JPH09328325A - Quartz substrate and production of quartz-based glass waveguide type optical part using the same - Google Patents

Quartz substrate and production of quartz-based glass waveguide type optical part using the same

Info

Publication number
JPH09328325A
JPH09328325A JP14275596A JP14275596A JPH09328325A JP H09328325 A JPH09328325 A JP H09328325A JP 14275596 A JP14275596 A JP 14275596A JP 14275596 A JP14275596 A JP 14275596A JP H09328325 A JPH09328325 A JP H09328325A
Authority
JP
Japan
Prior art keywords
quartz substrate
substrate
quartz
type optical
waveguide type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14275596A
Other languages
Japanese (ja)
Inventor
Keiichi Higuchi
恵一 樋口
Fujio Kikuchi
不二男 菊地
Haruyasu Komano
晴保 駒野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP14275596A priority Critical patent/JPH09328325A/en
Publication of JPH09328325A publication Critical patent/JPH09328325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quartz substrate capable of accurately aligning a waveguide type optical part with many optical fibers when simultaneously carrying out the connection thereof without causing misdetection or lacerated wounds in hands or fingers when measuring a waveguide core under a laser microscope and to provide a method for producing the quartz-based waveguide type optical part using the quartz substrate. SOLUTION: The method for producing a quartz-based glass waveguide type optical part comprises a stage for forming a core glass film on a quartz substrate 21 having 1mm thickness and a stepped part 22 having 500μm depth over a region in a width of 5mm from the outer periphery thereof at right angles of the surface with the lateral face of the quartz substrate 21 and respective rounded areas from each intersecting line of the surface and the lateral face of the quartz substrate 21 to the substrate surface and a point separated from the substrate surface by 10μm and a stage for forming an optical circuit pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は石英基板、特に石英
系ガラス導波路型光部品の製造に用いられる円形の石英
基板と、それを用いた石英系ガラス導波路型光部品の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz substrate, in particular, a circular quartz substrate used for manufacturing a silica-based glass waveguide type optical component, and a method for manufacturing a silica-based glass waveguide type optical component using the same. Is.

【0002】[0002]

【従来の技術】通信、計測、情報処理等の分野におい
て、光をより高度に利用するために光の合波、分岐等の
種々の機能を有する光集積回路が研究されており、この
ような光集積回路を構成する要素として、石英系ガラス
導波路型光部品が使用されている。
2. Description of the Related Art In the fields of communication, measurement, information processing, etc., optical integrated circuits having various functions such as light combining and branching have been studied in order to utilize light at higher levels. A silica-based glass waveguide type optical component is used as an element constituting an optical integrated circuit.

【0003】図4に従来技術による、石英基板を用いた
石英系ガラス導波路型光部品の製造工程を示す。この製
造工程はLSIの製造プロセスと類似している。
FIG. 4 shows a manufacturing process of a silica glass waveguide type optical component using a quartz substrate according to the prior art. This manufacturing process is similar to the LSI manufacturing process.

【0004】まず、石英基板11上にコアガラス膜12
を形成する。このコアガラス膜12はSiO2 とGeO
2 から成っている。コア膜の形成方法は火炎堆積法や電
子ビーム蒸着法等を適宜用い、その後電気炉あるいは焼
結炉で高温加熱して得られる。
First, a core glass film 12 is formed on a quartz substrate 11.
To form The core glass film 12 is made of SiO 2 and GeO.
Made of two . The core film can be formed by appropriately using a flame deposition method, an electron beam evaporation method, or the like, and then heating it at a high temperature in an electric furnace or a sintering furnace.

【0005】次いで、コアガラス膜12の上にタングス
テンシーサイド等の金属膜14を蒸着する。そして、こ
の金属膜14の上にフォトレジストを塗布し、フォトリ
ソグラフィ技術により光回路パターン13を形成する。
このフォトレジストによる光回路パターン13をマスク
材として、金属膜14をエッチングする。その後該金属
膜パターンをマスクとしてコアガラス膜12をエッチン
グする。
Next, a metal film 14 such as tungsten seaside is deposited on the core glass film 12. Then, a photoresist is applied on the metal film 14, and the optical circuit pattern 13 is formed by the photolithography technique.
The metal film 14 is etched by using the optical circuit pattern 13 made of this photoresist as a mask material. After that, the core glass film 12 is etched using the metal film pattern as a mask.

【0006】最後に、エッチングにより形成された導波
路コア15を多孔質ガラス層16で囲み、該多孔質ガラ
ス層16を電気炉中で加熱して、透明ガラス化しクラッ
ド17を形成する。
Finally, the waveguide core 15 formed by etching is surrounded by a porous glass layer 16, and the porous glass layer 16 is heated in an electric furnace to be transparent vitrified to form a clad 17.

【0007】なお、フォトレジストによる光回路パター
ン13のみでコアガラス膜12のエッチングを行なう
と、所望の深さのガラスエッチングを終了する前に、フ
ォトレジストによる光回路パターン13がエッチングさ
れて無くなり、正しく光回路が作製できない。そのため
に金属膜14が設けられている。
If the core glass film 12 is etched only with the optical circuit pattern 13 made of photoresist, the optical circuit pattern 13 made of photoresist is etched and disappears before the glass etching to a desired depth is completed. The optical circuit cannot be manufactured correctly. Therefore, the metal film 14 is provided.

【0008】[0008]

【発明が解決しようとする課題】多孔質ガラス層16を
加熱して透明ガラス化する時、石英基板11の側面に付
着した多孔質ガラスは、高温で加熱され収縮することか
ら、石英基板11に応力を加える。この応力は石英基板
11を反らせる働きをし、基板が反れば導波路型光部品
と多数の光ファイバを同時に接続する時の位置合わせ精
度が低下するという問題がある。
When the porous glass layer 16 is heated to be a transparent glass, the porous glass attached to the side surface of the quartz substrate 11 is heated at a high temperature and contracts. Apply stress. This stress acts to warp the quartz substrate 11, and if the substrate warps, there is a problem that the alignment accuracy is lowered when the waveguide type optical component and a large number of optical fibers are simultaneously connected.

【0009】基板側面に多孔質ガラスが付着するのを防
止するため、石英基板11と同じ材質、同じ厚さ1mmの
リングで基板を囲んだところ、多孔質ガラスを堆積した
後にリングを外すのに時間がかかり、また基板表面に堆
積した多孔質ガラスの一部を剥がしてしまうという問題
があることがわかった。
In order to prevent the porous glass from adhering to the side surface of the substrate, the substrate is surrounded by a ring having the same material as the quartz substrate 11 and the same thickness of 1 mm. The ring is removed after the porous glass is deposited. It was found that there is a problem that it takes time and that part of the porous glass deposited on the substrate surface is peeled off.

【0010】また、基板表面に多孔質ガラスの無い部分
が生じると、多孔質ガラスが加熱されて透明ガラスに成
る時、基板にかかる応力が不均一になり、基板にうねり
が生じる。このうねりも、導波路型光部品と多数の光フ
ァイバを同時に接続する時の位置合わせ精度低下の要因
となる。
Further, when a portion having no porous glass is formed on the surface of the substrate, when the porous glass is heated to form transparent glass, the stress applied to the substrate becomes non-uniform and the substrate waviness occurs. This undulation also causes a decrease in alignment accuracy when a waveguide type optical component and a large number of optical fibers are simultaneously connected.

【0011】さて、図5は従来技術の製造方法で用いる
石英基板1のA−A’断面における断面図である。石英
基板1の表面と側面の交線付近は、交線から基板表面並
びに側面にそれぞれ約10μm離れた地点まで斜めに加
工されている。これは手指の裂傷を防止するためであ
る。しかし、フォトリソグラフィ技術におけるレジスト
塗布にとって、この斜めに加工された側面2は好ましく
ないものである。すなわち、塗布時の余分なレジストが
基板表面から側面に流れ込み、斜めに加工された側面2
に付着する。付着したレジストは反応性イオンエッチン
グにより炭化し剥離し難くなる。この炭化したレジスト
はレーザ顕微鏡で導波路コアの寸法を測定する場合、自
動位置検出において誤った検出の原因になる。
FIG. 5 is a sectional view taken along the line AA 'of the quartz substrate 1 used in the conventional manufacturing method. The vicinity of the intersection line between the surface and the side surface of the quartz substrate 1 is obliquely processed from the intersection line to the points separated by about 10 μm on the substrate surface and the side surface, respectively. This is to prevent laceration of fingers. However, the obliquely processed side surface 2 is not preferable for resist coating in the photolithography technique. That is, the excess resist at the time of application flows from the substrate surface to the side surface, and the side surface 2 is processed obliquely.
Adheres to The adhered resist is carbonized by the reactive ion etching and becomes difficult to peel off. This carbonized resist causes erroneous detection in automatic position detection when measuring the dimensions of the waveguide core with a laser microscope.

【0012】従って、本発明の目的は前記した従来技術
の問題点を解決し、反りやうねりが無い、石英基板及び
それを用いた石英系ガラス導波路型光部品の製造方法を
提供することにある。また、本発明の目的は、レーザ顕
微鏡で導波路コアを測定する場合に誤った検出の無い、
そして手指の裂傷も防止できる、石英基板及びそれを用
いた石英系ガラス導波路型光部品の製造方法を提供する
ことにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a quartz substrate and a method of manufacturing a silica glass waveguide type optical component using the quartz substrate, which is free from warpage and undulation. is there. Further, the object of the present invention is to eliminate false detection when measuring a waveguide core with a laser microscope,
It is another object of the present invention to provide a quartz substrate and a method of manufacturing a silica-based glass waveguide type optical component using the quartz substrate, which can prevent tearing of fingers.

【0013】[0013]

【課題を解決するための手段】本発明は上記の目的を実
現するため、石英基板の外周に段差を設けたことにあ
る。また、石英基板の表面と側面の成す角度を直角に
し、石英基板の表面と側面の交線付近の角にわずかに丸
みを付けたことにある。
In order to achieve the above object, the present invention is to provide a step on the outer circumference of the quartz substrate. Further, the angle formed by the surface and the side surface of the quartz substrate was set to a right angle, and the corners near the intersection line between the surface and the side surface of the quartz substrate were slightly rounded.

【0014】[0014]

【発明の実施の形態】図1は本発明の石英基板の第1実
施例を示した断面図であって、段差22を設けた厚さ1
mmの石英基板21を示す。段差22は研磨加工により形
成できる。例えば、石英基板を研磨治具に固定して回転
させ、段差を設ける領域の部分に研磨布を貼った研磨板
により研磨することができる。その他、化学的にエッチ
ングすることもできる。段差は石英基板21の外周から
5mmの領域に亘り、深さ500μmである。
FIG. 1 is a sectional view showing a first embodiment of a quartz substrate of the present invention, in which a step 22 is formed to a thickness 1
A quartz substrate 21 of mm is shown. The step 22 can be formed by polishing. For example, the quartz substrate can be fixed to a polishing jig and rotated, and polishing can be performed with a polishing plate having a polishing cloth attached to a region where a step is provided. Alternatively, it can be chemically etched. The step has a depth of 500 μm over a region of 5 mm from the outer circumference of the quartz substrate 21.

【0015】図2は本発明の石英基板の第2実施例を示
した説明図であって、石英基板1の表面と側面の成す角
度を直角にし、石英基板1の表面と側面の交線から基板
表面並びに基板側面にそれぞれ10μm離れた地点まで
丸み3を付けた石英基板1を示す。角の丸み3は、まず
基板側面を研磨により表面とのなす角度が直角になるよ
うに加工し、その後基板の表面と側面の交線付近の角を
バーナであぶることで形成される。基板の表面と側面の
交線から基板表面並びに基板側面側にそれぞれ10μm
離れた地点まで丸みが形成されたことは、光学顕微鏡の
観察により確認される。丸み3の曲率半径は約6μmと
推定される。
FIG. 2 is an explanatory view showing a second embodiment of the quartz substrate of the present invention, in which the angle between the surface and the side surface of the quartz substrate 1 is set to a right angle, and the line of intersection between the surface and the side surface of the quartz substrate 1 is used. A quartz substrate 1 having roundnesses 3 on the substrate surface and the substrate side surface up to points 10 μm apart is shown. The corner roundness 3 is formed by first processing the side surface of the substrate by polishing so that the angle formed by the surface and the surface becomes a right angle, and then, by using a burner, the corner near the line of intersection between the surface and the side surface of the substrate. 10 μm from the line of intersection between the surface and the side of the substrate to the surface and the side of the substrate
The formation of roundness up to a distant point is confirmed by observation with an optical microscope. The radius of curvature of the roundness 3 is estimated to be about 6 μm.

【0016】このように、円形の石英基板の表面と側面
のなす角度を直角にして、かつ交線付近の角にわずかに
丸みを付けることで、レジスト塗布時、基板の表面と側
面の交線付近に余分なレジストが付着するのを防止し、
かつ手指の裂傷を防止することができる。
As described above, by making the angle between the surface and the side surface of the circular quartz substrate to be a right angle and slightly rounding the corner near the intersection line, the intersection line between the surface and the side surface of the substrate at the time of resist coating is formed. Prevents excess resist from adhering to the vicinity,
Moreover, laceration of fingers can be prevented.

【0017】図3は本発明の製造方法を示した説明図で
あって、石英基板に段差30を設け、石英基板の表面と
側面の成す角度を直角にし、石英基板の表面と側面の交
線から基板表面並びに基板側面にそれぞれ10μm離れ
た地点まで丸み36を付けた石英基板31を用いて、石
英系ガラス導波路型光部品を製造する方法を示す。
FIG. 3 is an explanatory view showing a manufacturing method of the present invention, in which a step 30 is provided on a quartz substrate, an angle formed by the surface and the side surface of the quartz substrate is made a right angle, and an intersection line between the surface and the side surface of the quartz substrate. A method of manufacturing a silica-based glass waveguide type optical component will be described by using the quartz substrate 31 having roundnesses 36 from the substrate surface and the substrate side surface to points 10 μm apart.

【0018】石英基板31の上に、基板の屈折率よりわ
ずかに大きい屈折率を有するガラス膜を形成し、コアガ
ラス膜とする。コアガラス膜は電子ビーム蒸着法または
火炎堆積法により形成する。コアガラスの成分はSiO
2 とGeO2 である。GeO2 の替りにTiO2 でも良
い。
A glass film having a refractive index slightly higher than that of the substrate is formed on the quartz substrate 31 to form a core glass film. The core glass film is formed by an electron beam evaporation method or a flame deposition method. The core glass component is SiO
2 and GeO 2 . TiO 2 may be used instead of GeO 2 .

【0019】コアガラス膜の表面に金属膜をスパッタリ
ングし、コアガラス膜をエッチングする時のマスク材と
する。スピンコータで基板を高速回転させながらレジス
トを金属膜の上に塗布する。この時、基板の角に丸みが
あることから、余分なレジストが付着しない。そして、
レジストの露光・現像を行なって光回路パターンを形成
する。
A metal film is sputtered on the surface of the core glass film to serve as a mask material for etching the core glass film. The resist is applied onto the metal film while rotating the substrate at a high speed with a spin coater. At this time, since the corners of the substrate are rounded, excess resist does not adhere. And
The resist is exposed and developed to form an optical circuit pattern.

【0020】次に、レジストをマスク材として金属膜
を、金属膜をマスク材としてコアガラス膜を、それぞれ
反応性イオンエッチングによりエッチングする。マスク
材を除去した後、コアガラス膜をエッチングして作製し
た導波路コア32の寸法を、レーザ顕微鏡で測定する。
測定は、自動で位置検出することにより行われ、前述の
ように基板表面と側面の交線付近に余分のレジストが付
着しないため、自動検出において誤認を無くすことがで
きる。
Next, the metal film is etched using the resist as a mask material and the core glass film is etched using the metal film as a mask material by reactive ion etching. After removing the mask material, the dimensions of the waveguide core 32 produced by etching the core glass film are measured with a laser microscope.
The measurement is performed by automatically detecting the position. As described above, since the excess resist does not adhere to the vicinity of the intersection line between the substrate surface and the side surface, it is possible to eliminate erroneous recognition in the automatic detection.

【0021】次に、導波路コア32が形成された石英基
板31に多孔質ガラス33を堆積させる。この時、基板
の段差30にリング状の石英34を填め込む。リング状
石英34は、外径は基板外径と同じで、内径は基板外径
より10mm短く、厚さは500μmである。多孔質ガラ
ス33を堆積後、リング状の石英34を外し、多孔質ガ
ラス33が堆積された基板31を電気炉内で加熱して、
クラッドとなる透明ガラス膜35を得る。
Next, porous glass 33 is deposited on the quartz substrate 31 on which the waveguide core 32 is formed. At this time, the ring-shaped quartz 34 is inserted into the step 30 of the substrate. The outer diameter of the ring-shaped quartz 34 is the same as the outer diameter of the substrate, the inner diameter is 10 mm shorter than the outer diameter of the substrate, and the thickness is 500 μm. After depositing the porous glass 33, the ring-shaped quartz 34 is removed, and the substrate 31 on which the porous glass 33 is deposited is heated in an electric furnace,
A transparent glass film 35 to be a clad is obtained.

【0022】段差30をリング状の石英34で完全に覆
うため、基板側面に多孔質ガラスが付着せず、このこと
より多孔質ガラスを加熱して透明ガラス化する時、基板
側面からの応力による基板の反りは無くなる。また、多
孔質ガラスを堆積した後、リング状の石英34を段差3
0から取り外す時間は、従来の段差が無い基板の外周全
部に填め込んだ時に比べ、半分で済むため、基板表面に
堆積された多孔質ガラスを剥がすことがない。従って、
基板表面に一様に多孔質ガラスを堆積することができ、
その結果うねりのない基板が実現される。
Since the step 30 is completely covered by the ring-shaped quartz 34, the porous glass does not adhere to the side surface of the substrate, which causes stress from the side surface of the substrate when the porous glass is heated to be transparent. The warp of the substrate is eliminated. Further, after depositing the porous glass, the ring-shaped quartz 34 is stepped 3
The time taken to remove from 0 is half the time required to fill the entire outer circumference of the conventional substrate having no step, so that the porous glass deposited on the surface of the substrate is not peeled off. Therefore,
Porous glass can be uniformly deposited on the substrate surface,
As a result, a waviness-free substrate is realized.

【0023】なお、段差の填め込むリングの材質は、石
英と同じ熱膨張率のものであれば石英以外のものでも構
わない。また、基板の表面と側面の成す角度を直角とし
て効果を説明したが、鋭角すなわち逆テーパ状にするこ
とによっても同様の効果が得られる。逆テーパ状の形状
は、研磨装置において基板を固定する研磨治具と研磨板
の成す角度を所望の角度に設定し、基板側面を研磨する
ことで得られる。
The material for the ring for filling the step may be other than quartz as long as it has the same coefficient of thermal expansion as quartz. Further, although the effect has been described by assuming that the angle formed by the surface and the side surface of the substrate is a right angle, the same effect can be obtained by forming an acute angle, that is, an inverse taper shape. The inverse tapered shape can be obtained by polishing the side surface of the substrate by setting a desired angle between the polishing jig for fixing the substrate and the polishing plate in the polishing apparatus.

【0024】[0024]

【発明の効果】本発明によれば、基板側面の応力による
そりを抑えることができる。このことにより、導波路型
光部品と多数の光ファイバを同時に接続する時、精度良
く位置合わせを行なう事ができる。
According to the present invention, warpage due to stress on the side surface of the substrate can be suppressed. As a result, when the waveguide type optical component and a large number of optical fibers are connected at the same time, the alignment can be performed with high accuracy.

【0025】また、基板表面に一様に多孔質ガラスを堆
積することができるため、多孔質ガラス層が加熱されて
透明ガラスに成る時、基板がうねる事が無い。従って導
波路型光部品と多数の光ファイバを同時に精度良く位置
合わせすることができる。更には、基板の角付近に余分
のレジストが付着することが無いため、導波路コアの自
動計測において、炭化したレジストによる誤認を避ける
ことができる。手指の裂傷を防止する手段を講じている
ため安全性も維持できる。
Further, since the porous glass can be uniformly deposited on the surface of the substrate, the substrate does not undulate when the porous glass layer is heated to become transparent glass. Therefore, the waveguide type optical component and a large number of optical fibers can be accurately aligned at the same time. Furthermore, since no extra resist is attached near the corners of the substrate, it is possible to avoid erroneous recognition due to carbonized resist in automatic measurement of the waveguide core. Safety is maintained because measures are taken to prevent laceration of the fingers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の石英基板に係わり、段差
が設けられた石英基板の断面図である。
FIG. 1 is a cross-sectional view of a quartz substrate related to a quartz substrate of a first embodiment of the present invention and provided with a step.

【図2】本発明の第2実施例の石英基板係わり、丸みが
設けられた石英基板の断面図である。
FIG. 2 is a sectional view of a quartz substrate having a roundness according to a second embodiment of the present invention.

【図3】本発明の製造方法に係わり、石英系ガラス導波
路光部品の製造工程を示す説明図である。
FIG. 3 is an explanatory view showing a manufacturing process of a silica-based glass waveguide optical component according to the manufacturing method of the present invention.

【図4】従来技術に係わり、石英系ガラス導波路光部品
の製造工程を示す説明図である。
FIG. 4 is an explanatory view showing a manufacturing process of a silica-based glass waveguide optical component according to a conventional technique.

【図5】従来技術に係わり、石英基板の断面図である。FIG. 5 is a cross-sectional view of a quartz substrate according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 石英基板 2 斜めに加工された側面 3 丸み 11 石英基板 12 コアガラス膜 13 光回路パターン 14 金属膜 15 導波路コア 16 多孔質ガラス層 17 クラッド 21 石英基板 22 段差 30 段差 31 石英基板 32 導波路コア 33 多孔質ガラス 34 リング状の石英 35 クラッド 36 丸み 1 Quartz Substrate 2 Diagonally Processed Side Surface 3 Roundness 11 Quartz Substrate 12 Core Glass Film 13 Optical Circuit Pattern 14 Metal Film 15 Waveguide Core 16 Porous Glass Layer 17 Clad 21 Quartz Substrate 22 Step 30 Steps 31 Quartz Substrate 32 Waveguide Core 33 Porous glass 34 Ring-shaped quartz 35 Clad 36 Roundness

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】円形の石英基板において、該石英基板外周
に段差を設けたことを特徴とする石英基板。
1. A quartz substrate having a circular shape, wherein a step is provided on the outer circumference of the quartz substrate.
【請求項2】請求項1記載の石英基板において、段差を
設ける領域が前記石英基板外周から5mmであることを特
徴とする石英基板。
2. The quartz substrate according to claim 1, wherein the region where the step is provided is 5 mm from the outer circumference of the quartz substrate.
【請求項3】請求項2記載の石英基板において、基板の
厚さが1mmであることを特徴とする石英基板。
3. The quartz substrate according to claim 2, wherein the thickness of the substrate is 1 mm.
【請求項4】請求項3記載の石英基板において、段差の
深さが500μmであることを特徴とする石英基板。
4. The quartz substrate according to claim 3, wherein the step has a depth of 500 μm.
【請求項5】石英基板の表面と側面の交線付近の角にわ
ずかに丸みを付けることを特徴とする石英基板。
5. A quartz substrate characterized by slightly rounding the corners near the intersection of the surface and the side surface of the quartz substrate.
【請求項6】請求項5記載の石英基板において、該石英
基板の表面と側面の交線から基板表面側並びに基板側面
側にそれぞれ10μm離れた地点まで丸みを付けること
を特徴とする石英基板。
6. The quartz substrate according to claim 5, wherein the quartz substrate is rounded from a line of intersection of the surface and the side surface of the quartz substrate to a point separated by 10 μm on the substrate front surface side and the substrate side surface side, respectively.
【請求項7】石英基板の外周に段差を形成する工程と、
該石英基板にコアガラス膜を形成する工程と、該コアガ
ラス膜に光回路パターンを形成する工程を有する石英系
ガラス導波路型光部品の製造方法。
7. A step of forming a step on the outer periphery of a quartz substrate,
A method of manufacturing a silica-based glass waveguide type optical component, comprising: a step of forming a core glass film on the quartz substrate; and a step of forming an optical circuit pattern on the core glass film.
【請求項8】石英基板の表面と側面の角に丸みを形成す
る工程と、該石英基板にコアガラス膜を形成する工程
と、該コアガラス膜に光回路パターンを形成する工程を
有する石英系ガラス導波路型光部品の製造方法。
8. A quartz system comprising: a step of forming roundness on a corner of a surface and a side surface of a quartz substrate; a step of forming a core glass film on the quartz substrate; and a step of forming an optical circuit pattern on the core glass film. Manufacturing method of glass waveguide type optical component.
JP14275596A 1996-06-05 1996-06-05 Quartz substrate and production of quartz-based glass waveguide type optical part using the same Pending JPH09328325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14275596A JPH09328325A (en) 1996-06-05 1996-06-05 Quartz substrate and production of quartz-based glass waveguide type optical part using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14275596A JPH09328325A (en) 1996-06-05 1996-06-05 Quartz substrate and production of quartz-based glass waveguide type optical part using the same

Publications (1)

Publication Number Publication Date
JPH09328325A true JPH09328325A (en) 1997-12-22

Family

ID=15322829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14275596A Pending JPH09328325A (en) 1996-06-05 1996-06-05 Quartz substrate and production of quartz-based glass waveguide type optical part using the same

Country Status (1)

Country Link
JP (1) JPH09328325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415183B2 (en) 2001-11-14 2008-08-19 Hitachi Cable, Ltd. Silica based glass waveguide and optical module using the same
EP2587312A1 (en) * 2011-10-24 2013-05-01 Shin-Etsu Chemical Co., Ltd. Electronic grade glass substrate and making method
EP2399707B1 (en) * 2010-06-28 2017-02-22 Shin-Etsu Chemical Co., Ltd. Method for manufacturing electronic grade synthetic quartz glass substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7415183B2 (en) 2001-11-14 2008-08-19 Hitachi Cable, Ltd. Silica based glass waveguide and optical module using the same
EP2399707B1 (en) * 2010-06-28 2017-02-22 Shin-Etsu Chemical Co., Ltd. Method for manufacturing electronic grade synthetic quartz glass substrate
EP2587312A1 (en) * 2011-10-24 2013-05-01 Shin-Etsu Chemical Co., Ltd. Electronic grade glass substrate and making method
US9205528B2 (en) 2011-10-24 2015-12-08 Shin-Etsu Chemical Co., Ltd. Electronic grade glass substrate and making method
TWI564654B (en) * 2011-10-24 2017-01-01 信越化學工業股份有限公司 Electronic grade glass substrate and making method
US9902037B2 (en) 2011-10-24 2018-02-27 Shin-Etsu Chemical Co., Ltd. Electronic grade glass substrate and making method

Similar Documents

Publication Publication Date Title
US4933262A (en) Method of making integrated optical component
JP2988916B2 (en) Fabrication method of optical waveguide
JPH09328325A (en) Quartz substrate and production of quartz-based glass waveguide type optical part using the same
JP2893093B2 (en) Fabrication method of optical waveguide with fiber guide
JPS63184708A (en) Thin film optical circuit
JP3133474B2 (en) Manufacturing method of optical waveguide with guide groove
JPH06118256A (en) Quartz light guide path component and its manufacture
JPS6294936A (en) Dry etching method
JPH0664217B2 (en) Fiber-guided optical waveguide
JP2738121B2 (en) Method for manufacturing silica-based optical waveguide
JPH0197907A (en) Production of optical waveguide circuit
JPH0772347A (en) Production of optical waveguide with guide groove
JP2570822B2 (en) Manufacturing method of optical waveguide
JP2002236231A (en) Method for manufacturing resin waveguide
JPH0862442A (en) Manufacture of glass waveguide
JPS6218029A (en) Semiconductor device
JPH08110426A (en) Production of optical waveguide
JP3006301B2 (en) Manufacturing method of glass waveguide
JPS61261239A (en) Production of refractive index distribution type planar lens
JPH0473650A (en) Mask for fine working
JPH05249334A (en) Production of quartz mirror waveguide
JP2001264564A (en) Method for manufacturing optical waveguide
JPH0777619A (en) Production of optical waveguide circuit component
JPS60156012A (en) Flush type optical waveguide
JPH06331844A (en) Quartz optical waveguide and its production