JPH0933176A - Heat insulation structure of heating furnace - Google Patents

Heat insulation structure of heating furnace

Info

Publication number
JPH0933176A
JPH0933176A JP20895795A JP20895795A JPH0933176A JP H0933176 A JPH0933176 A JP H0933176A JP 20895795 A JP20895795 A JP 20895795A JP 20895795 A JP20895795 A JP 20895795A JP H0933176 A JPH0933176 A JP H0933176A
Authority
JP
Japan
Prior art keywords
graphite
heating furnace
heat insulation
layer
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20895795A
Other languages
Japanese (ja)
Inventor
Mitsuaki Osada
光昭 他田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP20895795A priority Critical patent/JPH0933176A/en
Publication of JPH0933176A publication Critical patent/JPH0933176A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To ensure energy saving and space saving in a heating furnace using a graphite heater used for high temperature heating by assembling into a first layer of a graphite heat insulation layer a tungsten plate or a molybdenum plate. SOLUTION: There is assembled into a first layer of a graphite heat insulation material a tungsten plate or a molybdenum plate having a lower emissivity and useable at high temperature. For example, in a heating furnace including an oil rotary pump 8, a vacuum pump of a diffusion pump 7, and a graphite heater 3, 0.5mm thick tungsten plate 1 is sticked to the first layer of the graphite heat insulation material 2, on the outside of which the graphite heat insulation material 2 is used. Hereby, there are ensured an energy saving effect in view of power consumption, a compact space saving effect, and inexpensive manufacture of the heating furnace, and in particular the present structure is effective in high temperature application fields at 2000 deg.C or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、黒鉛発熱体を使用した
加熱炉の黒鉛断熱層に反射率の高いタングステン板もし
くはモリブデン板を組み込んだ加熱炉の断熱構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating structure of a heating furnace in which a graphite heat insulating layer of a heating furnace using a graphite heating element is incorporated with a highly reflective tungsten plate or molybdenum plate.

【0002】[0002]

【従来の技術】従来、黒鉛は大気中では700℃以上で
酸化するが、その融点が3500℃以上であるため、真
空もしくは不活性雰囲気において使用され、安価で加工
性の良さから発熱体、断熱材、構造材として広く使用さ
れている。黒鉛発熱体を使用した加熱炉では一般に黒鉛
が断熱層に使用されている。
2. Description of the Related Art Conventionally, graphite oxidizes at 700 ° C. or higher in the atmosphere, but since its melting point is 3500 ° C. or higher, it is used in a vacuum or an inert atmosphere, and it is inexpensive and has good workability. Widely used as materials and structural materials. In a heating furnace using a graphite heating element, graphite is generally used for the heat insulation layer.

【0003】[0003]

【発明が解決しようとする課題】ところで、黒鉛は放射
率が高く、光の熱吸収が良いため、放射加熱が主体とな
る高温域での加熱では、断熱材である黒鉛が熱をよく吸
収してしまうという性質がある。伝熱には、伝導・対流
・放射の3種類があり、一般に伝導・対流・伝熱は、低
温域での加熱効果が大きく、放射伝熱は、絶体温度の4
乗に比例してエネルギーが大きくなるため、高温域での
伝熱加熱に有効である。黒鉛の断熱材は、融点が350
0℃以上と高温に耐える材料であるが、逆に放射加熱が
主体となる高温域では光の熱吸収が良いため、断熱層厚
さを増したり、設備電力を大きくしたりしなければなら
ないという問題があった。本発明は、高温加熱に使用さ
れる黒鉛発熱体を使用した加熱炉において、省エネルギ
ー化、省スペース化を図った加熱炉の断熱構造を提供す
ることを目的とする。
By the way, since graphite has a high emissivity and absorbs light well, the graphite, which is a heat insulating material, absorbs heat well in a high temperature range where radiant heating is the main component. It has the property of being lost. There are three types of heat transfer: conduction, convection, and radiation. Generally, conduction, convection, and heat transfer have a large heating effect in the low temperature range, and radiative heat transfer is at an absolute temperature of 4
Since the energy increases in proportion to the power, it is effective for heat transfer heating in a high temperature range. Graphite insulation has a melting point of 350
Although it is a material that can withstand high temperatures of 0 ° C or higher, conversely, it has good heat absorption of light in the high temperature region where radiant heating is the main, so it is necessary to increase the thickness of the heat insulating layer and increase the equipment power. There was a problem. It is an object of the present invention to provide a heat insulating structure for a heating furnace that uses a graphite heating element used for high-temperature heating and that saves energy and space.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明の加熱
炉の断熱構造は、黒鉛断熱材の第1層目に放射率が低く
かつ高温で使用できるタングステン板もしくはモリブデ
ン板を組み込んだことを特徴とする。
That is, the heat insulating structure of the heating furnace of the present invention is characterized in that the first layer of the graphite heat insulating material is incorporated with a tungsten plate or a molybdenum plate which has a low emissivity and can be used at high temperature. And

【0005】[0005]

【作用】黒鉛発熱体を使用した加熱炉において、黒鉛断
熱材の第1層にタングステン板もしくはモリブデン板を
使用することにより、黒鉛発熱体が放射した放射エネル
ギーの多くは反射され、加熱物を効率よく加熱すること
ができる。そのため、使用電力が少なくて済み、省エネ
ルギー化を図ることができる。また、効率良く断熱でき
ることから、断熱層を薄くすることができ、安価でコン
パクトな加熱炉を形成することもできる。
[Function] In a heating furnace using a graphite heating element, by using a tungsten plate or a molybdenum plate as the first layer of the graphite heat insulating material, most of the radiant energy emitted by the graphite heating element is reflected, and the heated object is efficiently processed. It can be heated well. Therefore, power consumption is small and energy saving can be achieved. Further, since the heat insulation can be performed efficiently, the heat insulation layer can be thinned and an inexpensive and compact heating furnace can be formed.

【0006】[0006]

【実施例】本発明を実施例により説明する。図1におい
て、有効炉内寸法W200×H200×L300油回転
ポンプ、拡散ポンプの真空ポンプと黒鉛発熱体とを備え
た加熱炉において、黒鉛断熱材の第1層目に厚さ0.5
mmのタングステン板を張り合わせ、その外側に黒鉛断
熱材を使用した。実施例に基づいて、タングステン板を
使用した場合と、使用しない場合の電力の計算値と実測
値を比較してみる。黒鉛発熱体の周囲は断熱材で囲まれ
ているため、その放射熱量Qは、次の式で表される。 Q=φσ(T −T ) − ここで、Aは発熱体表面積、φは総括吸収率、
は発熱体表面温度、Tは断熱材表面温度、σはS
tefan−Bolt2munn定数である。また、総
括吸収率φは、次の式で表される。 1/φ=1/ε+(A/A) (1/ε−1) − ここで、Aは断熱材表面積、εは発熱体放射率、
εは断熱材放射率である。ここで、図1で示した条件
を、式に当てはめて断熱層の第1層目にタングステ
ン板を使用した場合と、使用しない場合の電力の計算は
次のとおりである。 a)タングステン板を使用しない場合の電力Qw A=0.182m=0.843m ε=0.95 ε=0.95 またデータ測定によるT=2000℃(2273k)
におけるT=1950℃(2223k)これを、
式に代入し、 Qw=22.1Kw b)タングステン板を使用した場合の電力Qc A=0.182m=0.843m ε=0.26 ε=0.95 またT=2000℃(2273k)でのTをi)と
同じと仮定した場合で計算してみる{T=1950℃
(2223k)}。 Qc=14.1Kw よって(Qw−Qc)/Qw×100=36となって3
6%の省エネが見込める。図1における加熱炉にて消費
電力データを取ったところ、雰囲気温度が2000℃の
ときに、タングステン板を使用しない場合は、25.3
Kw、タングステン板を使用した場合は、18.5Kw
となって27%の省エネとなった。計算値より効率が悪
いのは発熱体端子からのロスが含まれているためであ
る。いずれも本発明による加熱炉の断熱構造は従来のも
のと比べて、約30%前後の省エネルギーという良好な
結果が得られた。
EXAMPLES The present invention will be described with reference to examples. In FIG. 1, in an effective furnace internal size W200 × H200 × L300, in a heating furnace equipped with a vacuum pump such as an oil rotary pump, a diffusion pump, and a graphite heating element, the first layer of the graphite heat insulating material has a thickness of 0.5.
mm tungsten plates were stuck together, and a graphite heat insulating material was used on the outside thereof. Based on the examples, the calculated value and the measured value of the power when the tungsten plate is used and when it is not used will be compared. Since the graphite heating element is surrounded by a heat insulating material, its radiant heat quantity Q is expressed by the following equation. Q = φ 12 A 1 σ (T 1 4 −T 2 4 ) −where A 1 is the surface area of the heating element, φ 12 is the overall absorption rate,
T 1 is the heating element surface temperature, T 2 is the heat insulating material surface temperature, and σ is S
It is a tefan-Bolt2mun constant. The overall absorption rate φ 12 is represented by the following formula. 1 / φ 12 = 1 / ε 1 + (A 1 / A 2 ) (1 / ε 2 −1) − Here, A 2 is the surface area of the heat insulating material, ε 1 is the emissivity of the heating element,
ε 2 is the heat insulating material emissivity. Here, the conditions shown in FIG. 1 are applied to the formula, and the electric powers when the tungsten plate is used as the first layer of the heat insulating layer and when it is not used are calculated as follows. a) Electric power when no tungsten plate is used Qw A 1 = 0.182m 2 A 2 = 0.843m 2 ε 1 = 0.95 ε 2 = 0.95 Further, T 1 = 2000 ° C. (2273k) by data measurement.
T 2 = 1950 ° C. (2223 k) at
Qw = 22.1Kw b) Electric power when using a tungsten plate Qc A 1 = 0.182m 2 A 2 = 0.843m 2 ε 1 = 0.26 ε 2 = 0.95 and T 1 = T = 2000 ° C (2273k) T 2 is assumed to be the same as i). {T 2 = 1950 ° C
(2223k)}. Qc = 14.1Kw Therefore, (Qw−Qc) / Qw × 100 = 36, which is 3
Energy savings of 6% can be expected. Taking power consumption data from the heating furnace shown in FIG. 1, it was found that when the ambient temperature was 2000 ° C. and the tungsten plate was not used, it was 25.3.
18.5Kw when using Kw and tungsten plate
That's a 27% energy savings. The efficiency is lower than the calculated value because the loss from the heating element terminals is included. In all cases, the heat insulating structure of the heating furnace according to the present invention had a good result that the energy saving was about 30% as compared with the conventional one.

【0007】[0007]

【実施例1】以上記したように、本発明に係る加熱炉の
断熱構造は、消費電力の面で省エネルギー効果とコンパ
クトな省スペース効果および安価な加熱炉の製作が可能
となり、特に2000℃以上の高温分野で非常に有効と
いえる。
[Embodiment 1] As described above, the heat insulating structure of the heating furnace according to the present invention enables an energy saving effect in terms of power consumption, a compact space saving effect, and an inexpensive heating furnace to be manufactured. Can be said to be very effective in the high temperature field.

【図面の簡単な説明】[Brief description of drawings]

【図1】黒鉛発熱体を使用した加熱炉。FIG. 1 is a heating furnace using a graphite heating element.

【符号の説明】 1.タングステン板 2.黒鉛断熱材 3.黒鉛発熱体 4.絶縁硝子 5.熱電対 6.真空センサ 7.拡散ポンプ 8.油回転ポンプ[Explanation of Codes] Tungsten plate 2. Graphite insulation 3. Graphite heating element 4. Insulating glass 5. Thermocouple 6. Vacuum sensor 7. Diffusion pump 8. Oil rotary pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛発熱体を使用した加熱炉におい
て、黒鉛断熱層の第1層目にタングステン板もしくはモ
リブデン板を組み込んだことを特徴とする加熱炉の断熱
構造。
1. A heat insulating structure for a heating furnace, wherein a tungsten plate or a molybdenum plate is incorporated in a first layer of the graphite heat insulating layer in a heating furnace using a graphite heating element.
JP20895795A 1995-07-14 1995-07-14 Heat insulation structure of heating furnace Pending JPH0933176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20895795A JPH0933176A (en) 1995-07-14 1995-07-14 Heat insulation structure of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20895795A JPH0933176A (en) 1995-07-14 1995-07-14 Heat insulation structure of heating furnace

Publications (1)

Publication Number Publication Date
JPH0933176A true JPH0933176A (en) 1997-02-07

Family

ID=16564956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20895795A Pending JPH0933176A (en) 1995-07-14 1995-07-14 Heat insulation structure of heating furnace

Country Status (1)

Country Link
JP (1) JPH0933176A (en)

Similar Documents

Publication Publication Date Title
Peng et al. A multilayer film based selective thermal emitter for infrared stealth technology
CN100562971C (en) Infrared radiating element and the gas sensor that uses it
JP2010511304A (en) Quartz sealed heater assembly
US4241292A (en) Resistive heater
JP6301558B2 (en) Thick film heating element with high thermal conductivity on both sides
JPH0933176A (en) Heat insulation structure of heating furnace
US20050205548A1 (en) Integrated thin high temperature heaters
JPS6041769A (en) Fuel cell
WO2012043104A1 (en) Planar heat generation body and heating device
CN112164746B (en) Thermoelectric power generation device
JPS5925937B2 (en) microwave heating furnace
NO894077L (en) GLASS WINDOW.
JPS60159591A (en) Heating furnace
JPWO2002072343A1 (en) Heat ray reflective material and heating device using the same
KR20010079859A (en) Thin film heating element
JPS6028644Y2 (en) Melting furnace electrode
CN1135059C (en) Amorphous metallic alloy electrical heater system
CN219635086U (en) Graphene heating rearview mirror
JPS61116246A (en) Infrared rays radiating body used in liquid
JPH0845651A (en) Double-layered ceramic heater
JP7090904B2 (en) Power generator
KR200263205Y1 (en) Framed electric wall furnace of the flat heating element by using the active carbon fiber
CN2755900Y (en) Carbon fibre quartz glass tube radiator
KR100396092B1 (en) Carbon heater and fabrication method thereof
JPS5923487A (en) Heater

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040601