JPH09330834A - Single-phase three-wire auto-transformer - Google Patents

Single-phase three-wire auto-transformer

Info

Publication number
JPH09330834A
JPH09330834A JP8100661A JP10066196A JPH09330834A JP H09330834 A JPH09330834 A JP H09330834A JP 8100661 A JP8100661 A JP 8100661A JP 10066196 A JP10066196 A JP 10066196A JP H09330834 A JPH09330834 A JP H09330834A
Authority
JP
Japan
Prior art keywords
phase
coils
transformer
winding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8100661A
Other languages
Japanese (ja)
Other versions
JP2829508B2 (en
Inventor
Takehiro Mizuno
剛宏 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO TRANS KK
Original Assignee
TOKYO TRANS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO TRANS KK filed Critical TOKYO TRANS KK
Priority to JP8100661A priority Critical patent/JP2829508B2/en
Publication of JPH09330834A publication Critical patent/JPH09330834A/en
Application granted granted Critical
Publication of JP2829508B2 publication Critical patent/JP2829508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the balance between R- and T-phase winding resistances and reduce the leakage inductance and, at the same time, to improve the efficiency of winding and connecting works by longitudinally arranging coils for R- and T-phases wound around a shell type iron core in the same shape in the height direction of a core window and connecting a neutral point. SOLUTION: After coils 4 and 5 for R- and T-phases 6 and 7 are assembled in the same form, the coils 4 and 5 are wound around the center leg of a shell type iron core 2 in the direction, in which magnetic fluxes are electrically applied. A transformer is assembled by winding the serial and shunt coils of the R-phase 6 around the half of the center leg in the height direction of the window of the core 2 and the serial and shunt coils of the T-phase 7 around the remaining half of the center leg so that the coils of the R- and T-phases 6 and 7 can be closely arranged in series within the extent in which the insulating performance is not deteriorated. When the transformer is assembled in such a way, the balance between R- and T-phase winding resistances can be improved and the leakage inductance of the transformer can be reduced. In addition, the winding and connecting works of the coils can be carried out with high efficiency, because the number of the connecting points of the coils becomes the necessary minimum.

Description

【発明の詳細な説明】 【0001】 【発明に属する技術分野】この発明は、単相三線式単巻
変圧器を製作する場合の工数の削減と原価の低減に関す
るものである。 【0002】 【従来の技術】従来より単相三線式単巻変圧器を製作す
る場合、普通は内鉄型鉄心(図5)使用しますが、図6
の様に単純にT相、R相の必要な線輪を其々A,B鉄心
脚に配置させただけではリーケージインダクタンスが多
くなってしまいます。その理由はR相線輪とT相線輪の
距離が長く(図6中でδで示される距離)リーケージイ
ンダクタンスはほぼ、その両線輪の距離に比例して大き
くなるためです。変圧器の主な特性の一つとして、電圧
変動率がありますがそれはリーケージインダクタンスが
大きくなればなる程大きくなってしまいます。それは回
時に効率も極端に悪くなることと同じであり実際には使
えない変圧器であります。その為、R相、T相の必要な
巻線を面倒でも図7の様に分割し内鉄型鉄心の両脚に半
分づつ巻線し交互に接続する方法が一般的であります。
この様にすればR相、T相の線輪の距離は極端に小さく
なり結果として電圧変動率の小さな効率の良い変圧器が
できます。図9は図8で示す外鉄型鉄心を使用し変圧器
を作る場合で、変圧器を上から見た時の断面図である。
希望としては図9左図でh線輪からa線輪に向け整列密
着巻線をして線輪を完成したいところですが、各線輪間
の距離が大きく又、巻線抵抗もバランスがくずれてしま
い正常な動作は致しません。そのためリーケージインダ
クタンスを少なくする事と抵抗のバランスをとるため各
線輪を半分に分割(図9左)しています。その線輪配置
の組合せを図9右に示します。この様にすれば各線輪間
の距離δは図9の場合は実線の太さであり大変小さくな
ります。更に線輪の配置を考慮することはR相とT相の
電気抵抗のバランスをとることになります。線輪の電気
抵抗はリーケージインダクタンスが電圧変動率に影響を
与えるのと同じように抵抗も変動率に影響を与えます。
巻線作業の最初の時は線輪の径は小さく、一巻き当たり
の巻線電線の長さは短いため、抵抗も小さい。線輪の巻
終部分は線輪径は大きく一巻き当たりの電線長は長く抵
抗も大きい。そのため図9の様に各線輪を分割し、R
相、T相の抵抗が結果的にほぼ等しくなるように接続し
なければならない。ただしこの方法は、巻線作業にも線
輪接続作業にもも多くの労力を要し、困難な作業であ
る。更に分割された線輪を組み合わせるため、電位の異
なる線輪が隣接してしまうため変圧器の絶縁性能も弱め
る事になってしまう。 【0003】 【発明を解決しようとする課題】 イ. 内鉄型鉄心を使用し単相三線式単巻変圧器を作る
場合、直列巻線及び分路巻線共、必要とする巻線の半分
ずつを両鉄心脚に巻き更にそれら線輪を直列又は並列に
接続する為、変圧器製作に対し多くの労力を必要として
いた。 ロ. 変圧器の巻線を交互に組み合わせる事は、変圧器
のリーケージインダクタンスを少なくし、結果的に電圧
変動率及び効率を高めるために採用される方法である
が、電位の違う線輪を結果として隣接する位置におくた
め変圧器の絶縁性能及び耐電圧性能に不適切である。 ハ. 変圧器に焼損事故等発生した場合、事故が大きく
なりやすい。。 本発明は、以上の欠点を解決するためになされたもので
ある。 【0004】 【課題を解決するための手段】外鉄型鉄心(2)の中心
脚(3)にR相線輪(4)及びT相線輪(5)を施す。
同一形状であるが巻線の回転方向は組み立て後、電気的
に磁束が加わる方向とする。図8に示す通り外鉄型鉄心
窓高さ(有効巻線幅)の半分にR相の直列線輪及び分路
線輪を残り半分にT相の直列線輪及び分路線輪をまく。
その線輪を絶縁性能を損なわない範囲で密着させた位置
に配置して変圧器の組み立てを行なう。この場合、図9
の様に其々の線輪を半分づつに分割するとか、線輪の位
置関係を交互に配置する等の煩わしい作業は一切含まな
い。R相、T相の巻線抵抗は完全にバランスがとれ、R
相及びT相が隣接しているためリーケージインダクタン
スは少ない。各線輪の接続箇所も必要最少であり作業能
率も優れている。リーケージインダクタンスを計算する
場合は概略下の式により計算する。 ここで注目しなければならないのは δ である。これ
はR相とT相の線輪同士の距離である。図6で示すR
相、T相の線輪同士の距離は長いため、リーケージイン
ダクタンスLの値は大きい。これを防ぐため図7に於い
ては線輪を半分に分け組合せ配置を行い線輪間同士の距
離の短縮をはかったものである。 内鉄型鉄心を使用し
た場合はこの方法は基本的方法であり常に採用されてい
る。外鉄型鉄心を用いこのδの値を最少にし、その上、
実用性も考慮し変圧器製作工程数も少なくする方法の考
案が今回の発明である。ここで変圧器として前述のリー
ケージインダクタンスLと電圧変動率の関係を考える。
近似的にで計算され、第1項は抵抗降下である。第2項はリーケ
ージリアクタンス降下である。2乗になっているためリ
アクタンス降下はある値以上になると急激に電圧変動率
を悪化させることになる。したがって電圧変動率と変圧
器製作の容易性を考慮し双方を満足させる方法を発明し
た。本発明は、このような方法よりなる外鉄型鉄心を使
用した単相三線式単巻変圧器である。 【0005】 【発明の実施の形態】本発明による変圧器は外鉄型鉄心
を使う。R相、T相の線輪は分割する必要はない。図1
に示す通りR相(4)、T相(5)の線輪を鉄心中心脚
に縦列に並べて配置をするだけでよい。線輪を分割、配
置組合せを考える必要がないため煩雑な線輪接続作業も
要しない。完成時の変圧器総重量も特に変わることはな
い。線輪の数が少なく、接続箇所が少ない程、変圧器は
製作しやすく、故障の発生率も少なくなる。本発明によ
る外鉄型鉄心使用の変圧器は製作は簡単で性能も優れて
いる。 【0006】 【実施例】外鉄型鉄心脚にR相、T相に対応する巻線を
する。本発明による巻線方法は内鉄型鉄心を使う場合と
異なりR相とT相に対応する巻線を施し、線輪は全て直
列接続されその巻線の極性は図2による。(電気的に磁
束が加わる方向)R相、T相の線輪は図9のようには同
心円上に巻くのではなく鉄心中心脚の長さ方向を半分と
し、其々にR相、T相の線輪を縦列に並べて配置する。
巻線の巻回数、電線の太さ等は基本的な交流理論によ
る。即ち必要巻回数は E=4.44fNBAx10−8 (V) でありる。 ここに E:電圧 V f:周波数 Hz N:
巻回数 B:磁束密度 ガウス A:鉄心断面積 cm 磁束密度は鉄心材質により変わり11000〜1500
を選ぶ。又、電線の太さは流れる電流の大きさにより変
わり、電線断面積1mm当たり2〜2.5Aを選べば良
い。巻線は共通巻線を下巻としその上に直列巻線を巻き
それぞれを直列結線するだけでよい。 【0007】 【発明の効果】本発明による製作方法を採用した変圧器
は基本の動作特性の全てを損なわないものである変圧器
製作にあたって、巻線作業が簡単で、更にその結線作業
も最小の労力で済ませる事が出来る。内鉄型鉄心を使用
する場合に比較して線輪の数は同一変圧条件において半
分で済ませる事ができる。それと同時に線輪の結線も半
分以となる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to a reduction in man-hour and cost in manufacturing a single-phase three-wire type autotransformer. 2. Description of the Related Art Conventionally, when manufacturing a single-phase three-wire type autotransformer, a core-type iron core (FIG. 5) is usually used, but FIG.
As described above, simply arranging the necessary T-phase and R-phase wires on the A and B iron legs respectively increases the leakage inductance. The reason is that the distance between the R-phase coil and the T-phase coil is long (distance indicated by δ in Fig. 6), and the leakage inductance increases almost in proportion to the distance between the two coils. One of the main characteristics of a transformer is the voltage regulation, which increases as the leakage inductance increases. It is the same as the efficiency becomes extremely bad at the time, and it is a transformer that cannot be used in practice. For this reason, it is common to split the windings required for R-phase and T-phase as shown in Fig. 7 and connect them halfway to both legs of the inner iron core and connect them alternately.
In this way, the distance between the R-phase and T-phase wire loops becomes extremely small, and as a result, an efficient transformer with a small voltage fluctuation rate can be obtained. FIG. 9 is a cross-sectional view when the transformer is viewed from above in a case where the transformer is manufactured using the shell-type iron core illustrated in FIG. 8.
Hopefully, we would like to complete the wire loop by aligning and winding coils from the h wire to the a wire in the left diagram in Fig. 9, but the distance between each wire is large and the winding resistance is out of balance. It does not work properly. Therefore, in order to reduce leakage inductance and balance the resistance, each wire is divided into half (Fig. 9 left). Fig. 9 right shows the combination of the wire loop arrangement. In this case, the distance δ between the loops is the thickness of the solid line in the case of Fig. 9 and is very small. In addition, considering the arrangement of the wire loop will balance the electrical resistance of the R and T phases. The electrical resistance of a coil affects the rate of change in the same way that leakage inductance affects the rate of voltage change.
At the beginning of winding work, the diameter of the coil is small, and the length of the winding wire per winding is short, so the resistance is also small. At the end of the winding of the wire, the wire diameter is large, the wire length per winding is long, and the resistance is large. Therefore, each wire loop is divided as shown in FIG.
The connection must be made so that the resistances of the phases, T, are eventually approximately equal. However, this method requires a lot of labor for both the winding operation and the wire connection operation, and is a difficult operation. Further, since the divided wires are combined, wires having different potentials are adjacent to each other, so that the insulation performance of the transformer is also reduced. [0003] Problems to be Solved by the Invention When making a single-phase three-wire type autotransformer using a core-type iron core, for both series and shunt windings, wrap half of the required winding on both core legs, and then connect those wires in series or To connect them in parallel, a lot of labor was required for transformer production. B. Alternating the windings of the transformer is a method adopted to reduce the leakage inductance of the transformer and, consequently, increase the voltage fluctuation rate and efficiency. The transformer is not suitable for the insulation performance and the withstand voltage performance of the transformer. C. In the event of a transformer burnout accident, etc., the accident is likely to increase. . The present invention has been made to solve the above drawbacks. [0004] An R-phase wire ring (4) and a T-phase wire ring (5) are provided on a center leg (3) of a shell-type iron core (2).
It has the same shape, but the direction of rotation of the winding is the direction in which magnetic flux is applied electrically after assembly. As shown in FIG. 8, the R-phase series wire and the shunt wire are laid on half of the shell-type iron core window height (effective winding width), and the T-phase wire and shunt wire are wrapped on the other half.
The transformer is assembled by arranging the wire loops at a position where the insulation is not impaired as far as the insulation performance is not impaired. In this case, FIG.
This does not include any troublesome work such as dividing each wire loop into halves or arranging the positional relationship of the wire loops alternately. R-phase and T-phase winding resistances are perfectly balanced,
Since the phase and the T phase are adjacent, the leakage inductance is small. The number of connection points for each wire loop is also the minimum required, and work efficiency is excellent. When calculating the leakage inductance, it is roughly calculated by the following equation. What we need to focus on here is δ. This is the distance between the R-phase and T-phase wires. R shown in FIG.
Since the distance between the phase and T-phase wires is long, the value of the leakage inductance L is large. In order to prevent this, in FIG. 7, the wire loop is divided into halves and combined and arranged to reduce the distance between the wire loops. This method is a basic method when an inner iron core is used, and is always adopted. The value of δ is minimized using an outer iron core,
The invention of the present invention is a method for reducing the number of transformer manufacturing steps in consideration of practicality. Here, the relationship between the above-described leakage inductance L and the voltage fluctuation rate as a transformer will be considered.
Approximately Where the first term is the resistance drop. The second term is the leakage reactance drop. Since it is squared, when the reactance drop exceeds a certain value, the voltage fluctuation rate rapidly deteriorates. Therefore, a method for satisfying both of them in consideration of the voltage fluctuation rate and the ease of manufacturing the transformer has been invented. The present invention is a single-phase three-wire autotransformer using a shell-type iron core formed by such a method. [0005] A transformer according to the present invention uses a shell-type iron core. It is not necessary to divide the R-phase and T-phase loops. FIG.
As shown in the above, it is only necessary to arrange the R-phase (4) and T-phase (5) wires in tandem on the iron core center leg. Since there is no need to divide the wire loop and consider the combination of arrangements, there is no need for complicated wire loop connection work. The total gross weight of the completed transformer will not change. The smaller the number of wires and the fewer connections, the easier the transformer is to manufacture and the lower the probability of failure. The transformer of the present invention using a shell-type iron core is simple to manufacture and has excellent performance. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A winding corresponding to the R-phase and the T-phase is wound on a shell-type iron core leg. The winding method according to the present invention is different from the case of using a core type iron core, in that windings corresponding to the R phase and the T phase are applied, all the wires are connected in series, and the polarity of the windings is as shown in FIG. (The direction in which the magnetic flux is applied electrically) The R-phase and T-phase loops are not wound on concentric circles as shown in FIG. Are arranged in a column.
The number of turns of the winding, the thickness of the electric wire, and the like are based on the basic AC theory. That is, the required number of turns is E = 4.44fNBA × 10 −8 (V). Where E: voltage V f: frequency Hz N:
Number of windings B: magnetic flux density Gauss A: iron core cross-sectional area cm 2 The magnetic flux density varies depending on the material of the iron core, from 11000 to 1500
Choose. Further, the thickness of the electric wire varies depending on the magnitude of the flowing current, and it is sufficient to select 2 to 2.5 A per 1 mm of the cross-sectional area of the electric wire. As for the windings, it is only necessary to form a lower winding with a common winding, wind a series winding thereon, and connect each of them in series. A transformer employing the manufacturing method according to the present invention does not impair all of the basic operating characteristics. In manufacturing a transformer, the winding operation is simple and the connection operation is minimal. It can be done with effort. Compared to the case where the inner iron core is used, the number of wires can be reduced to half under the same transformation condition. At the same time, the wire connection is reduced by more than half.

【図面の簡単な説明】 【図1】本発明品の斜視図 【図2】単相三線式単巻変圧器回路図の一例 【図3】本発明変圧器の線輪と配置の関係図 【図4】単相三線式単巻変圧基本回路図 入力側電圧
を200Vとする。出力側電圧は94Vに降圧するもの
と仮定する。各極の端子記号を回路図の様にR相、T
相、負荷側として r、tと決めた。単巻変圧器の線輪
の呼び方を図の様に直列巻線、分路巻線ときめた。 【図5】内鉄型鉄心 【図6】内鉄型鉄心を使い変圧器を製作する場合、この
図面の様に巻線し接続すれば良い様に思われるが変圧器
の性能は出ない。 【図7】この図面の様に各線輪を半分ずつに分けて交互
に配置し接続する必要があるこの作業は大変複雑である
が実際に行なわれている。 【図8】外鉄型鉄心 【図9】外鉄型鉄心を使い普通の巻線方法を示す。線輪
分割と交互配置 【符号の説明】 1 内鉄型鉄心 2 外鉄型鉄心 3 中心脚 線輪が配置されるところ 4 R相線輪 直列線輪と分路線輪が巻線されている 5 T相線輪 直列線輪と分路線輪が巻線されている 6 R相 7 T相 8 直列線輪 回路に直列にはいる線輪 9 分路線輪 回路に並列にはいる線輪であり共通巻
線、又は打ち消し巻線と呼ぶこともある。 10 窓高さ 線輪が通過する鉄心部分で長い部分 11 n1 R相分路線輪巻始 12 n2 T相分路線輪巻始 13 n n1とn2の接続点 出力側の中性点
となる
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the product of the present invention. FIG. 2 is an example of a circuit diagram of a single-phase three-wire type autotransformer. FIG. 3 is a diagram showing the relationship between wires and arrangement of the transformer of the present invention. FIG. 4 is a single-phase three-wire single-turn transformer basic circuit diagram. The input side voltage is 200V. It is assumed that the output voltage drops to 94V. The terminal symbol of each pole is R phase, T
The phase and load side were determined as r and t. The windings of the autotransformer were called series winding and shunt winding as shown in the figure. [Fig. 5] Inner iron core [Fig. 6] When a transformer is manufactured using an inner iron core, it seems that winding and connection should be performed as shown in this drawing, but the performance of the transformer does not appear. [FIG. 7] As shown in this drawing, it is necessary to divide each wire ring into halves and alternately arrange and connect them. This work is very complicated, but it is actually performed. FIG. 8 shows a conventional winding method using a shell-type iron core. [Circuit Description] 1 Inner iron core 2 Outer iron core 3 Center leg Where the wire ring is placed 4 R phase wire ring Series wire and shunt wire are wound 5 T-phase coil 6 R-phase 7 T-phase 8 with shunt coil wound around serial coil and shunt coil 9 Wire that is in series with circuit 9 Shunt coil This is a wire that is parallel to circuit and common. It may also be called a winding or a canceling winding. 10 Window height Long part of the iron core through which the wire loop passes 11 n1 Start of R-phase shunt loop 12 n2 Start of T-phase shunt loop 13 n Connection point between n1 and n2 Becomes a neutral point on the output side

Claims (1)

【特許請求の範囲】 【請求事項1】 外鉄型鉄心の鉄心窓高さ方向に同一
に巻線されたR相及びT相用の線輪を縦列に並べて配置
させ中性点を接続された単相三線式単巻変圧器。
[Claims] [Claim 1] R-phase and T-phase windings, which are wound in the same direction as the height of the outer core type iron core window, are arranged in tandem to connect the neutral points. Single-phase three-wire autotransformer.
JP8100661A 1996-03-15 1996-03-15 Single-phase three-wire single-turn transformer Expired - Lifetime JP2829508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8100661A JP2829508B2 (en) 1996-03-15 1996-03-15 Single-phase three-wire single-turn transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8100661A JP2829508B2 (en) 1996-03-15 1996-03-15 Single-phase three-wire single-turn transformer

Publications (2)

Publication Number Publication Date
JPH09330834A true JPH09330834A (en) 1997-12-22
JP2829508B2 JP2829508B2 (en) 1998-11-25

Family

ID=14279991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8100661A Expired - Lifetime JP2829508B2 (en) 1996-03-15 1996-03-15 Single-phase three-wire single-turn transformer

Country Status (1)

Country Link
JP (1) JP2829508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046582A (en) * 2016-09-06 2017-03-02 卓男 宮坂 Single phase two-wire type 50/100 v step-down device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046582A (en) * 2016-09-06 2017-03-02 卓男 宮坂 Single phase two-wire type 50/100 v step-down device

Also Published As

Publication number Publication date
JP2829508B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US3996543A (en) Current transformer
US2470598A (en) Transformer windings
US3633273A (en) Method of constructing electrical windings
US3195088A (en) High current winding for electrical inductive apparatus
US6278355B1 (en) Transformer winding
JP2829508B2 (en) Single-phase three-wire single-turn transformer
US3546644A (en) Electrical winding having transposed sheet conductors
CA1263159A (en) Oscillating flux transformer
US1875590A (en) Current transformer
US3621428A (en) Electrical windings and method of constructing same
WO1993013588A1 (en) Five-leg core type three-fold frequency multiplier
US4638177A (en) Rotating flux transformer
US6606020B1 (en) Low cost method of making a high impedance electrical transformer and products of said method
JPH05159952A (en) Zero-phase current transformer and winding method therefor
JPH08335520A (en) Scott connected transformer
JP4648954B2 (en) Zero phase current transformer
RU2076366C1 (en) Power transformer
JPH11508414A (en) Transformer
JPH01310521A (en) Scott-connected transformer
JPH01105509A (en) Scott connection transformer
JPS6214656Y2 (en)
JPS6320098Y2 (en)
JPH0374014B2 (en)
JPS6348409B2 (en)
JPH04196302A (en) Transformer