JPH09326400A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH09326400A
JPH09326400A JP8142591A JP14259196A JPH09326400A JP H09326400 A JPH09326400 A JP H09326400A JP 8142591 A JP8142591 A JP 8142591A JP 14259196 A JP14259196 A JP 14259196A JP H09326400 A JPH09326400 A JP H09326400A
Authority
JP
Japan
Prior art keywords
conductive layer
semiconductor device
insulating layer
type
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8142591A
Other languages
Japanese (ja)
Inventor
Kazuhiro Mochizuki
和浩 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8142591A priority Critical patent/JPH09326400A/en
Publication of JPH09326400A publication Critical patent/JPH09326400A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the capacitance of a base and a collector by forming the first insulating layer consisting of an insulator and the second insulating layer consisting of a compound polycrystalline semiconductor in order in a parasitic collector region. SOLUTION: A high dope n-type InGaAs layer 2 is grown on a semiinsulating InP substrate 1 by molecular beam epitaxy method. Then, an Si3 N4 film 3 as a first insulating layer is piled up by chemical vapor phase piling method, and the Si3 N4 film 3 is left only in the parasitic collector region by photolithography and shock absorbing fluoric acid. Successively, compount polycrystalline 9 as a second insulating layer is stacked on the Si3 N4 film 3 left in the parasitic collector region. Hereby, the capacitance of a base and a collector can be reduced without the problem of base.collector resistance drop.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】ベース・コレクタ逆方向耐圧
および最大発振周波数の高い化合物半導体ヘテロ接合バ
イポーラトランジスタ、ならびにそれを有する半導体装
置に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor heterojunction bipolar transistor having a high base / collector reverse breakdown voltage and a high maximum oscillation frequency, and a semiconductor device having the same.

【0002】[0002]

【従来の技術】ヘテロ接合バイポーラトランジスタの最
大発振周波数を向上するには、ベース・コレクタ容量の
低減が有効である。これに対する方策として、(1)寄
生コレクタ領域14(図5参照)に酸素等のイオンを打
ち込み、該寄生コレクタ領域におけるキャリアを空乏化
させる技術がアイ・イー・イー・イー・エレクトロン・
デバイス・レターズ第EDL−5巻(1984年)第3
10頁から第312頁(IEEE Electron
Device Letters EDL−5 (198
4) pp.310−312)に、また(2)ベース電
極下の寄生コレクタ領域に比誘電率の小さなSiO2
5(図6参照)を埋め込む技術が、ソリッド・ステート
・エレクトロニクス第38巻(1995年)第1619
頁から第1622頁(Solid State Ele
ctronics Vol.38(1995) pp.
1619−1622)に、それぞれ開示されていた。
2. Description of the Related Art Reduction of the base-collector capacitance is effective for improving the maximum oscillation frequency of a heterojunction bipolar transistor. As a measure against this, (1) a technique of implanting ions such as oxygen into the parasitic collector region 14 (see FIG. 5) to deplete carriers in the parasitic collector region is an eye electron electron.
Device Letters Volume EDL-5 (1984) Vol. 3
Pages 10 to 312 (IEEE Electron
Device Letters EDL-5 (198
4) pp. 310-312), and (2) SiO 2 1 having a small relative dielectric constant in the parasitic collector region below the base electrode.
5 (see FIG. 6) is a solid state electronics volume 38 (1995) 1619.
Pages 1622 (Solid State Ele)
ctronics Vol. 38 (1995) pp.
1619-1622).

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、ベー
スおよびコレクタにGaAsを用いたヘテロ接合バイポ
ーラトランジスタには有効であるものの、ベースおよび
コレクタにInGaAsを用いたヘテロ接合バイポーラ
トランジスタでは以下のような問題があった。すなわ
ち、従来技術(1)では、イオン打ち込みにより生成さ
れる欠陥がInGaAs中でドナーとなり、InGaA
sがn型化して空乏化しないため、ベース・コレクタ容
量の低減は実現できなかった。また、従来技術(2)で
は、InGaAsと SiO2の界面16(図6参照)に
おいてリーク電流が発生し、ベース・コレクタ逆方向耐
圧の劣化する問題があった。SiO2の代わりにSi3
4を用いるとリーク電流は1桁以上低減するものの、I
nGaAsとSi34の熱膨張係数が15倍以上異り、
クラックが発生するため、Si34の膜厚を100nm
以上の厚さにできず、ベース・コレクタ容量の十分な低
減は実現できなかった。
Although the above-mentioned prior art is effective for the heterojunction bipolar transistor using GaAs for the base and collector, it is as follows for the heterojunction bipolar transistor using InGaAs for the base and collector. There was a problem. That is, in the conventional technique (1), the defects generated by the ion implantation become donors in InGaAs, and InGaA
Since s does not become an n-type and is not depleted, reduction of the base-collector capacitance cannot be realized. Further, in the prior art (2), there is a problem that a leak current is generated at the interface 16 between InGaAs and SiO 2 (see FIG. 6) and the reverse breakdown voltage of the base / collector is deteriorated. Si 3 N instead of SiO 2
If 4 is used, the leakage current is reduced by one digit or more, but I
The thermal expansion coefficient of nGaAs and Si 3 N 4 is more than 15 times different,
Since cracks occur, the film thickness of Si 3 N 4 should be 100 nm.
Since the thickness cannot be increased to the above value, the base / collector capacitance cannot be sufficiently reduced.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来技術の
問題点を解決するために、寄生コレクタ領域に、絶縁物
からなる第1の絶縁層と化合物多結晶半導体からなる第
2の絶縁層を順に形成して、ベース・コレクタ容量の低
減を図るようにしたものである。
In order to solve the above-mentioned problems of the prior art, the present invention provides, in a parasitic collector region, a first insulating layer made of an insulator and a second insulating layer made of a compound polycrystalline semiconductor. Are formed in order to reduce the base-collector capacitance.

【0005】[0005]

【発明の実施の形態】GaAs基板上に堆積させたSi
34膜(膜厚10−100nm)上に分子線エピタキシ
ー法を用いて、n型およびp型多結晶InGaAs層
(InAsモル比0.53、膜厚0.5μm)を、基板
温度350−450℃にて堆積速度0.01−1μm/
hで形成した結果、n型の場合は不純物に用いたSiの
濃度が1x1016cm-3以上2x1020cm-3以下にお
いて、またp型の場合は不純物に用いたC濃度が1x1
17cm-3以上5x1019cm-3以下において、 基板
温度や堆積速度によらず、抵抗率1MΩcm以上の絶縁
層となることが明らかとなった。これらの膜を寄生コレ
クタ領域に用いると、該領域におけるキャリアが空乏化
し、ベース・コレクタ容量の低減に寄与することが確認
された。なお、n型多結晶InGaAs層の場合、Si
濃度が2x1020cm-3を越えると、抵抗率は急激に減
少して導電性を示すため、絶縁膜にするためにはSi濃
度を2x1020cm-3以下する必要があるものの、 S
i濃度の下限は上記実験通りに1x1016cm-3以上と
する必要はなく、さらに低くてもよいことは容易に判断
される。また、p型多結晶InGaAs層の場合も同様
に、濃度の下限については上記実験条件よりも低くても
構わない。ここで、 Si34膜厚の上限100nmは
クラック発生限界、下限10nmはSi34膜堆積時の
ウエハ面内ばらつきを考慮して決定したことを付記して
おく。
DETAILED DESCRIPTION OF THE INVENTION Si deposited on a GaAs substrate.
An n-type and p-type polycrystalline InGaAs layer (InAs molar ratio 0.53, film thickness 0.5 μm) was formed on the 3 N 4 film (film thickness 10-100 nm) by a molecular beam epitaxy method at a substrate temperature of 350- Deposition rate 0.01-1 μm / at 450 ° C
As a result of forming with h, the concentration of Si used as an impurity is 1 × 10 16 cm −3 or more and 2 × 10 20 cm −3 or less in the case of n type, and the C concentration used as an impurity is 1 × 1 in the case of p type
It was clarified that an insulating layer having a resistivity of 1 MΩcm or more was formed regardless of the substrate temperature and the deposition rate at 0 17 cm -3 or more and 5 × 10 19 cm -3 or less. It was confirmed that when these films were used for the parasitic collector region, carriers in the region were depleted, which contributed to the reduction of the base-collector capacitance. In the case of an n-type polycrystalline InGaAs layer, Si
When the concentration exceeds 2 × 10 20 cm −3 , the resistivity sharply decreases and exhibits conductivity. Therefore, in order to form an insulating film, the Si concentration must be 2 × 10 20 cm −3 or less.
The lower limit of the i concentration does not have to be 1 × 10 16 cm −3 or more as in the above experiment, and it is easily judged that it may be lower. Similarly, in the case of the p-type polycrystalline InGaAs layer, the lower limit of the concentration may be lower than the above experimental condition. It should be noted that the upper limit of the Si 3 N 4 film thickness of 100 nm is the crack generation limit, and the lower limit of 10 nm is determined in consideration of the in-plane variation of the wafer during the Si 3 N 4 film deposition.

【0006】本発明によれば、寄生コレクタ領域は高抵
抗多結晶半導体となりキャリアが空乏化する結果、リー
ク電流やクラックの発生なしにベース・コレクタ容量が
低減できるため、ベース・コレクタ逆方向耐圧および最
大発振周波数の高い化合物半導体ヘテロ接合バイポーラ
トランジスタ、ならびにそれを有する半導体装置を作製
できる。
According to the present invention, the parasitic collector region becomes a high-resistance polycrystalline semiconductor and carriers are depleted. As a result, the base-collector capacitance can be reduced without the occurrence of leak current or cracks. A compound semiconductor heterojunction bipolar transistor having a high maximum oscillation frequency and a semiconductor device having the same can be manufactured.

【0007】実施例1 本発明の実施例1であるnpn型InP/InGaAs
ヘテロ接合バイポーラトランジスタおよびその製造方法
を、図1から図4を用いて説明する。
Example 1 npn type InP / InGaAs which is Example 1 of the present invention
The heterojunction bipolar transistor and its manufacturing method will be described with reference to FIGS.

【0008】図1の縦断面構造図に示すように、寄生コ
レクタ領域および外部ベース領域にはSi34膜3(膜
厚30nm)および高抵抗多結晶半導体層9が埋め込ま
れいる。これらの層の埋め込みのない場合に比較して、
コレクタ容量は30%低減し、最大発振周波数としては
43%増大して200GHzを越える値が得られた。ま
た、ベース・コレクタ逆方向耐圧は、層3および層9の
埋め込みのない場合と同じ10Vと高い値が得られた。
As shown in the longitudinal sectional view of FIG. 1, a Si 3 N 4 film 3 (thickness 30 nm) and a high-resistance polycrystalline semiconductor layer 9 are buried in the parasitic collector region and the external base region. Compared with no embedding of these layers,
The collector capacitance was reduced by 30% and the maximum oscillation frequency was increased by 43%, and a value exceeding 200 GHz was obtained. Further, the reverse breakdown voltage of the base / collector was as high as 10 V, which was the same as when the layers 3 and 9 were not buried.

【0009】以下、図1に示すInP/InGaAsヘ
テロ接合バイポーラトランジスタの製造方法を説明す
る。はじめに、半絶縁性InP(100)基板1上に高
ドープn型InGaAs層(InAsモル比0.53、
Si濃度2x1019cm-3、膜厚0.5μm)2を45
0℃にて分子線エピタキシー法により成長した。その
後、化学的気相堆積法によりSi34膜(膜厚30n
m)3を堆積し、ホトリソグラフィーおよび緩衝フッ酸
によりSi34膜3を寄生コレクタ領域にのみ残した
(図2参照)。
A method of manufacturing the InP / InGaAs heterojunction bipolar transistor shown in FIG. 1 will be described below. First, a highly-doped n-type InGaAs layer (InAs molar ratio: 0.53, on a semi-insulating InP (100) substrate 1
Si concentration 2 × 10 19 cm -3 , film thickness 0.5 μm 2
It was grown by molecular beam epitaxy at 0 ° C. After that, a Si 3 N 4 film (film thickness 30n is formed by a chemical vapor deposition method).
m) 3 was deposited and the Si 3 N 4 film 3 was left only in the parasitic collector region by photolithography and buffered hydrofluoric acid (see FIG. 2).

【0010】その後、試料を分子線エピタキシー装置に
再導入し、530℃にて高ドープn型InGaAs層2
表面の自然酸化膜を除去した。引き続き、高ドープn型
InGaAs層2およびSi34膜3上に、高ドープn
型InGaAs層(InAsモル比0.53、Si濃度
2x1019cm-3、膜厚0.2μm)4、n型InGa
As層(InAsモル比0.53、Si濃度2x1016
cm-3、膜厚0.4μm)5、高ドープp型InGaA
s層(InAsモル比0.53、C濃度5x1019cm
-3、膜厚30nm)6、n型InP層( Si濃度3x
1017cm-3、膜厚0.2μm)7、高ドープn型In
GaAs層(InAsモル比0.53、Si濃度2x1
19cm-3、膜厚0.1μm)8の成長を行った。この
際、高ドープn型InGaAs層2上には単結晶がエピ
タキシャル成長し、 Si34膜3上には多結晶9が堆
積したことを、反射高速電子線回折ならびに断面の電子
顕微鏡観察により確認した(図3参照)。なお、層5は
再成長界面の抵抗を低減する目的で挿入したものであ
り、水素ラジカル等を用いた層2表面のクリーニングを
行う場合にはなくてもよい。
After that, the sample was reintroduced into the molecular beam epitaxy apparatus, and the highly doped n-type InGaAs layer 2 was formed at 530 ° C.
The natural oxide film on the surface was removed. Then, on the highly-doped n-type InGaAs layer 2 and the Si 3 N 4 film 3, the highly-doped n-type
-Type InGaAs layer (InAs molar ratio 0.53, Si concentration 2 × 10 19 cm −3 , film thickness 0.2 μm) 4, n-type InGa
As layer (InAs molar ratio 0.53, Si concentration 2 × 10 16
cm -3 , film thickness 0.4 μm) 5, highly doped p-type InGaA
s layer (InAs molar ratio 0.53, C concentration 5 × 10 19 cm
-3 , film thickness 30 nm) 6, n-type InP layer (Si concentration 3x
10 17 cm −3 , film thickness 0.2 μm) 7, highly doped n-type In
GaAs layer (InAs molar ratio 0.53, Si concentration 2x1
0 19 cm −3 , film thickness 0.1 μm) 8 was grown. At this time, it was confirmed by reflection high-energy electron diffraction and cross-sectional electron microscope observation that a single crystal was epitaxially grown on the highly-doped n-type InGaAs layer 2 and a polycrystal 9 was deposited on the Si 3 N 4 film 3. (See FIG. 3). The layer 5 is inserted for the purpose of reducing the resistance at the regrowth interface, and may be omitted when cleaning the surface of the layer 2 using hydrogen radicals or the like.

【0011】その後、試料表面全面にWSi膜(膜厚
0.3μm)をスパッタ法により堆積し、ホトリソグラ
フィーおよびドライエッチングによりWSiエミッタ電
極10の加工を行った。このエミッタ電極10をマスク
に、メタンおよび塩素を用いた高ドープn型InGaA
s層8のドライエッチング、ならびに塩酸水溶液を用い
たn型InP層7のウエットエッチングを行い、高ドー
プp型InGaAs層6の表面を露出させた。その後、
SiO2膜を全面堆積し、ホトリソグラフィーおよびド
ライエッチングによりSiO2側壁11を形成した。続
いて、ベース電極(Au(100nm)/Pt(50n
m)/Ti(50nm)/Pt(10nm))12を電
子ビーム蒸着およびリフトオフにより堆積し、エミッタ
電極10およびSiO2側壁11上に堆積したベース電
極12をミリングにより除去した後に、350℃、30
分間のアロイを行った(図4参照)。
After that, a WSi film (film thickness 0.3 μm) was deposited on the entire surface of the sample by the sputtering method, and the WSi emitter electrode 10 was processed by photolithography and dry etching. Highly doped n-type InGaA using methane and chlorine with this emitter electrode 10 as a mask
The s layer 8 was dry-etched and the n-type InP layer 7 was wet-etched using a hydrochloric acid aqueous solution to expose the surface of the highly-doped p-type InGaAs layer 6. afterwards,
A SiO 2 film was deposited on the entire surface, and a SiO 2 sidewall 11 was formed by photolithography and dry etching. Then, the base electrode (Au (100 nm) / Pt (50 n
m) / Ti (50 nm) / Pt (10 nm)) 12 by electron beam evaporation and lift-off, and the emitter electrode 10 and the base electrode 12 deposited on the SiO 2 side wall 11 are removed by milling.
A minute alloy was performed (see FIG. 4).

【0012】最後に、図1に示すように、ベース電極1
2をマスクに、高ドープp型InGaAs層6、n型I
nGaAs層5、高ドープn型InGaAs層4をリン
酸、過酸化水素、純水の混合液を用いたウエットエッチ
ングにより除去し、コレクタ電極(AuGe(250n
m))13を抵抗加熱およびリフトオフにより堆積し、
350℃、30分間のアロイを行ってnpn型InP/
InGaAsヘテロ接合バイポーラトランジスタを作製
した。多結晶領域の抵抗率を測定した結果、積層膜全体
でも1MΩcmを越える値であることが確認された。
Finally, as shown in FIG. 1, the base electrode 1
2 is used as a mask and the highly doped p-type InGaAs layer 6 and n-type I are used.
The nGaAs layer 5 and the highly-doped n-type InGaAs layer 4 are removed by wet etching using a mixed solution of phosphoric acid, hydrogen peroxide, and pure water, and the collector electrode (AuGe (250n
m)) 13 is deposited by resistance heating and lift-off,
Alloy at 350 ° C. for 30 minutes to perform npn type InP /
An InGaAs heterojunction bipolar transistor was produced. As a result of measuring the resistivity of the polycrystalline region, it was confirmed that the whole laminated film had a value exceeding 1 MΩcm.

【0013】本実施例によれば、寄生コレクタ領域およ
びおよびベース電極引き出し領域(以下、外部ベース領
域と呼ぶ)は高抵抗多結晶半導体となりキャリアが空乏
化する結果、リーク電流やクラックの発生なしにベース
・コレクタ容量が低減できるため、ベース・コレクタ逆
方向耐圧および最大発振周波数の高いInP/InGa
Asヘテロ接合バイポーラトランジスタ、ならびにそれ
を有する半導体装置を作製できる効果がある。
According to the present embodiment, the parasitic collector region and the base electrode lead-out region (hereinafter referred to as the external base region) become a high resistance polycrystalline semiconductor, resulting in depletion of carriers. As a result, no leak current or crack occurs. Since the base-collector capacitance can be reduced, the reverse breakdown voltage of the base-collector and the maximum oscillation frequency of InP / InGa are high.
There is an effect that an As heterojunction bipolar transistor and a semiconductor device having the As heterojunction bipolar transistor can be manufactured.

【0014】実施例2 実施例1におけるn型InP層7の代わりに、InAl
As層(InAsモル比0.52、Si濃度3x1017
cm-3、膜厚100nm)を用いて、npn型InAl
As/InGaAsヘテロ接合バイポーラトランジスタ
を半絶縁性InP(100)基板上に作製した結果、実
施例1と同様に、コレクタ容量は30%低減し、最大発
振周波数としては43%増大して200GHzを越える
値が得られた。また、ベース・コレクタ逆方向耐圧は、
層3および層9の埋め込みのない場合と同じ10Vと高
い値が得られた。
Example 2 Instead of the n-type InP layer 7 in Example 1, InAl was used.
As layer (InAs molar ratio 0.52, Si concentration 3 × 10 17
cm -3 , film thickness 100 nm) using npn type InAl
As / InGaAs heterojunction bipolar transistors were fabricated on a semi-insulating InP (100) substrate. As a result, the collector capacitance was reduced by 30% and the maximum oscillation frequency was increased by 43% to exceed 200 GHz, as in Example 1. The value was obtained. In addition, the reverse breakdown voltage of the base and collector is
The same high value of 10 V was obtained as in the case where the layers 3 and 9 were not embedded.

【0015】本実施例によれば、寄生コレクタ領域およ
び外部ベース領域は高抵抗多結晶半導体となりキャリア
が空乏化する結果、リーク電流やクラックの発生なしに
ベース・コレクタ容量が低減できるため、ベース・コレ
クタ逆方向耐圧および最大発振周波数の高いInAlA
s/InGaAsヘテロ接合バイポーラトランジスタ、
ならびにそれを有する半導体装置を作製できる効果があ
る。
According to this embodiment, the parasitic collector region and the external base region become a high-resistance polycrystalline semiconductor and carriers are depleted. As a result, the base-collector capacitance can be reduced without the occurrence of leak current or cracks. High collector reverse breakdown voltage and high maximum oscillation frequency InAlA
s / InGaAs heterojunction bipolar transistor,
Also, there is an effect that a semiconductor device having the same can be manufactured.

【0016】[0016]

【発明の効果】本発明によれば、寄生コレクタ領域は高
抵抗多結晶半導体となりキャリアが空乏化する結果、ベ
ース・コレクタ耐圧低下の問題なしに、ベース・コレク
タ容量が低減できるため、最大発振周波数の高い化合物
半導体ヘテロ接合バイポーラトランジスタ、ならびにそ
れを有する半導体装置を作製できる。
According to the present invention, the parasitic collector region becomes a high-resistance polycrystalline semiconductor and carriers are depleted. As a result, the base-collector capacitance can be reduced without the problem of lowering the base-collector breakdown voltage. It is possible to manufacture a compound semiconductor heterojunction bipolar transistor having a high power consumption and a semiconductor device having the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるInP/InGaAsヘテロ接合
バイポーラトランジスタの縦断面構造図である。
FIG. 1 is a vertical sectional structural view of an InP / InGaAs heterojunction bipolar transistor according to the present invention.

【図2】本発明によるInP/InGaAsヘテロ接合
バイポーラトランジスタの製造方法を示す縦断面構造図
である。
FIG. 2 is a vertical sectional structural view showing a method for manufacturing an InP / InGaAs heterojunction bipolar transistor according to the present invention.

【図3】本発明によるInP/InGaAsヘテロ接合
バイポーラトランジスタの製造方法における図2に続く
工程を示す縦断面構造図である。
FIG. 3 is a longitudinal sectional structural view showing a step following that in FIG. 2 in the method for manufacturing an InP / InGaAs heterojunction bipolar transistor according to the present invention.

【図4】本発明によるInP/InGaAsヘテロ接合
バイポーラトランジスタの製造方法における図3に続く
工程を示す縦断面構造図である。
FIG. 4 is a longitudinal sectional structural view showing a step that follows the step in FIG. 3 in the method for manufacturing an InP / InGaAs heterojunction bipolar transistor according to the present invention.

【図5】第1の従来技術によるInP/InGaAsヘ
テロ接合バイポーラトランジスタの縦断面構造図であ
る。
FIG. 5 is a vertical sectional structural view of an InP / InGaAs heterojunction bipolar transistor according to a first conventional technique.

【図6】第2の従来技術によるInP/InGaAsヘ
テロ接合バイポーラトランジスタの縦断面構造図であ
る。
FIG. 6 is a vertical sectional structural view of an InP / InGaAs heterojunction bipolar transistor according to a second conventional technique.

【符号の説明】[Explanation of symbols]

1…半絶縁性InP基板、2、4、8…高ドープn型I
nGaAs、3…Si34、5…n型InGaAs、6
…高ドープp型InGaAs、7…n型InP、9…多
結晶、10…WSi、11…SiO2側壁、12…Au
/Pt/Ti/Pt、13…AuGe、14…酸素イオ
ン打ち込み領域、15… SiO2、16…リーク電流発
生領域。
1 ... Semi-insulating InP substrate, 2, 4, 8 ... Highly doped n-type I
nGaAs, 3 ... Si 3 N 4 , 5 ... n-type InGaAs, 6
... highly doped p-type InGaAs, 7 ... n-type InP, 9 ... polycrystalline, 10 ... WSi, 11 ... SiO 2 sidewall, 12 ... Au
/ Pt / Ti / Pt, 13 ... AuGe, 14 ... Oxygen ion implantation area, 15 ... SiO 2 , 16 ... Leak current generation area.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】単結晶半導体基板と、該基板上に形成され
た第1導電型の第1の導電層と、該第1の導電層上に形
成され、所望の形状を有する第1導電型の化合物単結晶
半導体からなる第2の導電層と、該第1の導電層上に、
該第2の導電層の周囲を囲んで、絶縁物からなる第1の
絶縁層と化合物多結晶半導体からなる第2の絶縁層が順
に形成された積層膜と、該第2の導電層上に形成され、
第1導電型とは逆の第2導電型を有する化合物単結晶半
導体からなる第3の導電層と、該第3の導電層上に形成
され、該第3の導電層を構成する化合物単結晶半導体と
禁制帯幅が異なり、第1導電型を有する化合物単結晶半
導体からなる第4の導電層と、前記第1の導電層、前記
第3の導電層および前記第4の導電層にそれぞれ接続さ
れた第1電極、第2電極および第3電極とを有するヘテ
ロ接合バイポーラトランジスタを備えたことを特徴とす
る半導体装置。
1. A single crystal semiconductor substrate, a first conductive type first conductive layer formed on the substrate, and a first conductive type formed on the first conductive layer and having a desired shape. A second conductive layer made of the compound single crystal semiconductor of, and on the first conductive layer,
A laminated film in which a first insulating layer made of an insulating material and a second insulating layer made of a compound polycrystalline semiconductor are sequentially formed so as to surround the periphery of the second conductive layer, and on the second conductive layer. Formed,
A third conductive layer made of a compound single crystal semiconductor having a second conductivity type opposite to the first conductivity type, and a compound single crystal formed on the third conductive layer and forming the third conductive layer A fourth conductive layer having a forbidden band width different from that of the semiconductor and made of a compound single crystal semiconductor having the first conductivity type, and connected to the first conductive layer, the third conductive layer, and the fourth conductive layer, respectively. Semiconductor device having a heterojunction bipolar transistor having a first electrode, a second electrode, and a third electrode that are formed.
【請求項2】上記第1の絶縁層はSi34からなること
を特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the first insulating layer is made of Si 3 N 4 .
【請求項3】上記第1の絶縁層の厚さは10nm以上1
00nm以下であることを特徴とする請求項2記載の半
導体装置。
3. The thickness of the first insulating layer is 10 nm or more 1
The semiconductor device according to claim 2, wherein the semiconductor device has a thickness of 00 nm or less.
【請求項4】上記第2の絶縁層における多結晶粒径は1
00nm以下であることを特徴とする請求項3記載の半
導体装置。
4. The polycrystalline grain size in the second insulating layer is 1
The semiconductor device according to claim 3, wherein the thickness is 00 nm or less.
【請求項5】上記第2の導電層および第2の絶縁層はn
型不純物濃度2x1020cm-3以下のInGaAsから
なり、第3の導電層はp型不純物濃度5x1019cm-3
以下のInGaAsからなることを特徴とする請求項4
記載の半導体装置。
5. The second conductive layer and the second insulating layer are n
The third conductive layer is made of InGaAs having a type impurity concentration of 2 × 10 20 cm −3 or less, and the p-type impurity concentration is 5 × 10 19 cm −3.
The following InGaAs is comprised, It is characterized by the above-mentioned.
13. The semiconductor device according to claim 1.
【請求項6】上記第4の導電層はInPあるいはInA
lAsからなることを特徴とする請求項5記載の半導体
装置。
6. The fourth conductive layer is InP or InA.
The semiconductor device according to claim 5, wherein the semiconductor device is made of 1As.
JP8142591A 1996-06-05 1996-06-05 Semiconductor device Pending JPH09326400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8142591A JPH09326400A (en) 1996-06-05 1996-06-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8142591A JPH09326400A (en) 1996-06-05 1996-06-05 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH09326400A true JPH09326400A (en) 1997-12-16

Family

ID=15318875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8142591A Pending JPH09326400A (en) 1996-06-05 1996-06-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH09326400A (en)

Similar Documents

Publication Publication Date Title
TWI436478B (en) Tunnel field effect transistor and method of manufacturing same
JPS6112388B2 (en)
JPH01287942A (en) Soi semiconductor structure and its manufacture
EP0177246A1 (en) Heterojunction bipolar transistor and method of manufacturing the same
JPH05182980A (en) Heterojunction bipolar transistor
US4837178A (en) Method for producing a semiconductor integrated circuit having an improved isolation structure
WO2007058265A1 (en) Bipolar transistor and its manufacturing method
JP2687897B2 (en) Field effect transistor and method for manufacturing the same
JPH0684934A (en) Heterojunction bipolar transistor and its manufacture
JPH09326400A (en) Semiconductor device
JP3172958B2 (en) Method for manufacturing compound semiconductor thin film
JPH11121737A (en) Field-effect transistor and manufacture thereof
JP3688952B2 (en) Heterojunction bipolar transistor integrated light receiving circuit and manufacturing method thereof
JP2623655B2 (en) Bipolar transistor and method of manufacturing the same
JPS58121642A (en) Manufacture of semiconductor device
JP2842042B2 (en) Semiconductor device
JP3139003B2 (en) Manufacturing method of resonant tunneling diode
JPH06252163A (en) Semiconductor device and its manufacturing method
JPH0575170B2 (en)
JPH1116922A (en) Semiconductor device
KR0155220B1 (en) A novel bipolar transistor and manufacturing method of the same
JP3255423B2 (en) Method for forming germanium layer
CN114141622A (en) Preparation method of GAAFET gallium nitride field effect transistor
JP2770586B2 (en) Method for manufacturing heterojunction bipolar transistor
KR950001167B1 (en) Compound semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090614

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9