JPH09330717A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH09330717A
JPH09330717A JP8147027A JP14702796A JPH09330717A JP H09330717 A JPH09330717 A JP H09330717A JP 8147027 A JP8147027 A JP 8147027A JP 14702796 A JP14702796 A JP 14702796A JP H09330717 A JPH09330717 A JP H09330717A
Authority
JP
Japan
Prior art keywords
carbon
lithium ion
lithium
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8147027A
Other languages
Japanese (ja)
Other versions
JP4187282B2 (en
Inventor
Isato Higuchi
勇人 樋口
Keiichiro Uenae
圭一郎 植苗
Naoto Akaha
尚登 赤羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP14702796A priority Critical patent/JP4187282B2/en
Publication of JPH09330717A publication Critical patent/JPH09330717A/en
Application granted granted Critical
Publication of JP4187282B2 publication Critical patent/JP4187282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery employing a low crystalline carbon as a negative active substance which is superior in safety, high charging capacity, and superior practicality. SOLUTION: A lithium ion secondary battery having a positive electrode made of lithium transition metal oxide, a negative electrode made of a carbonaceous material, and an organic electrolyte 3, wherein a negative electrode active substance is composed of carbon particles of 3.45Å or more in average inter- layer distance [d002], and the carbon particles 1 are coated with an ion conductive polymer solid electrolyte 2 with lithium ion conductivity at normal temperature is 5×10<-5> S/cm or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カ─ボン材料から
なる負極を使用したリチウムイオン二次電池に関し、さ
らに詳しくは負極活物質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery using a negative electrode made of a carbon material, and more particularly to improvement of a negative electrode active material.

【0002】[0002]

【従来の技術】高エネルギ―密度、高起電力を有する負
極にリチウム金属を用いたリチウム電池は、充電の際、
リチウム金属表面に針状の樹脂状生成物(デンドライ
ト)が形成され、これがセパレ―タを貫通して正極と接
触することにより、短絡を生じ、発熱、発火などの安全
性に大きな問題を抱えている。
2. Description of the Related Art A lithium battery using lithium metal for a negative electrode having high energy density and high electromotive force is
A needle-like resinous product (dendrites) is formed on the surface of the lithium metal, which penetrates the separator and contacts the positive electrode, causing a short circuit, which causes serious safety problems such as heat generation and ignition. There is.

【0003】リチウム金属負極に代わるものとして、特
公平4−24831号、同5−17669号などの公報
において、リチウムイオンをカ─ボン層間に吸蔵、放出
させることで充放電反応を行うことができるカ─ボン材
料が数多く検討されている。しかし、カ─ボン材料は、
出発材料、黒鉛化度などにより電池特性に及ぼす影響が
相違し、最適なカ─ボン材料を一義的に決定することは
困難である。
As an alternative to the lithium metal negative electrode, in Japanese Patent Publication Nos. 4-24831 and 5-17669, a charge / discharge reaction can be carried out by inserting and extracting lithium ions between carbon layers. Many carbon materials are being studied. However, the carbon material is
The influence on the battery characteristics differs depending on the starting material, the degree of graphitization, etc., and it is difficult to uniquely determine the optimum carbon material.

【0004】現在、商品化されているリチウムイオン二
次電池に利用されているカ─ボン材料の多くは、積層構
造を有する黒鉛化カ─ボンか、低結晶性カ─ボンであ
る。このうち、黒鉛化カ─ボンは、カ─ボン重量当たり
の容量が天然黒鉛の理論容量である372mAh/gに
制限されるとともに、3次元方向に成長した積層構造が
電解液との反応性を高め、分解ガスの発生による電池内
圧の上昇が起こるため、安全性の問題や、電解液との組
み合わせが制限されるという問題がある。実際、「第6
2回電気化学春期大会予稿集」(1995年)などに
は、黒鉛化カ─ボンを代表的な有機溶媒であるプロピレ
ンカ―ボネ―トと組み合わせた場合、充電不可能である
ことが報告されている。
Currently, most of carbon materials used in commercialized lithium ion secondary batteries are graphitized carbon having a laminated structure or low crystalline carbon. Of these, graphitized carbon is limited in capacity per carbon weight to 372 mAh / g, which is the theoretical capacity of natural graphite, and the laminated structure grown in the three-dimensional direction increases the reactivity with the electrolytic solution. Since the internal pressure of the battery rises due to the generation of decomposed gas, there are problems of safety and limitation of combination with the electrolytic solution. In fact, "6th
In the 2nd Electrochemical Spring Conference Proceedings "(1995), it was reported that when graphitized carbon was combined with propylene carbonate, which is a typical organic solvent, it could not be charged. ing.

【0005】これに対し、低結晶性カ─ボンの一部に
は、積層構造を有する部分以外に、未結晶部分にも多量
のリチウムイオンを吸蔵することができるため、天然黒
鉛より大きな容量を示すものがあり、しかも低結晶性カ
─ボンは積層構造の発達が未熟であるため、充放電可能
な電解液の組み合わせの制限が緩和できることから、リ
チウムイオン二次電池の負極活物質として期待されてい
る。
On the other hand, in a part of the low crystalline carbon, a large amount of lithium ions can be occluded not only in the part having the laminated structure but also in the non-crystalline part, so that it has a larger capacity than natural graphite. Moreover, since the low crystallinity carbon has an immature laminated structure, the restrictions on the combination of chargeable / dischargeable electrolytes can be relaxed, and it is therefore expected as a negative electrode active material for lithium ion secondary batteries. ing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、低結晶
性カ─ボンは、黒鉛化カ─ボンと比べて、金属リチウム
がカ―ボン表面で析出する可能性が高くなり、樹脂状の
生成物が発生しやすく、この金属リチウムの析出によつ
て、安全性が損なわれたり、円滑な充放電反応が妨げら
れ、充電容量が劣るという問題があつた。
However, the low crystalline carbon has a higher possibility that metallic lithium is deposited on the surface of the carbon as compared with the graphitized carbon, and the resinous product is It is liable to occur, and the deposition of metallic lithium causes problems that safety is impaired, smooth charge / discharge reaction is hindered, and charge capacity is deteriorated.

【0007】したがつて、本発明は、負極活物質に低結
晶性カ─ボンを用いた場合の上記問題を解決し、安全性
にすぐれ、かつ充電容量の大きい、実用性にすぐれるリ
チウムイオン二次電池を提供することを目的としてい
る。
Therefore, the present invention solves the above problems when a low crystalline carbon is used for the negative electrode active material, and is a lithium ion which is excellent in safety and has a large charge capacity and excellent practicality. The purpose is to provide a secondary battery.

【0008】[0008]

【課題を解決するための手段】本発明者らは、まず、黒
鉛化カ─ボンと低結晶性カ─ボンの充放電特性の相違を
明らかにするため、メソカ─ボンマイクロビ─ズを3,
000℃で焼成した黒鉛化カ─ボン(d002:3.3
7Å)と700℃で焼成した低結晶性カ─ボン(d00
2:3.61A)を用いて、負極充放電特性を検討し
た。
[Means for Solving the Problems] To clarify the difference between the charge and discharge characteristics of graphitized carbon and low crystalline carbon, the present inventors firstly investigated mesocarbon microbeads. ,
Graphitized carbon (d002: 3.3) fired at 000 ° C
7Å) and low crystalline carbon (d00)
2: 3.61 A) was used to examine the negative electrode charge / discharge characteristics.

【0009】図2に、この結果を示す。リチウムイオン
二次電池では、充電を行うとカ─ボン中にリチウムイオ
ンが吸蔵されて電位が金属リチウムの電位である0Vに
近づく。ここで、同図に示すように、低結晶性カ─ボン
は、黒鉛化カ─ボンに比べ、非常に高容量を示し、かつ
高電位域に電圧変化の挙動がみられないことから、電解
液の分解はほとんど起こらない。
The results are shown in FIG. When a lithium ion secondary battery is charged, lithium ions are occluded in the carbon and the potential approaches 0 V which is the potential of metallic lithium. Here, as shown in the figure, the low crystalline carbon has a much higher capacity than the graphitized carbon, and the behavior of voltage change is not observed in the high potential region. Almost no liquid decomposition occurs.

【0010】しかし、低結晶性カ─ボンの充電曲線から
わかるように、低結晶性カ─ボンでは、充電容量の多く
を0V付近で得るため、カ─ボン表面にリチウム金属が
析出する可能性が高くなる。この原因を検討したとこ
ろ、低結晶性カ─ボンはカ─ボン内へのリチウムイオン
の拡散速度が遅く、その拡散過電圧により生じる充電電
位が金属リチウムの析出電位に近いためであることがわ
かつた。
However, as can be seen from the charging curve of the low crystalline carbon, in the low crystalline carbon, since most of the charging capacity is obtained near 0 V, there is a possibility that lithium metal may be deposited on the surface of the carbon. Becomes higher. As a result of studying the cause, it was found that the low crystalline carbon has a slow diffusion rate of lithium ions into the carbon and the charging potential caused by the diffusion overvoltage is close to the deposition potential of metallic lithium. .

【0011】反応種の移動に際して生じる抵抗を測定す
るには、定電位交流インピ─ダンス法があるが、これを
用いて黒鉛化度を決定するパラメ―タのひとつである平
均層間距離〔d002〕と金属リチウム電位付近の負極
中におけるリチウムイオンの拡散係数との関係を調べ
た。この結果を示す図3から、d002が3.45Å以
上になると、リチウムの拡散速度の著しい低下が起こ
る。この結果からもわかるように、d002が3.45
Å以上の低結晶性カ─ボンでは、拡散過電圧が大きく、
金属リチウムがカ─ボン表面に析出しやすい。
A constant potential AC impedance method is available for measuring the resistance generated when the reactive species move. The average inter-layer distance [d002] is one of the parameters for determining the graphitization degree using this method. And the diffusion coefficient of lithium ions in the negative electrode near the metallic lithium potential were investigated. From FIG. 3 showing this result, when d002 becomes 3.45Å or more, the diffusion rate of lithium remarkably decreases. As can be seen from this result, d002 is 3.45.
With a low crystalline carbon of Å or higher, the diffusion overvoltage is large,
Lithium metal easily deposits on the carbon surface.

【0012】本発明者らは、つぎに、このような低結晶
性カ─ボンの表面に金属リチウムが析出するのを防ぐ方
法について検討した。その結果、低結晶性カ─ボンの表
面をリチウムイオン導電性を有しかつ電気伝導性の高い
層で被覆すると、上記問題を解決できることがわかつ
た。図1に示すように、カ─ボン粒子1を高分子固体電
解質膜2により被覆すると、この高分子固体電解質膜2
の遮蔽効果により、有機電解液3がカ─ボン表面に直接
接触するのが抑制される。
The present inventors next examined a method for preventing the deposition of metallic lithium on the surface of such a low crystalline carbon. As a result, it has been found that the above problem can be solved by coating the surface of the low crystalline carbon with a layer having lithium ion conductivity and high electric conductivity. As shown in FIG. 1, when the carbon particles 1 are covered with the solid polymer electrolyte membrane 2, the solid polymer electrolyte membrane 2
Due to the shielding effect, the direct contact of the organic electrolytic solution 3 with the carbon surface is suppressed.

【0013】ここで、高分子固体電解質膜を設けると、
遮蔽効果によりリチウムイオンがカ─ボン内部に浸透で
きず、リチウムイオンの吸蔵が困難となるため、導電性
を制限する必要がある。つまり、高分子固体電解質膜
は、活物質である低結晶性カ─ボンに比べて、導電性が
低くかつリチウムイオン伝導度が高いときに、リチウム
金属の析出に対する過電圧が、カ─ボン粒子と上記膜と
の界面に比べて、上記膜と有機電解液との界面の方で大
きくなり、カ─ボン電極表面上でのリチウムの樹脂状生
成物の生成が防がれることになる。
Here, when the solid polymer electrolyte membrane is provided,
Due to the shielding effect, lithium ions cannot penetrate into the inside of the carbon, which makes it difficult to store lithium ions. Therefore, it is necessary to limit the conductivity. That is, when the solid polymer electrolyte membrane has low conductivity and high lithium ion conductivity as compared with the low crystalline carbon that is the active material, the overvoltage for deposition of lithium metal is The interface between the membrane and the organic electrolyte is larger than the interface with the membrane, and the formation of a resinous product of lithium on the carbon electrode surface is prevented.

【0014】このような遮蔽効果を示して、充放電反応
において十分な電池特性を得るためには、高分子固体電
解質膜は、常温におけるリチウムイオン伝導度が5×1
-5S/cm以上であることが必要であり、これより低く
なると電池特性が悪化する。一方、このような高分子固
体電解質膜は、カ─ボン粒子表面でリチウムが析出した
場合に、内部からの樹脂状生成物の成長に対する遮蔽効
果も兼ねており、セパレ―タの貫通による短絡を起こし
にくく、安全性の高いリチウムイオン二次電池を提供す
るという効果をもたらすものである。
In order to exhibit such a shielding effect and obtain sufficient battery characteristics in the charge / discharge reaction, the solid polymer electrolyte membrane has a lithium ion conductivity of 5 × 1 at room temperature.
It is necessary to be 0 -5 S / cm or more, and if it is lower than this, the battery characteristics deteriorate. On the other hand, such a polymer solid electrolyte membrane also has a shielding effect on the growth of resinous products from the inside when lithium is deposited on the surface of carbon particles, and thus short-circuiting due to the penetration of the separator. This brings about an effect of providing a lithium-ion secondary battery that is hard to cause and has high safety.

【0015】本発明は、以上の知見を基づき完成された
ものであり、リチウム遷移金属酸化物からなる正極、カ
─ボン材料からなる負極および有機電解液を有するリチ
ウムイオン二次電池において、負極活物質が平均層間距
離〔d002〕が3.45Å以上のカ─ボン粒子からな
り、かつこのカ─ボン粒子が常温におけるリチウムイオ
ン伝導度が5×10-5S/cm以上であるイオン伝導性高
分子固体電解質で被覆されていることを特徴とするリチ
ウムイオン二次電池に係るものである。
The present invention has been completed based on the above findings, and in a lithium ion secondary battery having a positive electrode made of a lithium transition metal oxide, a negative electrode made of a carbon material, and an organic electrolyte, a negative electrode active material is obtained. The substance consists of carbon particles having an average inter-layer distance [d002] of 3.45 Å or more, and the carbon particles have a high ionic conductivity of lithium ion conductivity of 5 × 10 -5 S / cm or more at room temperature. The present invention relates to a lithium ion secondary battery characterized by being coated with a molecular solid electrolyte.

【0016】[0016]

【発明の実施の形態】本発明に用いるカ―ボン材料は、
低結晶性カ─ボンとして、平均層間距離〔d002〕が
3.45Å以上(通常4.0Å程度まで)のカ─ボン粒
子であればよく、その原料や製法についてはとくに限定
されない。c軸方向の結晶格子サイズ〔Lc〕が100
Å以下であると、これは積層構造のより未発達のカ─ボ
ンであるため、容量の大きな負極を得ることができ、と
くに好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon material used in the present invention is
As the low crystalline carbon, carbon particles having an average interlayer distance [d002] of 3.45Å or more (usually up to about 4.0Å) may be used, and the raw material and the manufacturing method thereof are not particularly limited. The crystal lattice size [Lc] in the c-axis direction is 100.
When it is not more than Å, this is a carbon having a more undeveloped laminated structure, so that a negative electrode having a large capacity can be obtained, which is particularly preferable.

【0017】本発明においては、このようなカ─ボン粒
子を負極活物質として用いる一方、このカ─ボン粒子を
常温におけるリチウムイオン伝導度が5×10-5S/cm
以上、好ましくは1×10-4S/cm以上であるイオン伝
導性高分子固体電解質で被覆する。上記のようなリチウ
ムイオン伝導度を有する高分子固体電解質としては、ポ
リエチレングリコ―ル、ポリエチレンオキシド、ポリプ
ロピレンオキシド、エチレンオキシドとプロピレンオキ
シドとの共重合体、これらの混合物、あるいはこれらの
イソシアネ―ト架橋体などを挙げることができる。
In the present invention, while such carbon particles are used as a negative electrode active material, the carbon particles have a lithium ion conductivity of 5 × 10 −5 S / cm at room temperature.
Above, it is preferably coated with an ion conductive polymer solid electrolyte having a concentration of 1 × 10 −4 S / cm or more. As the polymer solid electrolyte having lithium ion conductivity as described above, polyethylene glycol, polyethylene oxide, polypropylene oxide, a copolymer of ethylene oxide and propylene oxide, a mixture thereof, or a crosslinked isocyanate thereof. And so on.

【0018】上記のリチウムイオン伝導度とは、高分子
固体電解質とリチウム電解質であるLiPF6 とを重量
比5:1で溶媒を用いて混合し、これを乾燥して薄膜化
したものをステンレスで挟んだセルを作製し、室温中F
FT(周波数フ─リエ変換)アナライザ─を用いて、交
流インピ─ダンス(周波数100mHz〜100kH
z)測定を行い、そのバルクインピ─ダンス(抵抗)の
値をいう。電池中では高分子固体電解質がカ─ボン粒子
を被覆するため、上記電解質の直接のリチウムイオン伝
導度を測定できないが、上記測定条件は電池内部の条件
とほぼ同等と考えられるため、伝導度の変化は少ないも
のと考えられる。
The above-mentioned lithium ion conductivity means that a solid polymer electrolyte and LiPF 6 which is a lithium electrolyte are mixed at a weight ratio of 5: 1 using a solvent and dried to form a thin film using stainless steel. Create a sandwiched cell and use F at room temperature.
AC impedance (frequency 100 mHz to 100 kHz) using an FT (frequency Fourier transform) analyzer
z) The value of the bulk impedance (resistance) is measured. In the battery, the solid polymer electrolyte coats carbon particles, so the direct lithium ion conductivity of the electrolyte cannot be measured.However, the measurement conditions are considered to be almost the same as the internal conditions of the battery. The change is considered to be small.

【0019】このような高分子固体電解質膜は、膜厚が
薄すぎると、カ─ボン粒子の表面を完全に被覆すること
ができず、この膜を設けたことによる遮蔽効果が低下す
るため、通常0.05μm以上、好ましくは0.1μm
以上の平均膜厚とするのがよい。また、膜厚が厚くなり
すぎると、リチウムイオンの移動抵抗が大きくなり、電
池特性を低下させてしまうため、1μm以下であるのが
好ましい。
If the thickness of such a polymer solid electrolyte membrane is too thin, the surface of the carbon particles cannot be completely covered, and the shielding effect due to the provision of this membrane decreases. Usually 0.05 μm or more, preferably 0.1 μm
The above average film thickness is preferable. Further, if the film thickness is too thick, the lithium ion transfer resistance increases and the battery characteristics deteriorate, so the thickness is preferably 1 μm or less.

【0020】高分子固体電解質膜の形成は、一般には、
高分子固体電解質をトルエン、キシレン、N−メチルピ
ロリドンのような溶媒で溶解して樹脂液を調製し、これ
にカ─ボン粉末を浸漬したのち、溶媒を蒸発除去する方
法で行えばよい。このようにカ─ボン粒子の表面に高分
子固体電解質膜を形成したのち、このカ─ボン粉末をバ
インダや溶媒などと混練して負極合剤を調製し、これを
銅箔などの集電材料に塗布乾燥してシ―ト状の負極成形
体とする。
The formation of the polymer solid electrolyte membrane is generally performed by
The solid polymer electrolyte may be dissolved in a solvent such as toluene, xylene or N-methylpyrrolidone to prepare a resin solution, and carbon powder may be dipped in the resin solution, followed by evaporation of the solvent. After forming a solid polymer electrolyte membrane on the surface of carbon particles in this way, this carbon powder is kneaded with a binder, a solvent, etc. to prepare a negative electrode mixture, which is used as a current collector material such as copper foil. And dried to obtain a sheet-shaped negative electrode molded body.

【0021】また、生産性を考慮すると、カ─ボン粉末
とバインダや溶媒を含む負極合剤を集電材料に塗布した
のち、その上に高分子固体電解質の樹脂液を塗布し乾燥
するという方法を採用してもよい。この場合、負極塗膜
中に高分子固体電解質で被覆されない多量の空隙が残る
と、リチウムイオンの伝導が阻害され、電池容量が低下
するため、樹脂液を負極塗膜中に十分に充填させること
が好ましい。
In consideration of productivity, a method in which a negative electrode mixture containing carbon powder, a binder and a solvent is applied to a current collecting material, and then a resin solution of a polymer solid electrolyte is applied and dried. May be adopted. In this case, if a large amount of voids that are not covered with the solid polymer electrolyte remain in the negative electrode coating film, the conduction of lithium ions will be hindered and the battery capacity will decrease, so the resin liquid should be sufficiently filled in the negative electrode coating film. Is preferred.

【0022】図1は、集電材料4に上記の如く高分子固
体電解質膜2により被覆したカ─ボン粒子1を含む負極
塗膜を形成してシ―ト状の負極成形体5とし、これを電
池内に装填した状態を模式的に示したもので、イオン伝
導性高分子固体電解質膜2の遮蔽効果により、有機電解
液3がカ─ボン粒子1表面に接触するのが防がれ、これ
により上記表面へのリチウム金属の樹脂状生成物の析出
が回避され、安全性や電池特性にすぐれるリチウムイオ
ン二次電池の製造を可能とする。
In FIG. 1, a negative electrode coating film containing carbon particles 1 coated with a polymer solid electrolyte membrane 2 as described above is formed on a current collecting material 4 to form a sheet-shaped negative electrode molded body 5, Is schematically shown in a state of being loaded in the battery. The shielding effect of the ion conductive polymer solid electrolyte membrane 2 prevents the organic electrolyte solution 3 from contacting the surface of the carbon particles 1. As a result, the deposition of a resinous product of lithium metal on the surface can be avoided, and a lithium ion secondary battery having excellent safety and battery characteristics can be manufactured.

【0023】本発明において、負極と組み合わせて使用
する正極は、リチウム遷移金属酸化物であればとくに限
定されず、たとえば、LiNiO2 などのリチウムニツ
ケル酸化物、LiCoO2 などのリチウムコバルト酸化
物、LiMnO4 などのリチウムマンガン酸化物などの
金属酸化物を正極活物質とし、これと導電助剤やポリテ
トラフルオロチレンなどのバインダなどを加えた合剤
を、ステンレス鋼製網などの集電材料を芯材として、成
形体に仕上げたものが用いられる。
In the present invention, the positive electrode used in combination with the negative electrode is not particularly limited as long as it is a lithium transition metal oxide, and examples thereof include lithium nickel oxide such as LiNiO 2 , lithium cobalt oxide such as LiCoO 2 , and LiMnO 2. A metal oxide such as lithium manganese oxide such as 4 is used as a positive electrode active material, and a mixture of this and a conductive additive or a binder such as polytetrafluoroethylene is added to a current collecting material such as a stainless steel net. As the material, a finished product is used.

【0024】また、有機電解液の電解質としては、Li
ClO4 、LiPF6 、LiBF4、LiAsF6 、L
iSbF6 、LiCF3 SO3 、LiCF3 CO2 など
や、その他、Li2 2 4 (SO3 2 、LiN(C
3 SO 22 、LiC(CF3 SO2 3 、LiCn
2n+1SO3 (n>=2)などが、単独でまたは2種以
上混合して用いられる。これらの中でも、LiPF6
LiCn 2n+1SO3(n>=2)は充放電特性が良好
なため、好ましく用いられる。これら電解質の電解液中
の濃度は、とくに限定されないが、通常0.1〜2モル
/リツトル、好ましくは0.4〜1モル/リツトル程度
であるのがよい。
Further, as the electrolyte of the organic electrolytic solution, Li
ClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , L
iSbF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, etc., and others, Li 2 C 2 F 4 (SO 3 ) 2 , LiN (C
F 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiC n
F 2n + 1 SO 3 (n> = 2) and the like are used alone or in combination of two or more. Among these, LiPF 6 and LiC n F 2n + 1 SO 3 (n> = 2) are preferably used because they have good charge and discharge characteristics. The concentration of these electrolytes in the electrolytic solution is not particularly limited, but it is usually 0.1 to 2 mol / liter, preferably 0.4 to 1 mol / liter.

【0025】有機電解液に用いる有機溶媒としては、ジ
エチレンカ―ボネ―ト、ジメチルカ―ボネ―ト、エチル
メチルカ―ボネ―ト、プロピレンカ―ボネ―ト、エチレ
ンカ―ボネ―ト、ブチレンカ―ボネ―ト、γ−ブチロラ
クタンなどのエステル類、1,2−ジメトキシエタン、
1,2−ジメトキシメタンなどのエ―テル類などが挙げ
られるが、耐高電圧性のためにも炭酸エステル類が好ま
しい。
The organic solvent used in the organic electrolytic solution includes diethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, esters such as γ-butyrolactan, 1,2-dimethoxyethane,
Examples thereof include ethers such as 1,2-dimethoxymethane, and carbonic acid esters are preferable also from the viewpoint of high voltage resistance.

【0026】[0026]

【実施例】つぎに、本発明の実施例を記載して、より具
体的に説明するが、本発明はこれらの実施例になんら制
限されるものではない。以下、部とあるのは重量部を意
味するものとする。
EXAMPLES Next, the examples of the present invention will be described in more detail, but the present invention is not limited to these examples. Hereinafter, "parts" means "parts by weight".

【0027】実施例1 高分子固体電解質として、ポリエチレングリコ―ル(リ
チウムイオン伝導度:1.0×10-4S/cm)5部を用
い、これとLiPF6 1部を、シクロヘキサノン/トル
エン(重量比1:1)混合溶媒45部に溶解し、樹脂液
を調製した。この樹脂液1部に、石油ピツチより抽出し
たカ―ボンマイクロビ─ズを900℃で熱処理したバル
クカ─ボンを粉砕して得た平均粒径10μmのカ─ボン
粉末(d002:3.50Å、Lc:18Å)15部を
混合し、十分攪拌したのち、溶媒を除去し、高分子固体
電解質膜で被覆したカ─ボン粉末を得た。上記膜の厚さ
は、走査線型電子顕微鏡による観察で、0.3μmであ
つた。
Example 1 As a polymer solid electrolyte, 5 parts of polyethylene glycol (lithium ion conductivity: 1.0 × 10 −4 S / cm) was used, and this and 1 part of LiPF 6 were mixed with cyclohexanone / toluene ( A resin liquid was prepared by dissolving in a mixed solvent of 45 parts by weight ratio of 1: 1). Carbon powder (d002: 3.50Å with an average particle size of 10 μm) obtained by crushing bulk carbon obtained by heat treating carbon micro beads extracted from petroleum pitch at 900 ° C. to 1 part of this resin liquid, Lc: 18Å) 15 parts were mixed and sufficiently stirred, and then the solvent was removed to obtain carbon powder coated with the polymer solid electrolyte membrane. The thickness of the film was 0.3 μm as observed with a scanning line electron microscope.

【0028】つぎに、上記のカ─ボン粉末9部と、バイ
ンダとしてポリフツ化ビニリデン1部とを、溶媒として
N−メチルピロリドン8部を用いて混合し、負極合剤を
調製した。これを厚さが18μmの銅箔上に塗布し、乾
燥したのち、ロ─ルプレスを用いて全厚が60μmとな
るシ―ト負極を作製した。このシ―ト負極を作用極と
し、対極および参照電極にリチウム電極を用い、LiP
6 をエチレンカ―ボネ―トとエチルメチルカ―ボネ―
トとの重量比1:1の混合溶媒に1モル/リツトルの濃
度に溶解した溶液を有機電解液としたセルを作製した。
Next, 9 parts of the above carbon powder and 1 part of polyvinylidene fluoride as a binder were mixed using 8 parts of N-methylpyrrolidone as a solvent to prepare a negative electrode mixture. This was applied onto a copper foil having a thickness of 18 μm and dried, and then a sheet negative electrode having a total thickness of 60 μm was produced using a roll press. This sheet negative electrode is used as a working electrode, and a lithium electrode is used as a counter electrode and a reference electrode.
F 6 for ethylene carbonate and ethyl methyl carbonate
A cell was prepared by using a solution prepared by dissolving 1 mol / liter of a solution in a mixed solvent having a weight ratio of 1: 1 to 1 mol / liter as an organic electrolytic solution.

【0029】実施例2 カ―ボン粉末として、ナフタレンピツチを1,000℃
で熱処理したバルクカ─ボンを粉砕して得た平均粒径1
0μmのカ─ボン粉末(d002:3.80Å、Lc:
12Å)15部を用いた以外は、実施例1と同様にし
て、セルを作製した。なお、高分子固体電解質膜の厚さ
は0.3μmであつた。
Example 2 As carbon powder, naphthalene pitch was 1,000 ° C.
Average particle size obtained by crushing bulk carbon heat-treated at 1
0 μm carbon powder (d002: 3.80Å, Lc:
A cell was prepared in the same manner as in Example 1 except that 12Å) 15 parts were used. The thickness of the polymer solid electrolyte membrane was 0.3 μm.

【0030】実施例3 高分子固体電解質として、エチレンオキシドとプロピレ
ンオキシドとの共重合体(リチウムイオン伝導度:8.
0×10-5S/cm)5部を用いた以外は、実施例1と同
様にして、セルを作製した。なお、高分子固体電解質膜
の厚さは0.3μmであつた。
Example 3 As a solid polymer electrolyte, a copolymer of ethylene oxide and propylene oxide (lithium ion conductivity: 8.
A cell was prepared in the same manner as in Example 1 except that 5 parts of 0 × 10 −5 S / cm) was used. The thickness of the polymer solid electrolyte membrane was 0.3 μm.

【0031】実施例4 樹脂液として、ポリエチレングリコ―ル(リチウムイオ
ン伝導度:1.0×10-4S/cm)5部、LiPF6
部、シクロヘキサノン/トルエン(重量比1:1)混合
溶媒30部の混合溶液を用いた以外は、実施例1と同様
にして、セルを作製した。なお、高分子固体電解質膜の
厚さは0.5μmであつた。
Example 4 As a resin liquid, 5 parts of polyethylene glycol (lithium ion conductivity: 1.0 × 10 −4 S / cm) and LiPF 6 1 were used.
A cell was prepared in the same manner as in Example 1 except that a mixed solution of 30 parts of cyclohexanone / toluene (weight ratio 1: 1) mixed solvent was used. The thickness of the polymer solid electrolyte membrane was 0.5 μm.

【0032】実施例5 石油ピツチより抽出したカ―ボンマイクロビ─ズを90
0℃で熱処理したバルクカ─ボンを粉砕して得た平均粒
径10μmのカ─ボン粉末(d002:3.50Å、L
c:18Å)9部と、バインダとしてポリフツ化ビニリ
デン1部とを、溶媒としてN−メチルピロリドン8部を
用いて混合して、負極合剤を調製した。これを厚さが1
8μmの銅箔上に塗布し、乾燥したのち、ロ─ルプレス
を用いて全厚が60μmとなるシ―ト負極を作製した。
つぎに、このシ―ト負極上に、ポリエチレングリコ―ル
1部をシクロヘキサノン/トルエン(重量比1:1)混
合溶媒9部に溶解した樹脂液を、乾燥後の平均膜厚が
0.3μmとなるようにトツプコ─トし、乾燥した。こ
のシ―ト負極を用いて、以下実施例1と同様にして、セ
ルを作製した。
Example 5 90% carbon microbeads extracted from petroleum pitch
Carbon powder having an average particle size of 10 μm obtained by crushing bulk carbon heat-treated at 0 ° C. (d002: 3.50Å, L
c: 18Å) 9 parts and polyvinylidene fluoride 1 part as a binder were mixed using 8 parts of N-methylpyrrolidone as a solvent to prepare a negative electrode mixture. This has a thickness of 1
After being applied on a copper foil of 8 μm and dried, a sheet negative electrode having a total thickness of 60 μm was produced using a roll press.
Next, a resin solution prepared by dissolving 1 part of polyethylene glycol in 9 parts of a mixed solvent of cyclohexanone / toluene (weight ratio 1: 1) was dried on the sheet negative electrode so that the average film thickness after drying was 0.3 μm. Topped to dryness and dried. Using this sheet negative electrode, a cell was prepared in the same manner as in Example 1 below.

【0033】比較例1 シ―ト負極の作製に際し、樹脂液による処理を行わなか
つた以外は、実施例1と同様にして、セルを作製した。
Comparative Example 1 A cell was produced in the same manner as in Example 1 except that the treatment with the resin liquid was not carried out in the production of the sheet negative electrode.

【0034】比較例2 シ―ト負極の作製に際し、樹脂液による処理を行わなか
つた以外は、実施例2と同様にして、セルを作製した。
Comparative Example 2 A cell was produced in the same manner as in Example 2 except that the treatment with the resin liquid was not carried out in the production of the sheet negative electrode.

【0035】比較例3 カ―ボン粉末として、石油ピツチを2,000℃で熱処
理したバルクカ─ボンを粉砕して得た平均粒径10μm
のカ─ボン粉末(d002:3.43Å、Lc:265
Å)を用いた以外は、実施例1と同様にして、セルを作
製した。なお、高分子固体電解質膜の厚さは0.3μm
であつた。
Comparative Example 3 As carbon powder, an average particle diameter of 10 μm obtained by crushing bulk carbon obtained by heat-treating petroleum pitch at 2,000 ° C.
Carbon powder (d002: 3.43Å, Lc: 265
A cell was prepared in the same manner as in Example 1 except that Å) was used. The thickness of the polymer solid electrolyte membrane is 0.3 μm.
It was.

【0036】比較例4 高分子固体電解質として、ヒドロキシプロピルセルロ―
ス(リチウムイオン伝導度:1.0×10-9S/cm)を
用い、樹脂液の溶媒としてテトラヒドロフランを用いた
以外は、実施例1と同様にして、セルを作製した。な
お、高分子固体電解質膜の厚さは0.3μmであつた。
Comparative Example 4 Hydroxypropyl cellulose was used as the polymer solid electrolyte.
A cell was prepared in the same manner as in Example 1, except that lithium (ion conductivity: 1.0 × 10 −9 S / cm) was used and tetrahydrofuran was used as the solvent of the resin liquid. The thickness of the polymer solid electrolyte membrane was 0.3 μm.

【0037】比較例5 カ―ボン粉末として、石油ピツチを2,000℃で熱処
理したバルクカ─ボンを粉砕して得た平均粒径10μm
のカ─ボン粉末(d002:3.43Å、Lc:265
Å)を用い、かつ樹脂液による処理を行わなかつた以外
は、実施例1と同様にして、セルを作製した。
Comparative Example 5 As carbon powder, an average particle size of 10 μm obtained by crushing bulk carbon obtained by heat treating petroleum pits at 2,000 ° C.
Carbon powder (d002: 3.43Å, Lc: 265
A cell was prepared in the same manner as in Example 1 except that Å) was used and the treatment with the resin liquid was not performed.

【0038】以上の実施例1〜5および比較例1〜5の
各セルについて、2mA/cm2 の充電を行い、リチウム
金属が析出する充電電位とそのときの充電容量を測定し
た。これらの結果は表1に示されるとおりであつた。
The cells of Examples 1 to 5 and Comparative Examples 1 to 5 were charged at 2 mA / cm 2 , and the charge potential at which lithium metal was deposited and the charge capacity at that time were measured. The results are shown in Table 1.

【0039】 [0039]

【0040】上記の表1から、カ─ボン粒子表面に高分
子固体電解質膜を形成した実施例1〜5のセルでは、低
結晶性カ─ボンを用いた場合でも、高分子固体電解質膜
を形成しなかつた比較例1、2のセルと比較して、リチ
ウム金属析出電位を下げることが可能で、過電圧が増大
しており、安全性が改善され、また高分子固体電解質膜
を設けてもすぐれた充電容量が得られていることがわか
る。
From Table 1 above, in the cells of Examples 1 to 5 in which the polymer solid electrolyte membrane was formed on the carbon particle surface, the polymer solid electrolyte membrane was formed even when low crystalline carbon was used. Compared with the cells of Comparative Examples 1 and 2 which were not formed, the lithium metal deposition potential can be lowered, the overvoltage is increased, the safety is improved, and even if a solid polymer electrolyte membrane is provided. It can be seen that excellent charge capacity is obtained.

【0041】これに対し、低結晶性カ─ボンの粒子表面
に高分子固体電解質膜を形成したときでも、上記膜のリ
チウムイオン伝導度が5×10-5S/cm未満である比較
例4のセルは、上記膜の形成による析出電位の低下効果
が少なく、かつ充電容量が大きく低下する。さらに、d
002が3.45Å未満となる黒鉛化カ─ボンを用いた
比較例3、5のセルでは、充電容量が低く、また両者の
対比より高分子固体電解質膜の形成による効果もほとん
どみられない。
On the other hand, even when the solid polymer electrolyte membrane was formed on the surface of the particles of low crystalline carbon, the lithium ion conductivity of the membrane was less than 5 × 10 -5 S / cm in Comparative Example 4. In the cell (2), the effect of lowering the deposition potential due to the formation of the film is small, and the charge capacity is greatly reduced. Furthermore, d
In the cells of Comparative Examples 3 and 5 using the graphitized carbon having 002 of less than 3.45 Å, the charge capacity was low, and the effect of forming a polymer solid electrolyte membrane was hardly seen compared with both cells.

【0042】なお、高分子固体電解質膜で被覆した黒鉛
化カ─ボンを用いた比較例3のセルの方が、上記膜で被
覆していない黒鉛化カ─ボンを用いた比較例5のセルよ
り、低い充電容量となつているのは、黒鉛化カ─ボンで
はもともとリチウム金属析出電位が低く、金属の析出が
起こりにくいため、高分子電解質膜の被覆によりむしろ
分極が大きくなつて、充電容量が低下するものと思われ
る。
The cell of Comparative Example 3 using the graphitized carbon coated with the polymer solid electrolyte membrane is the cell of Comparative Example 5 using the graphitized carbon not coated with the above membrane. The reason for the lower charging capacity is that graphitized carbon originally has a low lithium metal deposition potential and metal deposition is less likely to occur. Is expected to decrease.

【0043】[0043]

【発明の効果】以上のように、本発明は、負極活物質が
平均層間距離〔d002〕が3.45Å以上のカ─ボン
粒子を用い、かつこのカ─ボン粒子を常温におけるリチ
ウムイオン伝導度が5×10-5S/cm以上であるイオン
伝導性高分子固体電解質で被覆したことにより、リチウ
ム金属の析出電位を下げ、安全性にすぐれるとともに、
高い充電容量を持つリチウムイオン二次電池を提供でき
る。
As described above, according to the present invention, the negative electrode active material uses carbon particles having an average interlayer distance [d002] of 3.45 Å or more, and the carbon particles have lithium ion conductivity at room temperature. By coating with an ion conductive polymer solid electrolyte having a concentration of 5 × 10 −5 S / cm or more, the deposition potential of lithium metal is lowered, and the safety is excellent and
A lithium ion secondary battery having a high charge capacity can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いるカ―ボン粒子がイオン伝導性高
分子固体電解質で被覆された状態を示すカ─ボン負極の
模式図である。
FIG. 1 is a schematic view of a carbon negative electrode showing a state in which carbon particles used in the present invention are coated with an ion conductive polymer solid electrolyte.

【図2】黒鉛化カ―ボンと低結晶性カ―ボンを用いた負
極の充放電特性を示す特性図である。
FIG. 2 is a characteristic diagram showing charge / discharge characteristics of a negative electrode using a graphitized carbon and a low crystalline carbon.

【図3】カ―ボン粒子の平均層間距離〔d002〕と金
属リチウム電位付近の負極中のリチウムイオンの拡散係
数との関係を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the average interlayer distance [d002] of carbon particles and the diffusion coefficient of lithium ions in the negative electrode near the metal lithium potential.

【符号の説明】[Explanation of symbols]

1 カ―ボン粒子 2 イオン伝導性高分子固体電解質膜 3 有機電解液 4 集電材料 5 シ―ト状の負極成形体 1 Carbon Particles 2 Ion Conducting Polymer Solid Electrolyte Membrane 3 Organic Electrolyte 4 Current Collecting Material 5 Sheet-like Negative Molded Body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属酸化物からなる正極、
カ─ボン材料からなる負極および有機電解液を有するリ
チウムイオン二次電池において、負極活物質が平均層間
距離〔d002〕が3.45Å以上のカ─ボン粒子から
なり、かつこのカ─ボン粒子が常温におけるリチウムイ
オン伝導度が5×10-5S/cm以上であるイオン伝導性
高分子固体電解質で被覆されていることを特徴とするリ
チウムイオン二次電池。
1. A positive electrode comprising a lithium transition metal oxide,
In a lithium ion secondary battery having a negative electrode made of a carbon material and an organic electrolytic solution, the negative electrode active material comprises carbon particles having an average interlayer distance [d002] of 3.45 Å or more, and the carbon particles are A lithium ion secondary battery, which is coated with an ion conductive polymer solid electrolyte having a lithium ion conductivity of 5 × 10 −5 S / cm or more at room temperature.
JP14702796A 1996-06-10 1996-06-10 Lithium ion secondary battery Expired - Fee Related JP4187282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14702796A JP4187282B2 (en) 1996-06-10 1996-06-10 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14702796A JP4187282B2 (en) 1996-06-10 1996-06-10 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH09330717A true JPH09330717A (en) 1997-12-22
JP4187282B2 JP4187282B2 (en) 2008-11-26

Family

ID=15420889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14702796A Expired - Fee Related JP4187282B2 (en) 1996-06-10 1996-06-10 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4187282B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013447A1 (en) * 1999-08-12 2001-02-22 Nisshinbo Industries, Inc. Press-slide kneader, method for coating with ionic-conductive polymer, and powdery material
WO2001022506A1 (en) * 1999-09-22 2001-03-29 Nisshinbo Industries, Inc. Electrode structure, and rolling machine for working electrode structure
JP2002175806A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Compound carbon material and electrode for lithium secondary battery
JP2011150968A (en) * 2010-01-25 2011-08-04 Hitachi Ltd Nonaqueous electrolyte secondary battery
JP2015118930A (en) * 2013-11-15 2015-06-25 株式会社半導体エネルギー研究所 Electrode, electricity storage device, and electronic apparatus
WO2015152215A1 (en) * 2014-03-31 2015-10-08 株式会社クレハ Method for producing negative electrode for all-solid battery, and negative electrode for all-solid battery
KR101876024B1 (en) * 2016-05-19 2018-07-06 현대자동차주식회사 All Solid Battery
WO2019092794A1 (en) * 2017-11-07 2019-05-16 Connexx Systems株式会社 Composite battery, and automobile and railway regenerative-power storage device equipped with same
US10553899B2 (en) 2015-04-02 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Battery including a polyether-based organic solid electrolyte
CN114725388A (en) * 2022-03-16 2022-07-08 宁德新能源科技有限公司 Electrochemical device and electronic device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001013447A1 (en) * 1999-08-12 2001-02-22 Nisshinbo Industries, Inc. Press-slide kneader, method for coating with ionic-conductive polymer, and powdery material
WO2001022506A1 (en) * 1999-09-22 2001-03-29 Nisshinbo Industries, Inc. Electrode structure, and rolling machine for working electrode structure
JP2002175806A (en) * 2000-12-07 2002-06-21 Matsushita Electric Ind Co Ltd Compound carbon material and electrode for lithium secondary battery
JP2011150968A (en) * 2010-01-25 2011-08-04 Hitachi Ltd Nonaqueous electrolyte secondary battery
JP2015118930A (en) * 2013-11-15 2015-06-25 株式会社半導体エネルギー研究所 Electrode, electricity storage device, and electronic apparatus
JPWO2015152215A1 (en) * 2014-03-31 2017-04-13 株式会社クレハ Method for producing negative electrode for all solid state battery and negative electrode for all solid state battery
WO2015152215A1 (en) * 2014-03-31 2015-10-08 株式会社クレハ Method for producing negative electrode for all-solid battery, and negative electrode for all-solid battery
US9947927B2 (en) 2014-03-31 2018-04-17 Kureha Corporation Production method for negative electrode for all-solid-state battery, and negative electrode for all-solid-state battery
US10553899B2 (en) 2015-04-02 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Battery including a polyether-based organic solid electrolyte
KR101876024B1 (en) * 2016-05-19 2018-07-06 현대자동차주식회사 All Solid Battery
WO2019092794A1 (en) * 2017-11-07 2019-05-16 Connexx Systems株式会社 Composite battery, and automobile and railway regenerative-power storage device equipped with same
CN110024212A (en) * 2017-11-07 2019-07-16 柯耐克斯系统株式会社 Composite battery, the motor vehicle for having it and railway regenerated electric power storage device
CN110024212B (en) * 2017-11-07 2022-02-01 柯耐克斯系统株式会社 Composite battery, motor vehicle provided with same, and railroad regenerative power storage device
CN114725388A (en) * 2022-03-16 2022-07-08 宁德新能源科技有限公司 Electrochemical device and electronic device

Also Published As

Publication number Publication date
JP4187282B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US20230411584A1 (en) Compositions and methods for dry electrode films having reduced binder content
US11417869B2 (en) Lithium ion secondary battery
JP5348706B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for producing negative electrode for nonaqueous electrolyte secondary battery
US8999579B2 (en) Surface treated anode active material and method of making the same, anode including the same, and lithium battery including the same
EP4220759A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
JPH103946A (en) Nonaqueous electrolyte secondary battery
KR20170030518A (en) Cathode for lithium batteries
JP3658805B2 (en) Negative electrode for lithium battery and lithium battery using the same
US6764791B2 (en) Rechargeable lithium battery
KR101911070B1 (en) Polymer electrolyte membrane including boronnitride, method of preparing the same, and litium secondary battery including the same
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
JP4187282B2 (en) Lithium ion secondary battery
JP4150202B2 (en) battery
KR20180127092A (en) lithium secondary battery
EP3909916A1 (en) Positive electrode active material for lithium secondary battery and method for preparing positive electrode active material
US20230361292A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
WO2002073719A1 (en) Positive electrode material and battery comprising it
US11764360B2 (en) Negative electrode plate, lithium metal battery, and apparatus including the lithium metal battery
JP2002280080A (en) Method of charging secondary battery
JP2002280073A (en) Battery
WO2003041207A1 (en) Battery
JPH08124597A (en) Solid electrolytic secondary cell
JP2003045487A (en) Battery
KR102676486B1 (en) Anode active material composition, method for preparing the same, and rechargeable lithium battery comprising the same
JPH0714608A (en) Battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees