い高出力運転中は電解質の消失量が増加
し,低出力運転中は電解質消失量が減少するという変動
が繰り返される。FIG. 9 is an explanatory view showing the structure of a general laminated fuel cell and its temperature distribution.
In the figure, in order to perform a power generation operation while the laminated fuel cell 1 maintains a predetermined operating temperature (for example, about 190 ° C in a phosphoric acid fuel cell), in the case of FIG. A cooling plate 17 is laminated between the cooling plates, and a cooling medium having a predetermined temperature is passed through a cooling pipe 18 embedded in the cooling plate to cool the cooling pipe. However, there is usually a temperature difference of more than 10 ° C. between the operating temperature T L of the unit cell 2B in contact with the cooling plate 17 and the temperature T H of the unit cell 2A located in the center of the block. By the way, the electrolyte impregnated and retained in the matrix of each unit cell shows a constant vapor pressure corresponding to the operating temperature, and the amount of electrolyte lost from the matrix also increases in proportion to the vapor pressure, so that the high temperature unit An uneven distribution of the amount of lost electrolyte occurs, in which the amount of lost electrolyte is large in the cell 2A and small in the low temperature unit cell 2B. The amount of electrolyte loss is also affected by the flow velocity of the reaction gas in the reaction gas passage, and the amount of electrolyte loss increases during operation and during high power operation with high flow velocity, and the amount of electrolyte loss decreases during low power operation. The fluctuation is repeated.
【0010】ところが、定量ポンプを用いた従来の電解
質補給装置、あるいは図7に示す従来の電解質補給装置
では、積層燃料電池の温度分布や発電量の変化に係わり
なく各単位セルに均等に電解質を補給するよう構成され
ているため、電解質消失量の多い高温単位セル2Aでは
電解質不足により発電性能が低下するという事態が発生
し易くなる。また、電解質消失量の少ない低温単位セル
2Bでは電解質が過剰に供給され、余剰な電解質が電極
基材や反応ガス通路に溢れ出して電極触媒層への反応ガ
スの透過を阻害するために発電性能が低下するという事
態が生じ易くなり、かつ、この状態が発電量の変化に対
応して変動するためマトリックスが保持する電解質量の
過不足状態は複雑に変動し、発電性能が不安定になる。However, in the conventional electrolyte replenishing device using a metering pump or the conventional electrolyte replenishing device shown in FIG. 7, the electrolyte is evenly distributed to each unit cell irrespective of the temperature distribution of the laminated fuel cell and the change in the power generation amount. Since it is configured to be replenished, the high temperature unit cell 2A with a large amount of electrolyte loss easily causes a situation in which the power generation performance is deteriorated due to insufficient electrolyte. Further, in the low temperature unit cell 2B in which the amount of disappeared electrolyte is small, the electrolyte is excessively supplied, and the excess electrolyte overflows into the electrode base material and the reaction gas passage to hinder the permeation of the reaction gas into the electrode catalyst layer. Is likely to occur, and since this state fluctuates in response to changes in the amount of power generation, the excess / deficiency state of the electrolytic mass held by the matrix fluctuates in a complicated manner, and the power generation performance becomes unstable.
【0011】一方、図8に示す従来の電解質補給装置で
は、溝付きリザーバ板と導液部の毛管力をほぼ等しくし
たことにより、両者の電解質保持量を互いに等しい平衡
状態に保よう、マトリックスの電解質消失量に相応した
電解質が溝付きリザーバ板に供給される。しかしなが
ら、運転中電解質を補給することによって電解質溜め内
の電解質貯留量が低下するので、この低下を補うために
図示しない電解質貯蔵タンクから電解質溜めに電解質を
補充する必要がある。ところが、複数の単位セルの運転
温度が互いに異なるため、複数の電解質溜め間で電解質
の低下速度が異なり、電解質の補充タイミングも異なる
ため複数の電解質溜めに電解質を補充する保守作業が煩
雑化するという問題がある。On the other hand, in the conventional electrolyte replenishing device shown in FIG. 8, the capillary forces of the grooved reservoir plate and the liquid conducting portion are made substantially equal, so that the electrolyte holding amounts of both can be kept in an equilibrium state. An electrolyte corresponding to the amount of disappearance of the electrolyte is supplied to the grooved reservoir plate. However, since the amount of electrolyte stored in the electrolyte reservoir is reduced by replenishing the electrolyte during operation, it is necessary to replenish the electrolyte reservoir from an electrolyte storage tank (not shown) to supplement the reduction. However, since the operating temperatures of the plurality of unit cells are different from each other, the decreasing rate of the electrolyte is different between the plurality of electrolyte reservoirs, and the electrolyte replenishment timing is also different, which complicates the maintenance work of replenishing the electrolyte to the plurality of electrolyte reservoirs. There's a problem.
【0012】この発明の課題は、各単位セルの電解質の
消失量に見合う適量の電解質を過不足なく長期間連続し
て自動供給できる積層燃料電池の電解質補給装置を提供
することにある。An object of the present invention is to provide an electrolyte replenishing device for a laminated fuel cell capable of continuously and automatically supplying an appropriate amount of electrolyte commensurate with the amount of electrolyte lost in each unit cell for a long period of time without excess or deficiency.
【0013】[0013]
【課題を解決するための手段】前述の課題を解決するた
めに、請求項1に記載の発明は、電解質を保持するマト
リックス,これを挟持する燃料電極,酸化剤電極,前記
各電極との間に反応ガス通路を形成しかつ電解質を保持
する溝付きリザーバ板を有する単位セル複数層の積層体
からなる積層燃料電池に連結され、運転中前記マトリッ
クスで不足する電解質を外部に設けた電解質貯蔵タンク
から補給する電解質補給装置において、運転温度がほぼ
等しい複数の前記単位セルを1ブロックとしてそれぞれ
の単位セルの溝付きリザーバ板に吐出端が連結され,吸
入端が前記電解質貯蔵タンクに連結された複数条の補給
チューブと、この複数の補給チューブの中間に連結され
て電解質補給量を制御する可変速ポンプと、前記運転温
度に相応した前記単位セルの電解質消失量データを発電
量の関数として記憶し,外部発電量指令に基づきこれに
相応した電解質消失量データを出力する消失量演算部
と、この出力電解質消失量データに基づき前記可変速ポ
ンプの回転数を制御するポンプ速度制御部とを備え、ポ
ンプ速度によって補給量が決まる電解質をブロック内単
位セルに常時補給する。In order to solve the above-mentioned problems, the present invention according to claim 1 provides a matrix for holding an electrolyte, a fuel electrode sandwiching the matrix, an oxidizer electrode, and the electrodes. An electrolyte storage tank which is connected to a laminated fuel cell comprising a laminated body of a plurality of unit cells having a grooved reservoir plate for forming a reaction gas passage and holding an electrolyte, and which is provided with an electrolyte lacking in the matrix during operation outside. In the electrolyte replenishing device for replenishing from a plurality of unit cells, the discharge end is connected to the grooved reservoir plate of each unit cell, and the suction end is connected to the electrolyte storage tank. Replenishment tube, a variable speed pump connected to the middle of the plurality of replenishment tubes to control the amount of electrolyte replenishment, and the variable speed pump corresponding to the operating temperature. The amount of electrolyte loss data of each cell is stored as a function of the amount of power generation, and a loss amount calculation unit that outputs the corresponding amount of electrolyte loss amount based on an external power generation amount command, and the variable speed based on this output electrolyte loss amount data are output. A pump speed control unit for controlling the rotation speed of the pump is provided, and the electrolyte whose supply amount is determined by the pump speed is constantly supplied to the unit cells in the block.
【0014】ここで、請求項2に記載の発明は、請求項
1に記載の燃料電池の電解質補給装置において、補給チ
ューブがフレキシブルチューブからなり、可変速ポンプ
が前記フレキシブルチューブを局部的に圧縮する位置の
移動速度により電解質の吐出量を制御するチューブポン
プとすると良い。また、請求項3に記載の発明は、請求
項1に記載の積層燃料電池の電解質補給装置において、
運転温度が互いに異なる単位セルブロック毎に、複数条
の補給チューブ、可変速ポンプ、消失量演算部、および
ポンプ速度制御部を別系統として設け、前記各系統の消
失量演算部に当該単位セルブロックの運転温度に相応し
た電解質消失量データを発電量の関数として記憶させる
と良い。According to a second aspect of the present invention, in the electrolyte replenishing device for a fuel cell according to the first aspect, the replenishment tube is a flexible tube, and the variable speed pump locally compresses the flexible tube. It is advisable to use a tube pump that controls the amount of electrolyte discharged according to the moving speed of the position. The invention according to claim 3 is the electrolyte replenishing device for a laminated fuel cell according to claim 1,
For each unit cell block whose operating temperature is different from each other, a plurality of supply tubes, a variable speed pump, a disappearance amount calculation unit, and a pump speed control unit are provided as separate systems, and the unit cell block is provided in the disappearance amount calculation unit of each system. It is advisable to store the electrolyte disappearance amount data corresponding to the operating temperature of as a function of the power generation amount.
【0015】請求項4に記載の発明は、電解質を保持す
るマトリックス,これを挟持する燃料電極,酸化剤電
極,および前記各電極との間に反応ガス通路を形成しか
つ電解質を保持する溝付きリザーバ板を有する単位セル
複数層の積層体からなる積層燃料電池に連結され、運転
中前記マトリックスで不足する電解質を外部に設けた電
解質貯蔵タンクから前記溝付きリザーバ板を介して補給
する電解質補給装置において、前記電解質貯蔵タンクの
出口弁と、この出口弁から流下する電解質を受けて一定
量の電解質をそれぞれ貯留する複数の電解質溜めを有す
る電解質補給タンクと、運転温度がほぼ等しい複数の前
記単位セルを1ブロックとしてそれぞれの単位セルの溝
付きリザーバ板に吐出端が連結され,吸入端が前記複数
の電解質溜めに液面上からそれぞれ挿入され,かつリブ
付きリザーバ板と同程度の毛管力を有する多孔質材から
なる複数条の導液部と、前記ブロック内単位セルの運転
温度に相応した電解質消失量データを発電量の関数とし
て記憶し,外部発電量指令に基づきこれに相応した電解
質消失量データを出力する消失量演算部と、この出力電
解質消失量データの積算値を求める消失量積算部と、こ
の消失量積算値が前記電解質溜めの貯留電解質量に到達
したとき前記出口弁に向けて一定時間開度指令を発する
弁開閉制御部とを備える。According to a fourth aspect of the present invention, a matrix holding an electrolyte, a fuel electrode sandwiching the matrix, an oxidizer electrode, and a groove for forming a reaction gas passage between the electrodes and holding the electrolyte are provided. An electrolyte replenishing device that is connected to a laminated fuel cell composed of a laminate of a plurality of unit cells having a reservoir plate and replenishes an electrolyte lacking in the matrix during operation from an electrolyte storage tank provided outside through the grooved reservoir plate. In the above, an outlet valve of the electrolyte storage tank, an electrolyte replenishment tank having a plurality of electrolyte reservoirs that respectively receive a certain amount of electrolyte that flows down from the outlet valve, and a plurality of unit cells whose operating temperatures are substantially equal to each other. The discharge end is connected to the grooved reservoir plate of each unit cell as one block, and the suction end is connected to the plurality of electrolyte reservoirs with the liquid surface. And a plurality of strips of liquid-conducting sections each of which is made of a porous material having a capillary force equivalent to that of the ribbed reservoir plate, and the amount of generated electricity corresponding to the operating temperature of the unit cell in the block. A loss amount calculation unit that stores the data as a function and outputs corresponding electrolyte loss amount data based on the external power generation command, a loss amount integration unit that obtains an integrated value of this output electrolyte loss amount data, and this loss amount integrated value. When the stored electrolytic mass of the electrolyte reservoir is reached, a valve opening / closing control unit that issues an opening command to the outlet valve for a certain period of time is provided.
【0016】ここで、請求項5に記載の発明は、請求項
4に記載の積層燃料電池の電解質補給装置において、運
転温度が互いに異なる単位セルブロック毎に、電解質貯
蔵タンクの出口弁、複数の電解質溜めを有する電解質補
給タンク、複数条の導液部、消失量演算部、消失量積算
部、および弁開閉制御部を別系統として設け、各系統の
消失量演算部に当該単位セルブロックの運転温度に相応
した電解質消失量データを発電量の関数として記憶させ
ると良い。According to a fifth aspect of the present invention, in the electrolyte replenishing device for a laminated fuel cell according to the fourth aspect, an outlet valve of an electrolyte storage tank and a plurality of outlet valves of an electrolyte storage tank are provided for each unit cell block having different operating temperatures. An electrolyte replenishment tank with an electrolyte reservoir, multiple lines of liquid-conducting parts, a lost amount calculation part, a lost amount integration part, and a valve opening / closing control part are provided as separate systems, and the unit cell block is operated in the lost amount calculation part of each system. It is preferable to store the electrolyte disappearance amount data corresponding to the temperature as a function of the power generation amount.
【0017】請求項1に記載の発明では、消失量演算部
に所定の運転温度における単位セルの電解質消失量デー
タを発電量の関数として記憶させておけば、外部発電量
指令に基づきこれに相応した電解質消失量データが出力
される。この電解質消失量データはポンプ速度制御部で
可変速ポンプの回転数制御出力に変換される。この回転
数制御出力により可変速ポンプの回転数が発電量に追従
して変化する電解質消失量データに比例制御される。し
たがって、上記複数条の補給チューブの吐出端を上記所
定温度にほぼ等しい運転温度の単位セルそれぞれの溝付
きリザーバ板に連結しておくことにより、これに連結さ
れたブロック内単位セルに電解質消失量に対応し、かつ
発電量に応じて変化する適量の電解質が過不足なく連続
供給される。According to the first aspect of the present invention, if the amount of electrolyte loss data of the unit cell at a predetermined operating temperature is stored as a function of the amount of power generation in the amount-of-disappearance calculation unit, the amount of power generation corresponding to the external amount of power generation command can be used accordingly. The electrolyte disappearance amount data is output. This electrolyte disappearance amount data is converted into a rotation speed control output of the variable speed pump by the pump speed control unit. With this rotation speed control output, the rotation speed of the variable speed pump is proportionally controlled to the electrolyte disappearance amount data that changes in accordance with the power generation amount. Therefore, by connecting the discharge ends of the plurality of supply tubes to the grooved reservoir plate of each unit cell having an operating temperature substantially equal to the above-mentioned predetermined temperature, the amount of electrolyte lost in the unit cell in the block connected to this unit plate. And an appropriate amount of electrolyte that changes according to the amount of power generation is continuously supplied without excess or deficiency.
【0018】ここで、請求項2に記載の発明のように、
補給チューブを例えばフッ素樹脂チューブのような耐り
ん酸性を有するフレキシブルチューブとし、可変速ポン
プにチューブポンプを用いれば、信頼性の高い電解質補
給装置が容易に得られる。また、請求項3に記載の発明
のように、運転温度が互いに異なる複数の単位セルブロ
ック毎に電解質補給装置を別系統として設け、各系統の
消失量演算部に当該単位セルブロックの運転温度に相応
した電解質消失量データを発電量の関数として記憶させ
るようにすれば、各ブロック内単位セルに運転温度に相
応した量の電解質が発電量に追従して各系統の電解質補
給装置から過不足なく自動供給される。Here, as in the invention described in claim 2,
If the supply tube is made of a flexible tube having phosphoric acid resistance such as a fluororesin tube and a tube pump is used as the variable speed pump, a highly reliable electrolyte supply device can be easily obtained. Further, as in the invention described in claim 3, an electrolyte replenishing device is provided as a separate system for each of a plurality of unit cell blocks whose operating temperatures are different from each other, and the operating temperature of the unit cell block is set in the disappearance amount calculation unit of each system. By storing the corresponding amount of lost electrolyte data as a function of the amount of power generation, the amount of electrolyte corresponding to the operating temperature in each unit cell in each block follows the amount of power generation, and the electrolyte replenishing device of each system can be used without excess or deficiency. Automatically supplied.
【0019】一方、請求項4に記載の発明では、溝付き
リザーバ板と導液部の毛管力をほぼ等しくしたことによ
り、両者の電解質保持量を互いに等しい平衡状態に保つ
よう、導液部がその毛管力により電解質溜め内の電解質
を吸収する。従って、マトリックスの電解質消失量に相
応する電解質がブロック内単位セルに供給される。ま
た、この補給量は請求項1と同様に構成された消失量演
算部で演算され、その出力電解質消失量データが消失量
積算部で積算されることにより、単位セルで不足する電
解質を電解質溜めから補給することによって電解質溜め
に生ずる電解質量の低下が把握される。そこで、電解質
消失量の積算値(言い換えれば電解質溜めの電解質減
量)が電解質溜めの電解質保持量に到達したとき、電解
質貯蔵タンクの出口弁を開く指令を弁開閉制御部が発す
ることにより、電解質補給タンク内の複数の電解質溜め
には電解質が満たされ、引き続きブロック内単位セルの
電解質消失量に相応する電解質が過不足なく長期間連続
して供給される。On the other hand, in the invention as set forth in claim 4, since the capillary force of the grooved reservoir plate and the liquid guiding portion are made substantially equal, the liquid guiding portion is maintained so that the electrolyte holding amounts of both are equal to each other. The capillary force absorbs the electrolyte in the electrolyte reservoir. Therefore, the electrolyte corresponding to the amount of electrolyte lost in the matrix is supplied to the unit cells in the block. Further, this replenishment amount is calculated by the loss amount calculation unit configured in the same manner as in claim 1, and the output electrolyte loss amount data is integrated by the loss amount integration unit, so that the electrolyte shortage in the unit cell is stored in the electrolyte reservoir. It is possible to grasp the decrease in the electrolytic mass generated in the electrolyte reservoir by replenishing it from above. Therefore, when the integrated value of the amount of electrolyte loss (in other words, the electrolyte reduction amount of the electrolyte reservoir) reaches the electrolyte retention amount of the electrolyte reservoir, the valve opening / closing control unit issues a command to open the outlet valve of the electrolyte storage tank, thereby supplying electrolyte. The plurality of electrolyte reservoirs in the tank are filled with the electrolyte, and the electrolyte corresponding to the amount of disappearance of the electrolyte in the unit cells in the block is continuously supplied for a long time without excess or deficiency.
【0020】ここで、請求項5に記載の発明では、請求
項4と同様に構成された積層燃料電池の複数の電解質補
給装置を、運転温度が互いに異なる単位セルブロック毎
に別系統として設け、各系統の消失量演算部に当該単位
セルブロックの運転温度に相応した電解質消失量データ
を発電量の関数として記憶させることにより、各ブロッ
ク内単位セルに運転温度に相応した量の電解質が発電量
に追従して過不足なく供給される。Here, in the invention described in claim 5, a plurality of electrolyte replenishing devices for a laminated fuel cell configured as in claim 4 are provided as separate systems for each unit cell block having different operating temperatures, By storing the electrolyte loss amount data corresponding to the operating temperature of the unit cell block as a function of the power generation amount in the loss amount calculation unit of each system, the amount of electrolyte corresponding to the operating temperature is generated in the unit cells in each block. It is supplied without excess or deficiency following the.
【0021】[0021]
【発明の実施の形態】以下この発明を実施例に基づいて
説明する。なお、従来例と同じ参照符号を付けた部材は
従来例のそれと同じ機能をもつので、その説明を省略す
る。図1はこの発明の積層燃料電池の電解質補給装置の
一実施例をりん酸型燃料電池を例に簡略化して示すシス
テム構成図である。図において、電解質としてのりん酸
9を保持するマトリックス2,これを挟持する燃料電極
4および酸化剤電極5,両電極4,5との間に反応ガス
通路を形成しかつりん酸9を保持する燃料電極側の溝付
きリザーバ板8Fおよび酸化剤電極側の溝付きリザーバ
板8Aを有する単位セル2は、層間にガス不透過性のセ
パレート板6を介在させて複数層積層されることにより
積層燃料電池1が形成される。電解質補給装置30は、
吸入端が電解質貯蔵タンク31に連結された複数条の補
給チューブ32と、この複数の補給チューブの中間に連
結されて電解質補給量を制御する可変速ポンプとしての
例えばチューブポンプ32と、外部発電指令に基づいて
チューブポンプ32の回転速度(吐出量)を制御する消
失量演算部34およびポンプ速度制御部35とで構成さ
れ、補給チューブ32の吐出端は積層燃料電池1の運転
温度がほぼ等しい複数の単位セルを1ブロックとしてそ
れぞれの単位セルの例えば燃料電極側の溝付きリザーバ
板8Fに、例えば燃料ガス通路4Aの一部などを利用し
て連結される。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. Since the members having the same reference numerals as those of the conventional example have the same functions as those of the conventional example, the description thereof will be omitted. FIG. 1 is a system configuration diagram schematically showing an embodiment of an electrolyte replenishing device for a laminated fuel cell according to the present invention, taking a phosphoric acid fuel cell as an example. In the figure, a matrix 2 for holding phosphoric acid 9 as an electrolyte, a fuel gas 4 and an oxidizer electrode 5, which sandwich the matrix, form a reaction gas passage between them and hold phosphoric acid 9. The unit cell 2 having the grooved reservoir plate 8F on the fuel electrode side and the grooved reservoir plate 8A on the oxidant electrode side is laminated by stacking a plurality of layers with a gas-impermeable separate plate 6 interposed therebetween. The battery 1 is formed. The electrolyte replenishing device 30 is
A plurality of supply tubes 32 whose suction ends are connected to the electrolyte storage tank 31, a tube pump 32 as a variable speed pump connected to the middle of the plurality of supply tubes to control the amount of electrolyte supply, and an external power generation command And a pump speed control unit 35 for controlling the rotation speed (discharge amount) of the tube pump 32 based on the above. The discharge end of the supply tube 32 has a plurality of operating temperatures of the laminated fuel cell 1 that are substantially equal to each other. Each unit cell is connected to the grooved reservoir plate 8F on the fuel electrode side of each unit cell by using, for example, a part of the fuel gas passage 4A.
【0022】図2は図1に示す実施例において消失量演
算部に予め記憶される電解質消失量データを示す特性線
図である。図において、単位セル2の単位時間当たりの
りん酸消失量は運転温度によって決まるりん酸の蒸気圧
と、発電量によって決まる反応ガス流量との関数として
算式を用いて求めることが可能であり、図に示すよう
に、例えば高温単位セル,低温単位セル,および中温単
位セルそれぞれに傾きの異なる電解質消失量−発電量特
性として消失量演算部34に記憶させ、外部発電量指令
に対応した電解質消失量データ34Sを取り出すことが
できる。FIG. 2 is a characteristic diagram showing electrolyte loss data stored in advance in the loss calculation unit in the embodiment shown in FIG. In the figure, the amount of phosphoric acid lost per unit time of the unit cell 2 can be obtained by using an equation as a function of the vapor pressure of phosphoric acid determined by the operating temperature and the reaction gas flow rate determined by the power generation amount. As shown in, for example, the high temperature unit cell, the low temperature unit cell, and the medium temperature unit cell are stored in the loss amount calculation unit 34 as the electrolyte loss amount-power generation amount characteristics having different inclinations, and the electrolyte loss amount corresponding to the external power generation amount command is stored. The data 34S can be retrieved.
【0023】また、実用規模の電極面積を有する複数の
単位セルを分解可能に積層した積層燃料電池モデルを用
い、その運転温度および発電量の組み合わせを変えて一
定時間運転する度に積層燃料電池モデルを分解して単位
セル重量を秤量し、単位セル重量の変化から所定の運転
温度に対応する電解質消失量−発電量特性を実験式とし
てまとめることも可能であり、高い精度で電解質消失量
を把握できる。Further, a laminated fuel cell model in which a plurality of unit cells having an electrode area of a practical scale are laminated so as to be disassembled is used, and the laminated fuel cell model is operated every time a certain period of time is changed by changing the combination of operating temperature and power generation amount. It is also possible to disassemble and measure the unit cell weight, and to summarize the electrolyte loss amount-power generation amount characteristic corresponding to a predetermined operating temperature as an empirical formula from the change in the unit cell weight, and grasp the electrolyte loss amount with high accuracy. it can.
【0024】実施例では、消失量演算部34に所定の運
転温度における単位セルの電解質消失量データを所定の
算式または実験式の形で発電量の関数として記憶させて
おき、外部発電量指令に基づきこれに相応した電解質消
失量データ34Sを出力するよう構成した。この電解質
消失量データ34Sはポンプ速度制御部35でチューブ
ポンプ33の回転数制御出力35Sに変換され、この回
転数制御出力35Sにより可変速ポンプの回転数が発電
量に追従して変化する電解質消失量データに比例制御さ
れる。したがって、複数条の補給チューブ32の吐出端
を上記所定温度にほぼ等しい運転温度の単位セルそれぞ
れの溝付きリザーバ板8Fに連結しておくことにより、
これに連結されたブロック内単位セルに電解質消失量に
対応し、かつ発電量に応じて変化する適量の電解質が溝
付きリザーバ板8Fを介してマトリックス3に過不足な
く連続して自動供給される。In the embodiment, the loss amount calculation unit 34 stores the amount of electrolyte loss amount of the unit cell at a predetermined operating temperature as a function of the power generation amount in the form of a predetermined formula or an empirical formula, and the external power generation amount command is stored. Based on this, the electrolyte disappearance amount data 34S corresponding to this is output. The electrolyte disappearance amount data 34S is converted by the pump speed control unit 35 into a rotation speed control output 35S of the tube pump 33, and the rotation speed control output 35S changes the rotation speed of the variable speed pump in accordance with the amount of power generation. It is controlled proportionally to the quantity data. Therefore, by connecting the discharge ends of the plurality of supply tubes 32 to the grooved reservoir plate 8F of each unit cell having an operating temperature substantially equal to the above predetermined temperature,
An appropriate amount of electrolyte, which corresponds to the amount of electrolyte lost and changes according to the amount of power generation, is continuously and automatically supplied to the matrix unit 3 connected to the matrix cell 3 via the grooved reservoir plate 8F. .
【0025】図3は図1に示す電解質補給装置の冷却板
を備えた積層燃料電池への適用状態を模式化して示す構
成図である。図において、積層燃料電池1には5層の単
位セル毎に冷却板17が積層され、その冷却パイプ18
に所定温度の冷却媒体を通流して発電生成熱の排熱を行
うよう構成される。ところが、図9について既に説明し
たように、高温単位セル2Aと低温単位セル2Bとの間
には10°Cを越える運転温度の差が存在する。そこ
で、積層燃料電池1を高温単位セルブロック,中温単位
セルブロック,および低温単位セルブロックに区分し、
各ブロック内単位セルに補給チューブ32を介して電解
質補給装置30を別系統として設け、それぞれの電解質
補給装置30の図示しない消失量演算部にTH,TL 等そ
れぞれの運転温度に対応した電解質消失量データを発電
量の関数として記憶させるよう構成した。FIG. 3 is a schematic diagram showing a state in which the electrolyte replenishing device shown in FIG. 1 is applied to a laminated fuel cell having a cooling plate. In the figure, in the laminated fuel cell 1, a cooling plate 17 is laminated for every five layers of unit cells, and a cooling pipe 18
The cooling medium having a predetermined temperature is passed through to discharge the generated heat of power generation. However, as already described with reference to FIG. 9, there is a difference in operating temperature exceeding 10 ° C. between the high temperature unit cell 2A and the low temperature unit cell 2B. Therefore, the laminated fuel cell 1 is divided into a high temperature unit cell block, a medium temperature unit cell block, and a low temperature unit cell block,
An electrolyte replenishing device 30 is provided as a separate system in each unit cell in each block via a replenishing tube 32, and a disappearance amount calculation unit (not shown) of each electrolyte replenishing device 30 has electrolytes corresponding to respective operating temperatures such as TH and TL. The loss data is stored as a function of the amount of power generation.
【0026】このように構成した電解質補給装置を備え
た積層燃料電池では、各ブロック内単位セルに運転温度
に相応した量の電解質が発電量に追従して過不足なく供
給されることになり、高温単位セルで電解質不足を生じ
たり,あるいは低温単位セルで余剰電解質により反応ガ
スの供給障害を生ずるなどの従来技術の問題点が排除さ
れ、これらの障害を生ずることなく長期間安定運転でき
る信頼性の高い積層燃料電池が得られる。In the laminated fuel cell provided with the electrolyte replenishing device configured as described above, the amount of electrolyte corresponding to the operating temperature is supplied to each unit cell in each block according to the amount of power generation without excess or deficiency. The problems of the prior art such as electrolyte shortage in the high temperature unit cell or excess electrolyte supply failure in the low temperature unit cell are eliminated, and long-term stable operation is possible without causing these failures. It is possible to obtain a laminated fuel cell having high efficiency.
【0027】図4は図1に示す電解質補給装置を積層燃
料電池モデルに連結して得られた単位セルのりん酸保持
量と運転時間との関係を示す特性線図であり、電極面積
0.2m2 の単位セル20層の積層体からなり、単位セ
ル5層毎に冷却板を有する積層燃料電池モデルを図3に
示すように高温単位セルブロック,中温単位セルブロッ
ク,および低温単位セルブロックに区分し、それぞれの
ブロックに電解質補給装置30を設けた状態で一定温度
で発電運転し、一定時間運転する毎に積層燃料電池モデ
ルを分解して単位セル重量を秤量し、得られたりん酸の
減少量を最初に含浸したりん酸量を1としてその百分率
で示したものである。図から明らかなように、ブロック
内単位セルのりん酸保持量は運転時間100時間から1
0000時間に渡り、初期含浸時の100%を中心に上
下数%の範囲に分布しており、実施例になる電解質制御
装置によって、各単位セルブロックの運転温度に対応す
る電解質消失量に相当するりん酸が過不足なく補給され
ていることが分かる。FIG. 4 is a characteristic diagram showing the relationship between the phosphoric acid retention amount of a unit cell and the operating time obtained by connecting the electrolyte replenishing device shown in FIG. 1 to a laminated fuel cell model. As shown in FIG. 3, a laminated fuel cell model including a laminated body of 20 unit cells of 2 m 2 and having a cooling plate for every 5 unit cells was formed into a high temperature unit cell block, a medium temperature unit cell block, and a low temperature unit cell block. Each block is operated to generate electricity at a constant temperature in a state where the electrolyte replenishing device 30 is provided in each block, and the laminated fuel cell model is disassembled and the unit cell weight is weighed each time it is operated for a certain time. The amount of reduction is shown as a percentage with the amount of phosphoric acid impregnated at the beginning as 1. As can be seen from the figure, the phosphoric acid retention amount of the unit cell in the block is 1 to 100 hours of operation time.
Over the period of 0000 hours, it is distributed in the range of several percent above and below with 100% at the time of initial impregnation, and corresponds to the amount of disappearance of electrolyte corresponding to the operating temperature of each unit cell block by the electrolyte control device of the example. It can be seen that the phosphoric acid is being replenished just enough.
【0028】図5はこの発明の異なる実施例になる積層
燃料電池の電解質補給装置をりん酸型燃料電池を例に模
式化して示すシステム構成図である。図において、電解
質補給装置40は、電解質としてのりん酸9を貯蔵する
電解質貯蔵タンク31およびその出口弁41と、この出
口弁41から流下する電解質9を受けて一定量の電解質
をそれぞれ貯留する複数の電解質溜め13A,13B等
13を有する電解質補給タンク12と、運転温度がほぼ
等しい複数の単位セル2を1ブロックとしてそれぞれの
単位セルの溝付きリザーバ板に吐出端が連結され,吸入
端が複数の電解質溜めに液面上からそれぞれ挿入された
複数条の導液部14と、,ブロック内単位セルの運転温
度に相応した電解質消失量データを発電量の関数として
記憶し,外部発電量指令に基づきこれに相応した電解質
消失量データ42Sを出力する消失量演算部42と、こ
の出力電解質消失量データ42Sの積算値43Sを求め
る消失量積算部43と、この消失量積算値43Sが電解
質溜め13の貯留電解質量に到達したとき出口弁41に
開度指令を発する弁開閉制御部44とで構成される。FIG. 5 is a system configuration diagram schematically showing an electrolyte replenishing device for a laminated fuel cell according to a different embodiment of the present invention, using a phosphoric acid fuel cell as an example. In the figure, an electrolyte replenishment device 40 includes an electrolyte storage tank 31 for storing phosphoric acid 9 as an electrolyte, an outlet valve 41 for the electrolyte storage tank 31, and a plurality of electrolyte storage tanks 31 each for receiving a certain amount of the electrolyte 9 flowing down from the outlet valve 41 and storing a fixed amount of the electrolyte. The electrolyte replenishment tank 12 having the electrolyte reservoirs 13A, 13B, etc. of 13 and the plurality of unit cells 2 having substantially the same operating temperature as one block are connected to the grooved reservoir plate of each unit cell at the discharge end, and the plurality of suction ends are provided. A plurality of lines of the liquid guiding parts 14 respectively inserted into the electrolyte reservoir from above on the liquid surface, and the amount of electrolyte loss data corresponding to the operating temperature of the unit cell in the block are stored as a function of the amount of power generation, and the external power generation command is stored. Based on this, the loss amount calculation unit 42 which outputs the electrolyte loss amount data 42S corresponding thereto and the integrated value 43S of the output electrolyte loss amount data 42S are obtained. A loss amount integrating section 43, and a valve control unit 44 for emitting opening command to the outlet valve 41 when the loss amount integrated value 43S reaches the stored electrolyte mass of the electrolyte reservoir 13.
【0029】ここで、複数条の導液部14はリブ付きリ
ザーバ板と同程度の毛管力を有する多孔質材、例えば同
じ材質と製造条件で製作された多孔質カーボン材で構成
される。このとき、電解質溜め13の液面上に露出する
導液部21の高さohを、毛管力による吸い上げ高さよ
りなるべく低く抑えることによりりん酸の移送が円滑化
される。また、溝付きリザーバ板との水頭差Hを毛管力
による吸い上げ高さより大きくすると、導液部14がそ
の外周面から外気を吸い込んで液切れの発生原因となる
ので、水頭差Hも毛管力による吸い上げ高さと同等以下
とするとよい。このようにすると、導液部がその毛管力
によって電解質の補給タンクから吸い上げた電解質は、
導液部の電解質保持量がリブ付きリザーバ板の電解質保
持量とほぼ等しい値に平衡するようリブ付きリザーバ板
に向けて移送される。このとき、運転温度がほぼ等しい
ブロック内単位セルのマトリックスでは積層燃料電池の
発電量に比例した量の電解質が消失するが、この消失分
が溝付きリザーバ板から補給され、溝付きリザーバ板で
の電解質保持量の低下分がこれと平衡関係にある導液部
を介して電解質供給装置から供給される。したがって、
水頭差を利用した従来の電解質補給装置と異なり、導液
部での液切れや、過剰供給による反応ガスの通流障害な
どのトラブルを生ずることなく、各単位セルのりん酸の
消失量に対応したりん酸を安定供給して燃料電池の発電
性能を安定して維持できる利点が得られる。なお、導液
部14にはその表面を外気から遮断する被覆層を設ける
よう構成されてよい。Here, the plurality of liquid guiding portions 14 are made of a porous material having a capillary force comparable to that of the ribbed reservoir plate, for example, a porous carbon material manufactured under the same material and manufacturing conditions. At this time, the height oh of the liquid conducting portion 21 exposed on the liquid surface of the electrolyte reservoir 13 is kept as low as possible than the suction height due to the capillary force, whereby the transfer of phosphoric acid is facilitated. Further, if the water head difference H with the grooved reservoir plate is made larger than the suction height due to the capillary force, the liquid guiding part 14 sucks the outside air from the outer peripheral surface thereof and causes liquid shortage, so the water head difference H is also due to the capillary force. It is recommended that the height be less than or equal to the siphoning height. By doing this, the electrolyte sucked up from the electrolyte replenishment tank by the liquid guiding section by its capillary force is
The electrolyte is transferred toward the ribbed reservoir plate so that the electrolyte holding amount of the liquid introducing portion is approximately equal to the electrolyte holding amount of the ribbed reservoir plate. At this time, in the matrix of unit cells in a block whose operating temperatures are almost equal, the amount of electrolyte that is proportional to the power generation amount of the laminated fuel cell disappears, but this lost amount is replenished from the grooved reservoir plate and The amount of decrease in the amount of retained electrolyte is supplied from the electrolyte supply device via the liquid conducting section in equilibrium with this. Therefore,
Unlike conventional electrolyte replenishing devices that use the head difference, it corresponds to the amount of phosphoric acid lost in each unit cell without causing troubles such as running out of liquid in the liquid introducing section and obstruction of reaction gas flow due to excessive supply. There is an advantage that the generated power of the fuel cell can be stably maintained by stably supplying the generated phosphoric acid. The liquid guiding section 14 may be provided with a coating layer for blocking its surface from the outside air.
【0030】一方、導液部14の毛管力による電解質9
の補給量は請求項1と同様に構成された消失量演算部4
2で外部発電量指令の関数として演算され、その出力電
解質消失量データ42Sが消失量積算部43で積算され
ることにより、電解質溜め13が貯留する電解質量の低
下が把握される。そこで、電解質消失量の積算値が電解
質溜めの電解質保持量に到達したことを弁開閉制御部4
4が検知して電解質貯蔵タンク31の出口弁41を開く
ことにより、電解質補給タンク内の複数の電解質溜め1
3A,13B等には自動的に電解質が補充され、引き続
きブロック内単位セルの電解質消失量に相応する電解質
を過不足なく連続して長期間自動供給できる利点が得ら
れる。On the other hand, the electrolyte 9 due to the capillary force of the liquid conducting section 14
The replenishment amount of the lost amount calculation unit 4 is the same as that of claim 1.
2 is calculated as a function of the external power generation amount command, and the output electrolyte disappearance amount data 42S is integrated by the disappearance amount integrating unit 43, so that the decrease in the electrolytic mass stored in the electrolyte reservoir 13 is grasped. Therefore, the valve opening / closing control unit 4 confirms that the integrated value of the amount of lost electrolyte has reached the amount of electrolyte retained in the electrolyte reservoir.
4 opens and the outlet valve 41 of the electrolyte storage tank 31 is detected, the plurality of electrolyte reservoirs 1 in the electrolyte replenishment tank 1
The electrolyte is automatically replenished in 3A, 13B, etc., and the advantage that the electrolyte corresponding to the amount of electrolyte lost in the unit cells in the block can be continuously and automatically supplied for a long period without excess or deficiency is obtained.
【0031】この実施例になる電解質補給装置40を、
図4に示したと同様に積層燃料電池1の運転温度が互い
に異なる単位セルブロック毎に別系統として設け、各系
統の消失量演算部に当該単位セルブロックの運転温度に
相応した電解質消失量データを発電量の関数として記憶
させることにより、各ブロック内単位セルに運転温度に
相応した量の電解質が発電量に追従して過不足なく供給
できる利点が得られる。なお、この場合各系統の電解質
補給装置40は、それぞれの電解質補給タンク12が内
包する複数の電解質溜め13A,13B等13の容積
(電解質有効貯留量)を単位セルブロックの運転温度に
対応して、高温単位セルブロックで大きく,低温単位セ
ルブロックで小さく形成するようにすれば、電解質の補
充周期を複数の電解質補給装置間でほぼ一致させること
が可能であり、電解質補給タンク12を各系統共通に一
体化して装置の構成を簡素化できるとともに、消失量演
算部,消失量積算部,弁開閉制御部,および出口弁をも
共用化して装置の構成を簡素化できる利点が得られる。The electrolyte replenishing device 40 according to this embodiment is
Similar to that shown in FIG. 4, a unit cell block having different operating temperatures of the laminated fuel cell 1 is provided as a separate system, and the electrolyte loss data corresponding to the operating temperature of the unit cell block is provided to the loss calculation unit of each system. By storing as a function of the amount of power generation, the amount of electrolyte corresponding to the operating temperature can be supplied to each unit cell in each block following the amount of power generation without excess or deficiency. In this case, in the electrolyte replenishing device 40 of each system, the volumes (electrolyte effective storage amount) of the plurality of electrolyte reservoirs 13A, 13B and the like 13 included in each electrolyte replenishment tank 12 correspond to the operating temperature of the unit cell block. If the high temperature unit cell block is made large and the low temperature unit cell block is made small, the electrolyte replenishment cycle can be made substantially the same among a plurality of electrolyte replenishing devices, and the electrolyte replenishment tank 12 is common to all systems. It is possible to simplify the configuration of the device by integrating the above into a single unit, and to simplify the configuration of the device by sharing the loss amount calculation unit, the loss amount integration unit, the valve opening / closing control unit, and the outlet valve.
【0032】図6は図5に示す電解質補給装置を積層燃
料電池モデルに連結して得られた単位セルのりん酸保持
量と運転時間との関係を示す特性線図であり、図5に示
す積層燃料電池モデル40を用いた以外は図4と同じ実
験条件で各ブロック内単位セルのりん酸保持量を測定し
た。図から明らかなように、各ブロック内単位セルのり
ん酸保持量は運転時間100時間から10000時間に
渡り、初期含浸時の100%を中心に上下数%の範囲に
分布しており、実施例になる電解質制御装置40によっ
ても、各単位セルブロックの運転温度に対応する電解質
消失量に相当するりん酸が過不足なく補給されているこ
とが分かる。FIG. 6 is a characteristic diagram showing the relationship between the phosphoric acid retention amount of the unit cell and the operating time obtained by connecting the electrolyte replenishing device shown in FIG. 5 to the laminated fuel cell model, and shown in FIG. The phosphoric acid retention amount of each unit cell in each block was measured under the same experimental conditions as in FIG. 4 except that the laminated fuel cell model 40 was used. As is clear from the figure, the phosphoric acid retention amount of each unit cell in each block was distributed in the range of several percent above and below the initial impregnation of 100% over the operating time of 100 hours to 10,000 hours. It can be seen from the electrolyte control device 40 also that the phosphoric acid corresponding to the amount of disappearance of the electrolyte corresponding to the operating temperature of each unit cell block is replenished without excess or deficiency.
【0033】[0033]
【発明の効果】この発明の積層燃料電池の電解質補給装
置は前述のように、積層燃料電池の互いに運転温度がほ
ぼ等しい複数の単位セルを1ブロックとして各単位セル
の溝付きリザーバ板に吐出端が連結された複数条の補給
チューブおよび可変速ポンプを用い、この可変速ポンプ
の回転数を前記運転温度および発電量に相応して予め決
まる電解質消失量データに基づいて制御するよう構成し
た。その結果、運転温度がほぼ等しいブロック内単位セ
ルで発電量に追従して発生する電解質消失量に比例した
電解質を、過不足なく連続して自動供給できる電解質補
給装置を備えた燃料電池を提供することができる。As described above, in the electrolyte replenishing device for a laminated fuel cell of the present invention, a plurality of unit cells of the laminated fuel cell whose operating temperatures are substantially equal to each other are regarded as one block, and the discharge end is provided on the grooved reservoir plate of each unit cell. A plurality of replenishment tubes connected to each other and a variable speed pump are used, and the rotation speed of the variable speed pump is controlled based on the electrolyte disappearance amount data which is predetermined in accordance with the operating temperature and the power generation amount. As a result, there is provided a fuel cell equipped with an electrolyte replenishing device capable of continuously and automatically supplying an electrolyte proportional to the amount of electrolyte loss generated by following the amount of power generation in unit cells in a block whose operating temperatures are almost equal. be able to.
【0034】また、運転温度が互いに異なる複数の単位
セルブロック毎に電解質補給装置を別系統として設け、
各系統の消失量演算部に当該単位セルブロックの運転温
度に相応した電解質消失量データを発電量の関数として
記憶させるようにすれば、運転温度が異なるブロック内
単位セルに運転温度に相応した量の電解質が発電量に追
従して過不足なく自動供給されることになり、積層燃料
電池内の運転温度分布や発電量に関係なく一定量の電解
質を常時供給する従来の電解質補給装置で問題になった
高温単位セルでの電解質不足や低温単位セルでの電解質
の過剰供給が排除され、これらに起因する発電性能の低
下を生ずることなく電解質の不足分を安定供給できる電
解質補給装置を備えた燃料電池を提供することができ
る。An electrolyte replenishing device is provided as a separate system for each of a plurality of unit cell blocks having different operating temperatures,
By storing the electrolyte loss data corresponding to the operating temperature of the unit cell block as a function of the power generation amount in the loss calculating unit of each system, the amount corresponding to the operating temperature in the unit cells in the blocks with different operating temperatures can be stored. Will be automatically supplied without excess or deficiency following the amount of power generation, which is a problem with the conventional electrolyte replenishing device that constantly supplies a certain amount of electrolyte regardless of the operating temperature distribution in the laminated fuel cell and the amount of power generation. Insufficient electrolyte in the high temperature unit cell and excessive supply of electrolyte in the low temperature unit cell are eliminated, and fuel with an electrolyte replenishing device that can stably supply the electrolyte shortage without causing a decrease in power generation performance due to these A battery can be provided.
【0035】一方、積層燃料電池の互いに運転温度がほ
ぼ等しい複数の単位セルを1ブロックとし、これらブロ
ック内単位セルの溝付きリザーバ板と電解質補給タンク
の電解質溜めとの間を結ぶ導液部に、毛管力がリブ付き
リザーバ板のそれとほぼ等しい多孔質材を用いるよう構
成した。その結果、リブ付きリザーバ板およびと導液部
が互いにほぼ等しい電解質保持率の平衡状態を保持し、
単位セルで発電量の変化に追従して発生する電解質の消
失量を補給するので、水頭差方式の従来の電解質補給装
置で問題になった電解質の液切れや過剰補給による反応
ガスの通流障害を生ずることなく電解質の不足分を安定
供給できる電解質補給装置を備えた燃料電池を提供する
ことができる。また、ブロック内単位セルの運転温度お
よび発電量に相応して予め決まる電解質消失量の積算値
に基づいて電解質貯蔵タンクの出口弁を開閉するように
したので、電解質の補給により電解質溜めで生ずる電解
質量の低下を逐次把握し、各電解質溜めの貯留電解質量
が零になる前に電解質を補充することが可能になり、電
解質の補充が自動化され、ブロック内単位セルへの電解
質の補給を長期間安定して連続的に行える電解質補給装
置を備えた燃料電池を提供することができる。On the other hand, a plurality of unit cells of the laminated fuel cell whose operating temperatures are substantially equal to each other are set as one block, and the unit cell in these blocks is connected to the grooved reservoir plate and the electrolyte reservoir of the electrolyte replenishing tank in the liquid conducting section. , A porous material having a capillary force substantially equal to that of the ribbed reservoir plate was used. As a result, the ribbed reservoir plate and the liquid-conducting portion maintain an equilibrium state of substantially equal electrolyte retention rates,
The unit cell replenishes the amount of electrolyte loss that occurs in response to changes in the amount of power generation, so there is a problem in the conventional electrolyte replenishing device with a water head difference method It is possible to provide a fuel cell provided with an electrolyte replenishing device that can stably supply a shortage of electrolyte without causing the above problem. In addition, the outlet valve of the electrolyte storage tank is opened and closed based on the integrated value of the amount of electrolyte loss determined in advance corresponding to the operating temperature of the unit cells in the block and the amount of power generation, so the electrolyte generated in the electrolyte reservoir due to electrolyte replenishment It is possible to grasp the decrease in the amount of electrolyte sequentially and replenish the electrolyte before the stored electrolytic mass of each electrolyte reservoir becomes zero.Automatic replenishment of the electrolyte makes it possible to replenish the electrolyte to the unit cells in the block for a long time. It is possible to provide a fuel cell provided with an electrolyte replenishing device that can be stably and continuously operated.
【0036】ここで、運転温度が互いに異なる複数の単
位セルブロック毎に電解質補給装置を別系統として設
け、各系統の消失量演算部に当該単位セルブロックの運
転温度に相応した電解質消失量データを発電量の関数と
して記憶させるようにすれば、運転温度が異なるブロッ
ク内単位セルに運転温度に相応した量の電解質が発電量
に追従して過不足なく供給されることになり、積層燃料
電池内の運転温度分布や発電量に関係なく一定量の電解
質を常時供給する水頭差方式の従来の電解質補給装置で
問題になった高温単位セルでの電解質不足や低温単位セ
ルでの電解質の過剰供給が排除され、これらに起因する
発電性能の低下を生ずることなく電解質の不足分を安定
供給できる電解質補給装置を備えた燃料電池を提供する
ことができる。Here, an electrolyte replenishing device is provided as a separate system for each of a plurality of unit cell blocks whose operating temperatures are different from each other, and electrolyte loss data corresponding to the operating temperature of the unit cell block is supplied to the loss amount calculating section of each system. If it is stored as a function of the power generation amount, the amount of electrolyte corresponding to the operating temperature will be supplied to the unit cells in the blocks with different operating temperatures in an appropriate amount following the power generation amount. The shortage of electrolyte in the high temperature unit cell or the excessive supply of electrolyte in the low temperature unit cell, which was a problem in the conventional electrolyte replenishment device of the water head difference method that constantly supplies a constant amount of electrolyte regardless of the operating temperature distribution and power generation It is possible to provide a fuel cell provided with an electrolyte replenishing device that is excluded and that can stably supply a shortage of electrolyte without causing a decrease in power generation performance due to these.
【図1】この発明の積層燃料電池の電解質補給装置の一
実施例をりん酸型燃料電池を例に簡略化して示すシステ
ム構成図FIG. 1 is a system configuration diagram schematically showing an embodiment of an electrolyte replenishing device for a laminated fuel cell according to the present invention, using a phosphoric acid fuel cell as an example.
【図2】図1に示す実施例において消失量演算部に予め
記憶される電解質消失量データを模式化して示す特性線
図FIG. 2 is a characteristic diagram schematically showing electrolyte loss data which is stored in advance in a loss calculation unit in the embodiment shown in FIG.
【図3】図1に示す電解質補給装置の冷却板を備えた積
層燃料電池への適用状態を模式化して示す構成図FIG. 3 is a configuration diagram schematically showing an application state of the electrolyte replenishing device shown in FIG. 1 to a laminated fuel cell provided with a cooling plate.
【図4】図1に示す電解質補給装置を積層燃料電池モデ
ルに連結して得られた単位セルのりん酸保持量と運転時
間との関係を示す特性線図FIG. 4 is a characteristic diagram showing a relationship between a unit cell phosphoric acid retention amount and an operating time obtained by connecting the electrolyte replenishing device shown in FIG. 1 to a laminated fuel cell model.
【図5】この発明の異なる実施例になる積層燃料電池の
電解質補給装置をりん酸型燃料電池を例に模式化して示
すシステム構成図FIG. 5 is a system configuration diagram schematically showing an electrolyte replenishing device for a laminated fuel cell according to a different embodiment of the present invention, using a phosphoric acid fuel cell as an example.
【図6】図5に示す電解質補給装置を積層燃料電池モデ
ルに連結して得られた単位セルのりん酸保持量と運転時
間との関係を示す特性線図FIG. 6 is a characteristic diagram showing the relationship between the unit cell phosphoric acid retention and the operating time obtained by connecting the electrolyte replenishing device shown in FIG. 5 to a laminated fuel cell model.
【図7】従来の積層燃料電池の電解質補給装置をりん酸
型燃料電池を例に模式化して示すシステム構成図FIG. 7 is a system configuration diagram schematically showing a conventional electrolyte replenishing device for a laminated fuel cell, using a phosphoric acid fuel cell as an example.
【図8】異なる従来の積層燃料電池の電解質補給装置を
りん酸型燃料電池を例に模式化して示すシステム構成図FIG. 8 is a system configuration diagram schematically showing a different conventional electrolyte replenishing device for a laminated fuel cell, using a phosphoric acid fuel cell as an example.
【図9】一般的な積層燃料電池の構成およびその温度分
布を示す説明図FIG. 9 is an explanatory view showing the structure of a general laminated fuel cell and its temperature distribution.
1 積層燃料電池 2 単位セル 3 マトリックス 4 燃料電極 5 酸化剤電極 6 セバレート板 8 溝付きリザーバ板 9 電解質(りん酸) 10 電解質補給装置 11 補給管 12 電解質補給タンク 13 電解質溜め 14 導液部 15 親水性繊維 17 冷却板 20 電解質補給装置 30 電解質補給装置 31 電解質貯蔵タンク 32 補給チューブ 33 可変速ポンプ(チューブポンプ) 34 消失量演算部 35 ポンプ速度制御部 40 電解質補給装置 41 出口弁 42 消失量演算部 43 消失量積算部 44 弁開閉制御部 1 Laminated Fuel Cell 2 Unit Cell 3 Matrix 4 Fuel Electrode 5 Oxidizer Electrode 6 Sebacate Plate 8 Grooved Reservoir Plate 9 Electrolyte (Phosphoric Acid) 10 Electrolyte Supply Device 11 Supply Pipe 12 Electrolyte Supply Tank 13 Electrolyte Reservoir 14 Conductive Part 15 Hydrophilic Organic fiber 17 Cooling plate 20 Electrolyte replenishing device 30 Electrolyte replenishing device 31 Electrolyte storage tank 32 Replenishment tube 33 Variable speed pump (tube pump) 34 Disappearance amount calculation unit 35 Pump speed control unit 40 Electrolyte replenishment device 41 Outlet valve 42 Disappearance amount calculation unit 43 Disappearance amount integration unit 44 Valve opening / closing control unit
Claims (5)
持する燃料電極,酸化剤電極,前記各電極との間に反応
ガス通路を形成しかつ電解質を保持する溝付きリザーバ
板を有する単位セル複数層の積層体からなる積層燃料電
池に連結され、運転中前記マトリックスで不足する電解
質を外部に設けた電解質貯蔵タンクから補給する電解質
補給装置において、運転温度がほぼ等しい複数の前記単
位セルを1ブロックとしてそれぞれの単位セルの溝付き
リザーバ板に吐出端が連結され,吸入端が前記電解質貯
蔵タンクに連結された複数条の補給チューブと、この複
数の補給チューブの中間に連結されて電解質補給量を制
御する可変速ポンプと、前記運転温度に相応した前記単
位セルの電解質消失量データを発電量の関数として記憶
し,外部発電量指令に基づきこれに相応した電解質消失
量データを出力する消失量演算部と、この出力電解質消
失量データに基づき前記可変速ポンプの回転数を制御す
るポンプ速度制御部とを備え、ポンプ速度によって補給
量が決まる電解質をブロック内単位セルに常時補給する
ことを特徴とする積層燃料電池の電解質補給装置。1. A plurality of unit cell layers having a matrix for holding an electrolyte, a fuel electrode sandwiching the electrolyte, an oxidizer electrode, and a grooved reservoir plate for forming a reaction gas passage between the electrodes and holding the electrolyte. In the electrolyte replenishing device, which is connected to a laminated fuel cell composed of a laminated body, and replenishes the electrolyte deficient in the matrix from an electrolyte storage tank provided outside during operation, a plurality of the unit cells having substantially the same operating temperature are set as one block. The discharge end is connected to the grooved reservoir plate of each unit cell, and the intake end is connected to a plurality of replenishment tubes connected to the electrolyte storage tank, and is connected between the plurality of replenishment tubes to control the amount of electrolyte replenishment The variable speed pump and the amount of electrolyte loss data of the unit cell corresponding to the operating temperature are stored as a function of the amount of power generation. And a pump speed control unit for controlling the number of revolutions of the variable speed pump based on the output electrolyte loss amount data, and a supply amount depending on the pump speed. An electrolyte replenishing device for a laminated fuel cell, which constantly replenishes an electrolyte that determines the unit cell in a block.
置において、補給チューブがフレキシブルチューブから
なり、可変速ポンプが前記フレキシブルチューブを局部
的に圧縮する位置の移動速度により電解質の吐出量を制
御するチューブポンプであることを特徴とする積層燃料
電池の電解質補給装置。2. The electrolyte replenishing device for a fuel cell according to claim 1, wherein the replenishment tube comprises a flexible tube, and the variable speed pump locally discharges the flexible tube by a moving speed at a position where the flexible tube is locally compressed. An electrolyte replenishing device for a laminated fuel cell, which is a tube pump to be controlled.
給装置において、運転温度が互いに異なる単位セルブロ
ック毎に、複数条の補給チューブ、可変速ポンプ、消失
量演算部、およびポンプ速度制御部を別系統として設
け、前記各系統の消失量演算部に当該単位セルブロック
の運転温度に相応した電解質消失量データを発電量の関
数として記憶させたことを特徴とする積層燃料電池の電
解質補給装置。3. The electrolyte replenishing device for a laminated fuel cell according to claim 1, wherein a plurality of replenishment tubes, a variable speed pump, a loss calculation unit, and a pump speed control are provided for each unit cell block having different operating temperatures. A separate unit is provided, and the loss calculation unit of each system stores electrolyte loss data corresponding to the operating temperature of the unit cell block as a function of the power generation amount. apparatus.
持する燃料電極,酸化剤電極,および前記各電極との間
に反応ガス通路を形成しかつ電解質を保持する溝付きリ
ザーバ板を有する単位セル複数層の積層体からなる積層
燃料電池に連結され、運転中前記マトリックスで不足す
る電解質を外部に設けた電解質貯蔵タンクから前記溝付
きリザーバ板を介して補給する電解質補給装置におい
て、前記電解質貯蔵タンクの出口弁と、この出口弁から
流下する電解質を受けて一定量の電解質をそれぞれ貯留
する複数の電解質溜めを有する電解質補給タンクと、運
転温度がほぼ等しい複数の前記単位セルを1ブロックと
してそれぞれの単位セルの溝付きリザーバ板に吐出端が
連結され,吸入端が前記複数の電解質溜めに液面上から
それぞれ挿入され,かつリブ付きリザーバ板と同程度の
毛管力を有する多孔質材からなる複数条の導液部と、前
記ブロック内単位セルの運転温度に相応した電解質消失
量データを発電量の関数として記憶し,外部発電量指令
に基づきこれに相応した電解質消失量データを出力する
消失量演算部と、この出力電解質消失量データの積算値
を求める消失量積算部と、この消失量積算値が前記電解
質溜めの貯留電解質量に到達したとき前記出口弁に向け
て一定時間開度指令を発する弁開閉制御部とを備えたこ
とを特徴とする積層燃料電池の電解質補給装置。4. A plurality of unit cells having a matrix holding an electrolyte, a fuel electrode sandwiching the matrix, an oxidizer electrode, and a grooved reservoir plate forming a reaction gas passage between the electrodes and the electrodes and holding the electrolyte. In an electrolyte replenishing device, which is connected to a laminated fuel cell comprising a laminated body of layers, replenishes the electrolyte deficient in the matrix during operation from an electrolyte storage tank provided outside through the grooved reservoir plate, An outlet valve, an electrolyte replenishment tank having a plurality of electrolyte reservoirs that receive a certain amount of electrolyte that flows down from the outlet valve, and store a fixed amount of each electrolyte, and a plurality of the unit cells that have substantially the same operating temperature as one block. The discharge end is connected to the grooved reservoir plate of the cell, and the suction end is inserted into each of the plurality of electrolyte reservoirs from above the liquid surface, A plurality of liquid-conducting parts made of a porous material having a capillary force equivalent to that of a ribbed reservoir plate, and electrolyte loss data corresponding to the operating temperature of the unit cells in the block are stored as a function of the amount of power generation, A loss amount calculation unit that outputs electrolyte loss amount data corresponding thereto based on an external power generation amount command, a loss amount integration unit that obtains an integrated value of this output electrolyte loss amount data, and this loss amount integrated value is the amount of the electrolyte reservoir. An electrolyte replenishing device for a laminated fuel cell, comprising: a valve opening / closing control unit that issues an opening command to the outlet valve for a certain period of time when the stored electrolytic mass is reached.
給装置において、運転温度が互いに異なる単位セルブロ
ック毎に、電解質貯蔵タンクの出口弁、複数の電解質溜
めを有する電解質補給タンク、複数条の導液部、消失量
演算部、消失量積算部、および弁開閉制御部を別系統と
して設け、各系統の消失量演算部に当該単位セルブロッ
クの運転温度に相応した電解質消失量データを発電量の
関数として記憶させたたことを特徴とする積層燃料電池
の電解質補給装置。5. The electrolyte replenishing device for a laminated fuel cell according to claim 4, wherein an outlet valve of an electrolyte storage tank, an electrolyte replenishing tank having a plurality of electrolyte reservoirs, and a plurality of sections for each unit cell block having different operating temperatures. The liquid introduction part, the loss amount calculation part, the loss amount integration part, and the valve opening / closing control part are provided as separate systems, and the loss amount calculation part of each system generates electrolyte loss amount data corresponding to the operating temperature of the unit cell block. An electrolyte replenishing device for a laminated fuel cell, which is stored as a function of quantity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7270781A JPH09115539A (en) | 1995-10-19 | 1995-10-19 | Electrolyte replenishing device of layer-built fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7270781A JPH09115539A (en) | 1995-10-19 | 1995-10-19 | Electrolyte replenishing device of layer-built fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09115539A true JPH09115539A (en) | 1997-05-02 |
Family
ID=17490913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7270781A Pending JPH09115539A (en) | 1995-10-19 | 1995-10-19 | Electrolyte replenishing device of layer-built fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09115539A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7416805B2 (en) | 2003-02-24 | 2008-08-26 | Fujitsu Component Limited | Fuel cell device and case thereof |
JP5310730B2 (en) * | 2008-10-10 | 2013-10-09 | トヨタ自動車株式会社 | Fuel cell |
-
1995
- 1995-10-19 JP JP7270781A patent/JPH09115539A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7416805B2 (en) | 2003-02-24 | 2008-08-26 | Fujitsu Component Limited | Fuel cell device and case thereof |
JP5310730B2 (en) * | 2008-10-10 | 2013-10-09 | トヨタ自動車株式会社 | Fuel cell |
US8785078B2 (en) | 2008-10-10 | 2014-07-22 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2551674A1 (en) | Water management in fuel cells | |
WO2010073385A1 (en) | Fuel cell system | |
EP1303887A1 (en) | Subambient pressure coolant loop for a fuel cell power plant | |
JPS61227370A (en) | Fuel battery assembly | |
KR100896900B1 (en) | Oxygen generator using a fuel cell and water electrolysis | |
EP0107396B1 (en) | System for supplying electrolyte to fuel cells | |
WO2005069839A2 (en) | Storing water in substrates for frozen, boot-strap start of fuel cells | |
CN102986070B (en) | Fuel cell system | |
WO2011089502A1 (en) | Fuel cell system and control method therefor | |
JPH09115539A (en) | Electrolyte replenishing device of layer-built fuel cell | |
JP5135883B2 (en) | Fuel cell system | |
US20040121218A1 (en) | Fuel cell water management | |
US4612262A (en) | Process for adding electrolyte to a fuel cell stack | |
JP2009224045A (en) | Fuel cell system | |
JP2004158274A (en) | Moisture state estimation apparatus of fuel cell and fuel cell system | |
US4980247A (en) | Apparatus for supplementing electrolyte to matrix-type fuel cell | |
US20060115696A1 (en) | Hydrogen gas humidity control apparatus, fuel cell, hydrogen gas humidity controlling method, and humidity control method for fuel cell | |
JPH0414469B2 (en) | ||
JPH0935727A (en) | Electrolyte replenishing device of fuel cell | |
JP2005085537A (en) | Fuel cell system | |
JP2021044168A (en) | Fuel cell system and control method thereof | |
JPH01292751A (en) | Electrolyte replenisher of matrix type fuel cell | |
JP2001266916A (en) | Fuel cell humidifying device | |
EP1901383B1 (en) | Fuel cell having actuator controlling unit and method of operating the same | |
JP2006049128A (en) | Fuel cell system |