JPH0933200A - Power apparatus of underwater sailing structure - Google Patents

Power apparatus of underwater sailing structure

Info

Publication number
JPH0933200A
JPH0933200A JP20507795A JP20507795A JPH0933200A JP H0933200 A JPH0933200 A JP H0933200A JP 20507795 A JP20507795 A JP 20507795A JP 20507795 A JP20507795 A JP 20507795A JP H0933200 A JPH0933200 A JP H0933200A
Authority
JP
Japan
Prior art keywords
passage
water
boiler
supply pump
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20507795A
Other languages
Japanese (ja)
Other versions
JP2759628B2 (en
Inventor
Seiji Eguchi
誠治 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP20507795A priority Critical patent/JP2759628B2/en
Publication of JPH0933200A publication Critical patent/JPH0933200A/en
Application granted granted Critical
Publication of JP2759628B2 publication Critical patent/JP2759628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure the action of two conventional water control valves with one valve by providing a first passage communicating an outlet passage of a water supply pump and an outlet passage of a boiler and a second passage communicating one port of a three port solenoid valve interposed in the first passage and an inlet passage of the water supply pump. SOLUTION: There are provided a first passage 6 communicating an outlet passage of a water supply pump 4 and an outlet passage of a boiler 1, and a second passage 7 communicating one port of a three port solenoid valve 5 interposed in the first passage 6 and an inlet passage of the water supply pump 4. In the case of hid speed control, the three port solenoid valve 5 is operated to control the amount of water refluxed to an inlet side of the water supply pump 4 after passage through the second passage 7 for control of the amount of supply water to the boiler 1. In the case of low speed control, the three port solenoid valve 5 is operated to control the amount of water supplied to an outlet side of the boiler 1 after passage through the first passage 6 for control of a water spray flow rate to turbine 2 inlet vapor. Accordingly, both controls are achieved with the one three port splenoid valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はクローズドランキンサイ
クル型エンジンをそなえた水中航走体の動力装置、詳し
くはその回転数制御のために用いる水制御弁とその流体
通路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power unit for an underwater vehicle equipped with a closed Rankine cycle type engine, and more particularly to a water control valve used for controlling the rotational speed of the vehicle and a fluid passage therefor.

【0002】[0002]

【従来の技術】従来の水中航走体のクローズドランキン
サイクル型エンジンのシステム図を図3に示す。同図に
おいて、水中航走体の高速制御では給水ポンプ吐出流量
WP〔l/min 〕のうち1部(Q1 〔l/min 〕)を水
制御弁Aにより給水ポンプ入口へリターンし、その流量
を調整することによりタービンへの蒸気流量を加減して
回転数を一定に保つ。(このとき水制御弁Bは全閉(I
W2=0mA)である。)また、低速制御では水制御弁A
を全閉(IW1=0mA)として水制御弁Bによりタービ
ン入口蒸気への給水スプレー流量を調整することにより
回転数を一定に保つ。
2. Description of the Related Art FIG. 3 shows a system diagram of a conventional closed Rankine cycle type engine of an underwater vehicle. In the figure, in the high-speed control of the underwater vehicle, a part (Q 1 [l / min]) of the feed water pump discharge flow rate Q WP [l / min] is returned to the water supply pump inlet by the water control valve A. By adjusting the flow rate, the steam flow rate to the turbine is adjusted to keep the rotation speed constant. (At this time, the water control valve B is fully closed (I
W2 = 0 mA). ) In low-speed control, water control valve A
Is fully closed (I W1 = 0 mA), the water control valve B adjusts the flow rate of the water supply spray to the steam at the turbine inlet to keep the rotation speed constant.

【0003】ここで、水制御弁A,Bは各々図4に示す
ような市販の電気式サーボバルブを用いて、水中航走体
ではそれを可変オリフィスとして使っている。
Here, each of the water control valves A and B is a commercially available electric servo valve as shown in FIG. 4, and in the underwater vehicle, it is used as a variable orifice.

【0004】なお、図4(c)において、C1,C2は
それぞれ出口ポートを、Pは入口ポートを、Rはリター
ンポートを意味する。以後はたとえばPに対応するポー
トを「Pポート入口」、C1に対応するポートを「C1
ポート出口」というふうに呼称することとする。
In FIG. 4 (c), C1 and C2 denote outlet ports, P denotes an inlet port, and R denotes a return port. Thereafter, for example, the port corresponding to P is “P port entrance”, and the port corresponding to C1 is “C1
It will be referred to as "port exit".

【0005】図5は上記従来の水制御弁の流量特性図で
ある。図の上方に掲げた図は水制御弁の模式図で、C
1,C2,P,Rは上述の各ポートに対応する記号であ
る。
FIG. 5 is a flow characteristic diagram of the conventional water control valve. The diagram above the diagram is a schematic diagram of the water control valve, C
1, C2, P, and R are symbols corresponding to the above-described ports.

【0006】図に示すように水制御弁・入口出口の差圧
ΔPが一定であれば、従来の水制御弁を2個備えたエン
ジンシステムでは制御電流IW 〔mA〕を増大させると
流量は均一増加する特性である。
As shown in the figure, if the differential pressure ΔP between the water control valve and the inlet / outlet is constant, the flow rate of the conventional engine system having two water control valves increases when the control current I W [mA] is increased. It is a characteristic that increases uniformly.

【0007】[0007]

【発明が解決しようとする課題】上記従来のクローズド
ランキンサイクル型エンジンシステムには解決すべき次
の課題があった。
The above-mentioned conventional closed Rankine cycle type engine system has the following problems to be solved.

【0008】即ち、従来のエンジンシステムでは水制御
弁が2個必要であり、水中航走体の重量増(配管、マニ
ホールド、駆動装置も含む)および信頼性低下(機器が
増える毎に全体の信頼性は低下する)の問題がある。
That is, the conventional engine system requires two water control valves, which increases the weight of the underwater vehicle (including the piping, the manifold, and the driving device) and decreases the reliability (the total reliability increases as the number of devices increases). Is reduced).

【0009】本発明は上記問題を解決するため、従来の
水制御弁2個分の作用を1個で果たすことのできる水制
御弁を備えた水中航走体の動力装置を提供することを目
的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has an object to provide a power unit for an underwater vehicle equipped with a water control valve capable of performing the function of two conventional water control valves by one. And

【0010】[0010]

【課題を解決するための手段】本発明は上記課題の解決
手段として、酸化剤の供給を受ける燃焼手段からの発熱
により蒸気を発生するボイラと、同ボイラからの蒸気に
より作動してプロペラを回転駆動するタービンと、同タ
ービンからの排出蒸気を復水する復水器と、同復水器か
らの水を上記ボイラへ供給する給水ポンプとからなるク
ローズドランキンサイクル型エンジンを備えた水中航走
体の動力装置において、給水ポンプの出口通路とボイラ
の出口通路とを連通する第1の通路と、同第1の通路に
介装された3ポート電磁弁と、同3ポート電磁弁の1つ
のポートと給水ポンプの入口通路とを連通する第2の通
路とを具備してなることを特徴とする水中航走体の動力
装置を提供しようとするものである。
According to the present invention, as a means for solving the above-mentioned problems, a boiler for generating steam by heat generated from a combustion means supplied with an oxidizing agent, and a propeller is operated by operating the steam from the boiler. An underwater vehicle equipped with a closed Rankine cycle type engine comprising a driving turbine, a condenser for condensing steam discharged from the turbine, and a feed pump for supplying water from the condenser to the boiler A first passage communicating between an outlet passage of the water supply pump and an outlet passage of the boiler, a three-port solenoid valve interposed in the first passage, and one port of the three-port solenoid valve And a second passage communicating with the inlet passage of the water supply pump.

【0011】[0011]

【作用】本発明は上記のように構成されるので次の作用
を有する。
Since the present invention is constructed as described above, it has the following actions.

【0012】即ち、給水ポンプの出口通路とボイラの出
口通路とを連通する第1の通路と、同第1の通路に介装
された3ポート電磁弁と、同3ポート電磁弁の1つのポ
ートと給水ポンプの入口通路とを連通する第2の通路と
を備えるので、高速制御の場合は3ポート電磁弁を操作
して、第2の通路を経て給水ポンプの入口側へ水を還流
させる量を制御することによってボイラへの給水量を制
御し、低速制御の場合は3ポート電磁弁を操作して、第
1の通路を経てボイラの出口側へ供給する水の量を制御
することによってタービン入口蒸気への給水スプレー流
量を制御し、1個の3ポート電磁弁でそれぞれ高速制御
と低速制御の両方の制御を果たす。
That is, a first passage connecting the outlet passage of the feed water pump and the outlet passage of the boiler, a three-port solenoid valve interposed in the first passage, and one port of the three-port solenoid valve And a second passage communicating with the inlet passage of the water supply pump. In the case of high-speed control, the amount of water to be returned to the inlet side of the water supply pump through the second passage by operating the 3-port solenoid valve. The amount of water supplied to the boiler is controlled by controlling the amount of water supplied to the boiler, and in the case of low-speed control, the amount of water supplied to the outlet side of the boiler via the first passage is controlled by operating the 3-port solenoid valve. The flow rate of the water spray to the inlet steam is controlled, and one 3-port solenoid valve performs both high-speed control and low-speed control.

【0013】[0013]

【実施例】本発明の一実施例を図1及び図2により説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS.

【0014】図1は本実施例に係る水中航走体の動力装
置のシステム図、図2は図1に示される3ポート電磁弁
5の流量特性図で、同図の右端は3ポート電磁弁5の模
式図である。
FIG. 1 is a system diagram of a power unit for an underwater vehicle according to this embodiment, and FIG. 2 is a flow characteristic diagram of a three-port solenoid valve 5 shown in FIG. 1. The right end of the figure is a three-port solenoid valve. It is a schematic diagram of No. 5.

【0015】図1において、1はボイラチューブ、2は
タービン、3は復水器、4は給水ポンプで、これら構成
品は従来と同様である。
In FIG. 1, reference numeral 1 denotes a boiler tube, 2 denotes a turbine, 3 denotes a condenser, and 4 denotes a water supply pump. These components are the same as those in the conventional art.

【0016】5は3ポート電磁弁で水制御弁として用い
られ、第1通路6の中途に介装されている。6は給水ポ
ンプ4の出口通路とボイラチューブ1の出口通路とを連
通する第1通路、7は3ポート電磁弁5の1つのポート
と給水ポンプ4の入口通路とを連通する第2通路であ
る。その他の構成は従来例と格別の差異はない。
Reference numeral 5 denotes a three-port solenoid valve which is used as a water control valve and is provided in the middle of the first passage 6. Reference numeral 6 denotes a first passage connecting the outlet passage of the water supply pump 4 and the outlet passage of the boiler tube 1, and reference numeral 7 denotes a second passage connecting one port of the three-port solenoid valve 5 and the inlet passage of the water supply pump 4. . Other configurations are not particularly different from the conventional example.

【0017】なお、ここに3ポート電磁弁5は電磁気力
によって遠隔操作(手動、自動を問わない)できる三方
弁でさへあれば特に形式は問わない。
Here, the three-port solenoid valve 5 is a three-way valve that can be remotely operated (manually or automatically) by electromagnetic force, and its type is not particularly limited.

【0018】次に上記構成の作用について、3ポート電
磁弁5の流量特性を中心にして説明する。
Next, the operation of the above configuration will be described focusing on the flow characteristics of the three-port solenoid valve 5.

【0019】図2において、水制御弁として用いられる
3ポート電磁弁5は3方弁仕様である。図2にて破線で
示した流量特性はPポート入口、C1ポート出口(流量
1)、C2+Rポート出口(流量Q2 )とした場合の
ものである。なお、図の流量Q1 ,Q2 は図1のQ1
2 とも対応する。これは制御電流IW がプラスの場合
2 〔l/min 〕が増加し(Q1 =0)、マイナスの場
合Q1 〔l/min 〕が増大(Q2 =0)する特性であ
る。ところが水中航走体ではアースが航走体内に落とさ
れているため(OV)、マイナス電流は出力できない。
そのため、3ポート電磁弁5のハード側でナル点をプラ
ス側にシフト(ナルシフト)させて実線の特性とする。
In FIG. 2, a three-port solenoid valve 5 used as a water control valve has a three-way valve specification. Flow rate characteristics shown by the broken line in FIG. 2 P port inlet, C1 port outlet (flow rate Q 1), is of the case of the C2 + R port outlet (flow rate Q 2). The flow rate Q 1, Q 2 figures to Q 1 FIG 1,
Q 2 corresponding to both. This is a characteristic that when the control current I W is positive, Q 2 [1 / min] increases (Q 1 = 0), and when the control current I W is negative, Q 1 [1 / min] increases (Q 2 = 0). However, in the case of an underwater vehicle, a ground current cannot be output because the ground is dropped in the vehicle (OV).
Therefore, the null point is shifted to the plus side (null shift) on the hard side of the three-port solenoid valve 5 to obtain the characteristics indicated by the solid line.

【0020】図2のようにナル点を4mAにした場合、
高速制御では0〜4〔mA〕の区間を用い、Q1 〔l/
min 〕を調整し、低速制御では4〜10〔mA〕の区間
を用いQ2 〔l/min 〕を調整する。
When the null point is set to 4 mA as shown in FIG.
In the high-speed control, a section of 0 to 4 [mA] is used, and Q 1 [l /
min], and Q 2 [l / min] is adjusted in the low speed control using a section of 4 to 10 [mA].

【0021】以上の通り、本実施例によれば、1個の3
ポート電磁弁5によって水中航走体の動力装置の高速制
御及び低速制御の両方を行なうことができ、水制御弁2
個を必要としていた従来例に比し、装置の重量が軽量化
し、かつ、信頼性が向上するという利点がある。
As described above, according to the present embodiment, one 3
The port solenoid valve 5 can perform both high-speed control and low-speed control of the power unit of the underwater vehicle.
There are advantages that the weight of the apparatus is reduced and the reliability is improved as compared with the conventional example that requires the individual pieces.

【0022】[0022]

【発明の効果】本発明は上記のように構成されるので次
の効果を有する。
The present invention has the following effects because it is configured as described above.

【0023】即ち、本発明によれば3ポート電磁弁より
なる水制御弁1個で高速制御、低速制御の両方が可能な
ため、水中航走体の重量が軽減し、かつ、信頼性が向上
する。
That is, according to the present invention, both high-speed control and low-speed control are possible with one water control valve comprising a three-port solenoid valve, so that the weight of the underwater vehicle is reduced and the reliability is improved. I do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る水中航走体の動力装置
のシステム図、
FIG. 1 is a system diagram of a power unit for an underwater vehicle according to an embodiment of the present invention;

【図2】図1に示される3ポート電磁弁(水制御弁)の
流量特性図、
FIG. 2 is a flow characteristic diagram of the 3-port solenoid valve (water control valve) shown in FIG. 1;

【図3】従来の水中航走体のクローズドランキンサイク
ル型エンジンのシステム図、
FIG. 3 is a system diagram of a conventional closed Rankine cycle engine of an underwater vehicle,

【図4】従来の水制御弁の市販品の一例を示す図で、
(a)は上面図、(b)は正面図、(c)は下面図、
(d)は左側面図、
FIG. 4 is a view showing an example of a commercially available water control valve according to the related art.
(A) is a top view, (b) is a front view, (c) is a bottom view,
(D) is a left side view,

【図5】従来の水制御弁の流量特性図である。FIG. 5 is a flow rate characteristic diagram of a conventional water control valve.

【符号の説明】[Explanation of symbols]

1 ボイラチューブ(ボイラ) 2 タービン 3 復水器 4 給水ポンプ 5 3ポート電磁弁 6 第1通路 7 第2通路 DESCRIPTION OF SYMBOLS 1 Boiler tube (boiler) 2 Turbine 3 Condenser 4 Feedwater pump 5 3-port solenoid valve 6 First passage 7 Second passage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化剤の供給を受ける燃焼手段からの発
熱により蒸気を発生するボイラと、同ボイラからの蒸気
により作動してプロペラを回転駆動するタービンと、同
タービンからの排出蒸気を復水する復水器と、同復水器
からの水を上記ボイラへ供給する給水ポンプとからなる
クローズドランキンサイクル型エンジンを備えた水中航
走体の動力装置において、給水ポンプの出口通路とボイ
ラの出口通路とを連通する第1の通路と、同第1の通路
に介装された3ポート電磁弁と、同3ポート電磁弁の1
つのポートと給水ポンプの入口通路とを連通する第2の
通路とを具備してなることを特徴とする水中航走体の動
力装置。
1. A boiler that generates steam by heat generated from a combustion unit that is supplied with an oxidant, a turbine that is operated by the steam from the boiler to rotate a propeller, and condenses steam discharged from the turbine. And a water supply pump for supplying water from the condenser to the boiler, the power unit of the underwater vehicle having a closed Rankine cycle type engine, wherein the outlet passage of the water supply pump and the outlet of the boiler A first passage communicating with the passage, a three-port solenoid valve interposed in the first passage, and one of the three-port solenoid valves.
A power unit for an underwater vehicle, comprising: a second passage communicating between two ports and an inlet passage of a water supply pump.
JP20507795A 1995-07-20 1995-07-20 Underwater vehicle power unit Expired - Lifetime JP2759628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20507795A JP2759628B2 (en) 1995-07-20 1995-07-20 Underwater vehicle power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20507795A JP2759628B2 (en) 1995-07-20 1995-07-20 Underwater vehicle power unit

Publications (2)

Publication Number Publication Date
JPH0933200A true JPH0933200A (en) 1997-02-07
JP2759628B2 JP2759628B2 (en) 1998-05-28

Family

ID=16501049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20507795A Expired - Lifetime JP2759628B2 (en) 1995-07-20 1995-07-20 Underwater vehicle power unit

Country Status (1)

Country Link
JP (1) JP2759628B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150052714A (en) * 2013-11-06 2015-05-14 대우조선해양 주식회사 Weapon firing apparatus using compressed air of high-pressure
CN105254459A (en) * 2015-11-10 2016-01-20 天津宏泰华凯科技有限公司 Emulsion explosive KP machine discharge device
CN107618643A (en) * 2017-09-11 2018-01-23 河海大学 A kind of big specific capacity buoyancy adjustment, emergency self-saving integrated device and submersible
CN113184151A (en) * 2021-06-03 2021-07-30 中国船舶科学研究中心 Buoyancy adjusting system and method for medium-shallow depth submersible

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150052714A (en) * 2013-11-06 2015-05-14 대우조선해양 주식회사 Weapon firing apparatus using compressed air of high-pressure
CN105254459A (en) * 2015-11-10 2016-01-20 天津宏泰华凯科技有限公司 Emulsion explosive KP machine discharge device
CN107618643A (en) * 2017-09-11 2018-01-23 河海大学 A kind of big specific capacity buoyancy adjustment, emergency self-saving integrated device and submersible
CN113184151A (en) * 2021-06-03 2021-07-30 中国船舶科学研究中心 Buoyancy adjusting system and method for medium-shallow depth submersible

Also Published As

Publication number Publication date
JP2759628B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
JPS6254969B2 (en)
JP2759628B2 (en) Underwater vehicle power unit
EP0636791A1 (en) Regenerative pump control
JPH07331705A (en) Oil hydraulic circuit for turning of construction machine
JP3680329B2 (en) Method for controlling power generator
JPH0364603A (en) Method and apparatus for charging steam turbine
JPS59122784A (en) Power recovery system
JP4223711B2 (en) Hydroelectric generator
JP2759634B2 (en) Transmission control device for underwater vehicle
JPH0330564Y2 (en)
JPS581246B2 (en) Steam turbine starting device with turbine bypass system
JPS5912921B2 (en) How to operate a forced circulation boiler
JPS5985486A (en) Water wheel
JPH05296001A (en) Steam pipeline
JPS5827204Y2 (en) Marine steam turbine equipment
JP2639554B2 (en) Hydraulic equipment
JPS595811A (en) Low pressure turbine by-pass device
JPH0565804A (en) Control method for two-stage gas mixing type turbo-generator
JPS62139906A (en) Geothermal turbine
JP2811660B2 (en) Underwater vehicle power system
JPS61119472A (en) Capacity selecting apparatus for vane pump
JPS6156429B2 (en)
JPH052881B2 (en)
JPS6326395Y2 (en)
JPS62258130A (en) Engine equiped with supercharger

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term