JPH0932664A - 液体活性化用異種鉱物混合体 - Google Patents

液体活性化用異種鉱物混合体

Info

Publication number
JPH0932664A
JPH0932664A JP7215135A JP21513595A JPH0932664A JP H0932664 A JPH0932664 A JP H0932664A JP 7215135 A JP7215135 A JP 7215135A JP 21513595 A JP21513595 A JP 21513595A JP H0932664 A JPH0932664 A JP H0932664A
Authority
JP
Japan
Prior art keywords
mixed body
liquid fuel
reactive
dissimilar
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7215135A
Other languages
English (en)
Inventor
Katsuyoshi Yamagata
勝義 山縣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7215135A priority Critical patent/JPH0932664A/ja
Publication of JPH0932664A publication Critical patent/JPH0932664A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

(57)【要約】 【目 的】本発明は液体の活性化処理を目的とし、具体
的には、液体燃料を使用する車輛等に関しては、車輛等
内燃機関本体の使用期間と価値を持続させることと、車
輛等内燃機関の運転使用により発生する不完全燃焼物及
び排気ガスの削減低下を目的とする。又、液体としての
飲料水や上水、下水、井戸水等の液体活性化用異種鉱物
混合体による活性化処理方法及び活性化処理装置は、お
って実用新案登録願する。 【構 成】石英と、石炭及びタングステンを混合状態で
一体固体化し、それぞれ異なった種類の波長を液体の流
動接触時に吸収共鳴させて活性化させる構成である。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明の利用分野は、赤外線から
紫外線領域に反応のある液体の活性化処理全般に関する
が、中でも液体燃料の活性化による排気ガスの削減低下
に有効である。
【0002】
【従来の技術】液体や燃料を活性化する従来の技術は、
熱を利用した方法、添加物を利用した方法、セラミック
を利用した方法、マイクロ波による分子の振動活性化法
等有る。
【0003】
【発明が解決しょうとする課題】本発明が解決しょうと
する課題は、液体の中でも特に石油系の液体燃料の活性
化処理であり、液体燃料を活性化させる事で化学反応と
しての酸化燃焼反応を促進させて、不完全燃焼物を削減
低下させる事を課題としている。
【0004】
【課題を解決するための手段】前記課題を解決するため
に本発明は、鉱物中より石英と石炭とタングステンを液
体及び液体燃料活性化処理のための組成鉱物と選抜し、
右の鉱物が始から有する各組成を壊さない程度に顆粒又
は粉末化及び一体固形化したものに、液体及び液体燃料
を流動接触させて活性化させる手段を用いた。
【0005】
【作 用】遠赤外線領域に反応のある石英と、中間赤外
線から近赤外線にかけて反応のある石炭と、紫外線領域
に反応のあるタングステンを混合し一体化にすること
で、三種の異なった波長の振動とその周期が液体燃料を
媒体のようにして干渉し合い、一定の領域の振動波長に
変化する。又、この三種の波長が液体燃料中で干渉状態
になる時、燃料の波長の振動周期とその領域に吸収共鳴
運動が断続的に発生し、燃料電子を活性化状態にする。
次に三種の波長の干渉波を吸収した原子内電子は、エネ
ルギーの高い順に特定の電子殻から飛出し、他の電子殻
に移る現象が起こるが、電子殻は一定数以上の電子を受
け付けないため元の電子殻に戻される、これらは原子が
正負の安定を保とうとする運動でもあるが、この電子の
活性化による遷移運動時に高温で燃焼反応が起こると、
酸素の電子との結合率が高くなり、燃焼としての酸化反
応が高くなる比率だけ燃焼効率は上昇し不完全燃焼物質
が削減される。
【0006】
【実施例】実施例について図面を参照して説明すると、
符号Aから流入する液体が符号2の中に詰められている
符号1に流動接触することにより活性化作用を起こし、
符号Bから流出する構成の実施例である。又、符号B側
の流出構造が符号A側の流入構造と違うのは、液体燃料
を使用する場合に気泡が符号2に滞溜する事なく、排出
し安い構造にしたものである。
【0007】
【発明の効果】液体活性化用異種鉱物混合体による液体
燃料での使用実質効果を付属資料により説明すると、付
属資料A−1、2、3、4、5、に記載の車輛は、日本
国の排気ガス規制法により平成7年度より、首都圏を始
とする規制都市での使用が禁止された車輛であるが、本
発明を使用することにより排気ガス規制値に合格し継続
車検が加能になり、更に同じエンジン形式の車輛が9台
継続車検を受けることが加能になったのもである。又、
付属資料A−2の、試験時の総走行キロ数の欄は、29
1,083kmと、記載されているが、走行距離メータ
ーが一回転しているため実質走行距離は、1,291,
083kmである。
【0008】次に付属資料B−1、2により燃焼効率の
上昇効果を説明すると、付属資料のB−1は図面1の構
成からなる装置を2機取り付けたもので、付属資料のB
−2は図面1の構成からなる装置を1機取り付けたもの
である。両付属資料中の運転モード表の、排出濃度測定
値(ppm)の欄の一酸化炭素COの測定値通り、付属
資料B−1は、燃焼効率が良いため一酸化炭素COが少
なく、逆にNOxが増え、結果上排気ガス規制値に不適
格であったが、2度目の検査結果表であるB−2では、
燃焼効率がやや下がり一酸化炭素COが増えるが、逆に
NOxは下がり排気ガス規制値に合格したものである。
又、付属資料B−1、2の、試験時の総走行キロ数の欄
は、両資料とも30万km若であるが、この車輛も走行
距離メーターが一回転しているため実質走行距離は、1
00万kmプラスされる。
【図面の簡単な説明】
【図 1】本発明を使用し安く容器に詰めた状態の断面
図である。
【符号の説明】
1、液体活性化用異種鉱物混合体 2、容器本体 A、入口 B、出口

Claims (1)

    【特許請求の範囲】
  1. 【請求項 1】石英と、石炭及びタングステンを顆粒又
    は粉末状にし、一定の大きさに固体化した異種鉱物混合
    体。
JP7215135A 1995-07-20 1995-07-20 液体活性化用異種鉱物混合体 Pending JPH0932664A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7215135A JPH0932664A (ja) 1995-07-20 1995-07-20 液体活性化用異種鉱物混合体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7215135A JPH0932664A (ja) 1995-07-20 1995-07-20 液体活性化用異種鉱物混合体

Publications (1)

Publication Number Publication Date
JPH0932664A true JPH0932664A (ja) 1997-02-04

Family

ID=16667289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7215135A Pending JPH0932664A (ja) 1995-07-20 1995-07-20 液体活性化用異種鉱物混合体

Country Status (1)

Country Link
JP (1) JPH0932664A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019085A1 (en) * 1998-09-28 2000-04-06 Wey Albert C Fuel activating device
LU91250B1 (fr) * 2006-06-14 2007-12-17 Regis Brouet Le bonificateur informationel des produits alimentaires, non-alimentaires et les carburants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019085A1 (en) * 1998-09-28 2000-04-06 Wey Albert C Fuel activating device
LU91250B1 (fr) * 2006-06-14 2007-12-17 Regis Brouet Le bonificateur informationel des produits alimentaires, non-alimentaires et les carburants

Similar Documents

Publication Publication Date Title
Warnatz et al. Combustion
Brouwer et al. A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia, urea, and cyanuric acid with mixing limitations in the presence of CO
DK0652500T3 (da) Fremgangsmåde og indretning til dosering af en reaktant i et strømningsmedium
Jõgi et al. Plasma and catalyst for the oxidation of NOx
Bešenić et al. Numerical modelling of sulfur dioxide absorption for spray scrubbing
Hammer et al. Plasma enhanced selective catalytic reduction of NOx for diesel cars
Caton et al. The selective non‐catalytic reduction of nitric oxide using ammonia at up to 15% oxygen
JPH0932664A (ja) 液体活性化用異種鉱物混合体
Zhou et al. Experimental study on removal performance of SO2 and NOx in marine exhaust gas using seawater/urea peroxide solution and analysis of ions concentration change
Khani et al. Real diesel engine exhaust emission control: indirect non-thermal plasma and comparison to direct plasma for NO x, THC, CO, and CO 2
Zwolinska et al. Electron beam flue gas technology for SOx and NOx simultaneous removal: its process and chemistry evolution from power plants to diesel off-gas treatment
Zhao et al. Optimization of NO oxidation by H2O2 thermal decomposition at moderate temperatures
Miao et al. Analysis of N2O reduction by components of red mud in bubbling fluidized bed
Hammer et al. Plasma enhanced selective catalytic reduction of NOx in diesel exhaust: test bench measurements
JPH07501260A (ja) シアヌル酸を用いる排ガスからのNOxの除去法および装置
Chen A global reaction rate for nitric oxide reburning
Joo et al. The study of NOx reduction using urea-SCR system with CPF and DOC for light duty vehicle; the diesel NOx reduction system
JP4925492B1 (ja) 試験ガス生成装置
Armanini et al. Fuel Vaporizer Catalyst Enables Compact Aftertreatment System Packaging by Reducing Mixing Length
JPH0949465A (ja) エンジン排気ガスの有害物質低減方法及びエンジン排気ガスの有害物質低減装置
Sapio Diesel After-Treatment Systems Modeling Optimization Techniques
AU721636B1 (en) Method and apparatus for cleaning exhaust gas by alpha-decay
Golovitchev et al. Numerical evaluation of direct injection of urea as NOx reduction method for heavy duty diesel engines
Mongia Optical probe for measuring the extent of air and fuel mixing in lean premixed combustors and the effect of air and fuel mixing on combustor performance
Dagaut CISS Princeton, 2021