JPH09325144A - Aerobic biodegrability measuring apparatus - Google Patents

Aerobic biodegrability measuring apparatus

Info

Publication number
JPH09325144A
JPH09325144A JP14262296A JP14262296A JPH09325144A JP H09325144 A JPH09325144 A JP H09325144A JP 14262296 A JP14262296 A JP 14262296A JP 14262296 A JP14262296 A JP 14262296A JP H09325144 A JPH09325144 A JP H09325144A
Authority
JP
Japan
Prior art keywords
carbon dioxide
microorganisms
trapping
liquid
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14262296A
Other languages
Japanese (ja)
Other versions
JP4025862B2 (en
Inventor
Yutaka Tokiwa
豊 常盤
Masami Matsui
正巳 松居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shimadzu Corp filed Critical Agency of Industrial Science and Technology
Priority to JP14262296A priority Critical patent/JP4025862B2/en
Publication of JPH09325144A publication Critical patent/JPH09325144A/en
Application granted granted Critical
Publication of JP4025862B2 publication Critical patent/JP4025862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a aerobic biodegrability measuring apparatus which enables accurately determining the aerobic biodegrability representing the decomposition of an organic substance by microorganisms in a culture solution. SOLUTION: This apparatus is provided with a carbon dioxide trapping part to trap carbon dioxide in a trapping solution 23 as generated by the decomposition of an organic substance by microorganisms, a separation section 5 to separate carbon dioxide from the trapping solution 23, a carbon dioxide detecting section 6 to detect the carbon dioxide separated and a liquid feeding section 4 to feed the trapping solution 23 to the separation section 5 from the carbon dioxide trapping part. The microorganisms decompose the organic substances to generate carbon dioxide. The alkali trapping solution 23 in the carbon dioxide trapping section 1 favorably absorbs carbon dioxide generated. The liquid feeding section 4 draws out the trapping solution 23 in the carbon dioxide trapping section 1 to be fed to the separation section 5. The separation section 5 separates carbon dioxide from the trapping solution fed and the carbon dioxide detecting section 6 detects carbon dioxide separated to measure the amount thereof. Thus, carbon dioxide generated by the decomposition of the organic substances by the microorganisms is directly measured to determine the degree of the decomposition of the organic substances by the microorganisms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微生物による有機
物の分解の程度を測定し、これによって、環境の汚染の
程度や廃棄物処理の処理状況、また、微生物の生分解の
活性度を測定する好気的生分解度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the degree of decomposition of organic substances by microorganisms, thereby measuring the degree of environmental pollution, the state of waste treatment, and the activity of biodegradation of microorganisms. The present invention relates to an aerobic biodegradability measuring device.

【0002】[0002]

【従来の技術】従来、環境の汚染の程度や廃棄物処理の
処理状況、また、微生物の生分解の活性度等の好気的生
分解度の測定は、微生物が培養液中で活動することによ
り消費した酸素量を生物化学的酸素要求量(BOD値)
として求め、このBOD値を指標として行っている。
2. Description of the Related Art Conventionally, the measurement of aerobic biodegradation such as the degree of environmental pollution, the treatment status of waste treatment, and the biodegradation activity of microorganisms is based on the fact that the microorganisms are active in the culture solution. The amount of oxygen consumed by the biochemical oxygen demand (BOD value)
And the BOD value is used as an index.

【0003】BOD計は、培養槽中において好気的微生
物の呼吸によって消費した酸素の減少を検出し、消費さ
れた酸素を水の電気分解等の方法によって補給して培養
液の酸素分圧を一定に保ち、培養中に補給された酸素量
をポテンショメータ等を含むクーロメトリーなどの方法
によって求める装置であり、図6は従来から知られてい
るBOD計の概略構成図を示している。
The BOD meter detects a decrease in oxygen consumed by respiration of aerobic microorganisms in the culture tank, supplements the consumed oxygen by a method such as electrolysis of water, and determines the oxygen partial pressure of the culture solution. FIG. 6 shows a schematic configuration diagram of a conventionally known BOD meter, which is a device that keeps constant and determines the amount of oxygen replenished during culture by a method such as coulometry including a potentiometer.

【0004】図6において、BOD計は恒温槽107内
に培養槽101とマノメータ107を備え、微生物によ
って消費した酸素量を測定部110によって測定する。
培養槽101内の試料100中に存在する微生物は、培
養槽101の気相中または試料中の酸素を使って呼吸を
行い試料100中の有機物質を水と二酸化炭素に分解す
る。放出された二酸化炭素を二酸化炭素吸収剤103が
吸収すると、培養槽101中の圧力は低下する。マノメ
ータ107は培養槽101内の圧力低下を検出して、リ
レー回路111を介してスイッチ112を閉じて定電流
源113によって電解セル106を駆動し、酸素を発生
して補給を行う。発生した酸素によって培養槽101内
の圧力が高まると、電解セル106による酸素発生は停
止する。培養中に補給した酸素量は、定電流源113か
らの電流量により求めることができる。
In FIG. 6, the BOD meter is provided with a culture tank 101 and a manometer 107 in a constant temperature tank 107, and the measuring unit 110 measures the amount of oxygen consumed by microorganisms.
Microorganisms present in the sample 100 in the culture tank 101 breathe using oxygen in the gas phase of the culture tank 101 or in the sample to decompose organic substances in the sample 100 into water and carbon dioxide. When the carbon dioxide absorbent 103 absorbs the released carbon dioxide, the pressure in the culture tank 101 decreases. The manometer 107 detects the pressure drop in the culture tank 101, closes the switch 112 via the relay circuit 111, drives the electrolysis cell 106 by the constant current source 113, and generates oxygen to replenish it. When the pressure in the culture tank 101 is increased by the generated oxygen, the oxygen generation by the electrolysis cell 106 is stopped. The amount of oxygen supplemented during the culture can be obtained from the amount of current from the constant current source 113.

【0005】[0005]

【発明が解決しようとする課題】従来の微生物が培養液
中で活動することにより消費した酸素量から求めた生物
化学的酸素要求量(BOD値)は、かならずしも微生物
による有機物の分解の程度を表す好気的生分解度の良好
な指標とならず、BOD計は必ずしも正確な好気的生分
解度測定装置ではないという問題点がある。
The biochemical oxygen demand (BOD value) obtained from the amount of oxygen consumed by the activity of conventional microorganisms in a culture medium always represents the degree of decomposition of organic substances by microorganisms. There is a problem that the BOD meter is not always an accurate aerobic biodegradability measuring device because it does not serve as a good indicator of the aerobic biodegradability.

【0006】従来のBOD計では、培養液中の微生物の
活動によって発生するガスは全て二酸化炭素であるとし
て吸収し、吸収したガスに対応した酸素を補給し、この
酸素量によって測定を行っている。しかしながら、培養
液中において微生物は有機物を分解して二酸化炭素を発
生する以外に、二酸化硫黄,硫化水素,蟻酸や酢酸等の
揮発性酸類などの有機物の分解に係わらないガス成分を
発生しているため、BOD値は、かならずしも微生物に
よる有機物の分解の程度を表していない。
In the conventional BOD meter, all the gas generated by the activity of microorganisms in the culture solution is absorbed as carbon dioxide, oxygen corresponding to the absorbed gas is supplied, and the amount of oxygen is used for measurement. . However, in the culture solution, in addition to decomposing organic matter to generate carbon dioxide, microorganisms generate gas components such as sulfur dioxide, hydrogen sulfide, and volatile acids such as formic acid and acetic acid that are not related to the decomposition of organic matter. Therefore, the BOD value does not always represent the degree of decomposition of organic substances by microorganisms.

【0007】また、従来のBOD計は二酸化炭素吸収剤
として顆粒状のカセイソーダからなるソーダライムを使
用しているが、該ソーダライムは培養槽中の水分を吸収
して、二酸化炭素の吸収能力が低下するという問題点も
ある。
Further, the conventional BOD meter uses soda lime consisting of granular caustic soda as a carbon dioxide absorbent. The soda lime absorbs water in the culture tank and has an ability to absorb carbon dioxide. There is also the problem of lowering.

【0008】そこで、本発明は従来の問題点を解決し、
培養液中の微生物による有機物の分解の程度を表す好気
的生分解度を正確に求めることができる好気的生分解度
測定装置を提供することを目的とする。
Therefore, the present invention solves the conventional problems,
An object of the present invention is to provide an aerobic biodegradation degree measuring device capable of accurately obtaining the degree of aerobic biodegradation, which indicates the degree of decomposition of organic matter by microorganisms in a culture solution.

【0009】[0009]

【課題を解決するための手段】本発明の好気的生分解度
測定装置は、微生物による有機物の分解により発生する
二酸化炭素を捕集液内に捕集する二酸化炭素捕集部と、
捕集液から二酸化炭素を分離する分離部と、分離した二
酸化炭素を検出する二酸化炭素検出部と、少なくとも二
酸化炭素捕集部から分離部へ捕集液を送液する送液部と
を備え、検出した二酸化炭素量に基づいて生分解度を測
定することによって、微生物による有機物の分解の程度
を表す好気的生分解度を正確に求める。
An aerobic biodegradation degree measuring device of the present invention comprises a carbon dioxide trapping portion for trapping carbon dioxide generated by decomposition of organic matter by microorganisms in a trapping liquid,
A separation unit that separates carbon dioxide from the collected liquid, a carbon dioxide detection unit that detects the separated carbon dioxide, and a liquid feed unit that feeds the collected liquid from at least the carbon dioxide collection unit to the separation unit, By measuring the degree of biodegradation based on the detected amount of carbon dioxide, the degree of aerobic biodegradation, which represents the degree of decomposition of organic substances by microorganisms, is accurately obtained.

【0010】本発明の好気的生分解度測定装置は、微生
物が有機物を分解して発生する二酸化炭素を捕集し、該
二酸化炭素量を求めることによって生分解度を測定する
ものであり、これによって、有機物以外の分解により発
生するガス成分の影響を除去して正確な微生物による有
機物の分解の程度を求めることができる。また、従来の
BOD計が使用する二酸化炭素吸収剤は二酸化炭素の除
去を目的とするのに対して、本発明の好気的生分解度測
定装置における捕集液は、発生した二酸化炭素量の測定
を目的とし、分離部において捕集液から二酸化炭素を分
離することによって二酸化炭素の濃縮を行って、微小量
の測定を可能としている。また、本発明の好気的生分解
度測定装置は、送液部によって捕集液を送液することに
より、二酸化炭素の測定を自動で行うことができる。
The aerobic biodegradability measuring device of the present invention is for measuring the biodegradability by collecting carbon dioxide generated by the decomposition of organic matter by microorganisms and determining the amount of carbon dioxide. As a result, it is possible to remove the influence of gas components generated by decomposition other than the organic matter and accurately determine the degree of decomposition of the organic matter by the microorganism. Further, while the carbon dioxide absorbent used in the conventional BOD meter is intended to remove carbon dioxide, the collected liquid in the aerobic biodegradation measuring apparatus of the present invention is the amount of generated carbon dioxide. For the purpose of measurement, carbon dioxide is concentrated in the separation unit by separating it from the collected liquid, and a minute amount can be measured. Further, the aerobic biodegradability measuring device of the present invention can automatically measure carbon dioxide by feeding the collected liquid by the liquid feeding unit.

【0011】本発明の好気的生分解度測定装置におい
て、培養液中の微生物は有機物を分解して二酸化炭素を
発生する。密閉された二酸化炭素捕集部内のアルカリ捕
集液は、発生した二酸化炭素を良好に吸収する。送液部
は、二酸化炭素捕集部内の捕集液を取り出して分離部に
送液する。分離部は、送液された捕集液から二酸化炭素
を分離し、二酸化炭素検出部は、分離した二酸化炭素を
検出して二酸化炭素量を測定する。これによって、微生
物が有機物を分解して発生した二酸化炭素を、直接測定
することができる。
In the aerobic biodegradation degree measuring apparatus of the present invention, the microorganisms in the culture solution decompose organic matters to generate carbon dioxide. The alkali scavenging liquid in the sealed carbon dioxide scavenging section satisfactorily absorbs the generated carbon dioxide. The liquid sending part takes out the collected liquid in the carbon dioxide collecting part and sends it to the separating part. The separation unit separates carbon dioxide from the collected collected liquid, and the carbon dioxide detection unit detects the separated carbon dioxide and measures the amount of carbon dioxide. As a result, carbon dioxide generated by the decomposition of organic matter by the microorganism can be directly measured.

【0012】本発明の第1の実施態様において、二酸化
炭素捕集部内の捕集液は、送液部によって外部の捕集液
タンクから補給するものであり、ペレスターポンプによ
って、同量の捕集液を二酸化炭素捕集部内へ補給し分離
部から送液することができる。本発明の第2の実施態様
において、分離部は中空糸膜を備え、これによって、捕
集液中から二酸化炭素の気体を分離する。
In the first embodiment of the present invention, the collected liquid in the carbon dioxide collecting unit is supplied from the external collecting liquid tank by the liquid feeding unit, and the same amount of the collected liquid is collected by the Pelestar pump. The collected liquid can be replenished into the carbon dioxide collecting unit and sent from the separating unit. In the second embodiment of the present invention, the separation section includes a hollow fiber membrane, which separates carbon dioxide gas from the collected liquid.

【0013】本発明の第3の実施態様は、複数個の二酸
化炭素捕集部を備え、分離部および二酸化炭素検出部に
対して捕集液を切り換えて送液するものであり、これに
よって、複数個の試料の測定を行うことができる。
The third embodiment of the present invention is provided with a plurality of carbon dioxide traps and switches the trapping liquid to the separator and the carbon dioxide detector to send the liquid. It is possible to measure a plurality of samples.

【0014】また、本発明の第4の実施態様において、
微生物が有機物を分解して発生する二酸化炭素の発生量
を測定する構成とともに、微生物が培養液中で活動する
ことにより消費した酸素量により求める生物化学的酸素
要求量(BOD値)を測定する構成を備え、これによっ
て、本発明により求める好気的生分解度と従来から知ら
れる生物化学的酸素要求量(BOD値)との比較を行う
ことができる。
Further, in the fourth embodiment of the present invention,
A structure for measuring the amount of carbon dioxide generated by the microorganisms by decomposing organic matter, and a structure for measuring the biochemical oxygen demand (BOD value) determined by the amount of oxygen consumed by the microorganisms acting in the culture solution This makes it possible to compare the degree of aerobic biodegradation required by the present invention with the conventionally known biochemical oxygen demand (BOD value).

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照しながら詳細に説明する。図1は本発明の装置の一
構成例を説明するための図である。図1において、好気
的生分解度測定装置は、微生物によって有機物を分解し
て発生した二酸化炭素を捕集液23内に捕集する二酸化
炭素捕集部1と、捕集液23から二酸化炭素を分離する
分離部5と、分離した二酸化炭素を検出するガスクロマ
トグラフ6等の二酸化炭素検出部と、少なくとも二酸化
炭素捕集部1から分離部5へ捕集液を送液するペレスタ
ーポンプ4等の送液部とを備えている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram for explaining an example of the configuration of the device of the present invention. In FIG. 1, the aerobic biodegradation measuring device comprises a carbon dioxide trap 1 for trapping carbon dioxide generated by decomposing organic matter by microorganisms in a trap 23, and a carbon dioxide from the trap 23. A separation unit 5 for separating the separated carbon dioxide, a carbon dioxide detection unit such as a gas chromatograph 6 for detecting the separated carbon dioxide, a Pellester pump 4 for sending the collected liquid from at least the carbon dioxide collection unit 1 to the separation unit 5, etc. And a liquid feeding section of.

【0016】二酸化炭素捕集部1は、培養槽21内に微
生物と有機物を含む培養液24を収め、攪拌子25によ
り攪拌が行われる。なお、攪拌子25は、外部の図示し
ないスターラーによって駆動される。微生物は有機物を
分解して二酸化炭素を発生し、培養槽21内の気相部分
に放出する。培養槽21内に設けた捕集容器22内には
捕集液23を貯められ、捕集液23の表面は培養槽21
の気相側に露出している。捕集液23は、例えば水酸化
ナトリウム溶液や水酸化バリウム溶液等のアルカリ液で
あり、気相部分に放出された二酸化炭素はこの捕集液2
3内に吸収され、良好に溶解する。
The carbon dioxide trap 1 contains a culture solution 24 containing a microorganism and an organic substance in a culture tank 21 and is stirred by a stirrer 25. The stirrer 25 is driven by an external stirrer (not shown). The microorganism decomposes organic matter to generate carbon dioxide, which is released to the gas phase portion in the culture tank 21. The collection liquid 23 is stored in the collection container 22 provided in the culture tank 21, and the surface of the collection liquid 23 is the culture tank 21.
Is exposed on the gas phase side of. The trapping liquid 23 is, for example, an alkaline liquid such as a sodium hydroxide solution or a barium hydroxide solution, and the carbon dioxide released to the gas phase portion is the trapping liquid 2
It is absorbed in 3 and dissolves well.

【0017】捕集液23は、培養槽21の外部に設けた
捕集液タンク3からペレスターポンプ4を通して補給さ
れ、また、捕集容器22からペレスターポンプ4を通し
て分離部5に取り出され送液される。図1中の矢印は、
捕集液の移動方向を示している。分離部5は、中心部分
に高分子膜等で形成される中空糸膜52が通された分離
容器51により形成される。中空糸膜52には捕集容器
22から送液された捕集液23は通され、分離容器51
側には6方バルブ等からなるガスサンプラー53を通し
てキャリヤーガスが供給されるとともに、ガスクロマト
グラフ6と接続されている。捕集液23中に溶解してい
る二酸化炭素は、分離部5においてキャリヤーガス側に
分離して移動する。これによって、キャリヤーガス内に
二酸化炭素を選択的に取り出すことができる。なお、分
離部5は、中空糸膜52内にキャリヤーを供給し、分離
容器側51に捕集液23を流す構成とすることもでき
る。捕集容器22から分離部5への捕集液23の送液は
ペレスターポンプ4により行うことができ、捕集液タン
ク3から捕集容器22への送液と捕集容器22から分離
部5への送液を同一のペレスターポンプ4によって行う
ことにより、捕集液の供給と送出を同期して同量だけ行
うことができる。
The collection liquid 23 is replenished from the collection liquid tank 3 provided outside the culture tank 21 through the perester pump 4, and is also taken out from the collection container 22 through the perester pump 4 to the separating section 5 and sent. Be liquefied. The arrow in FIG.
The moving direction of the collected liquid is shown. The separation part 5 is formed by a separation container 51 having a hollow fiber membrane 52 formed of a polymer membrane or the like at its center. The collection liquid 23 sent from the collection container 22 is passed through the hollow fiber membrane 52, and the separation container 51
Carrier gas is supplied to the side through a gas sampler 53 composed of a six-way valve or the like, and is connected to the gas chromatograph 6. The carbon dioxide dissolved in the collected liquid 23 is separated and moved to the carrier gas side in the separation section 5. As a result, carbon dioxide can be selectively taken out into the carrier gas. The separation unit 5 may also be configured to supply the carrier into the hollow fiber membrane 52 and flow the collected liquid 23 to the separation container side 51. The collection liquid 23 can be sent from the collection container 22 to the separation unit 5 by the Pelestar pump 4, and the collection liquid tank 3 can be sent to the collection container 22 and the collection container 22 can be separated from the separation unit 5. By feeding the liquid to 5 by the same Pellester pump 4, the same amount of the collected liquid can be supplied and delivered synchronously.

【0018】ガスサンプラー53を介して分離部5にキ
ャリヤーガスを供給し、二酸化炭素の分離したキャリヤ
ーガスをガスクロマトグラフ6に送るには、ガスサンプ
ラー53中の破線で示す通路を使用して行うことができ
る。ガスサンプラー53において、キャリヤーガスは図
1中のbに供給され、eを通って分離容器51の導入口
(図1中の下方部分)に送られる。導入されたキャリヤ
ーガスは中空糸膜52と接触して二酸化炭素を取込み、
分離容器51の導出口(図中の上方部分)から図1中の
fに戻される。その後、二酸化炭素を含んだキャリヤー
ガスはaを通ってガスクロマトグラフ6に送られ、二酸
化炭素の測定が行われる。
In order to supply the carrier gas to the separation section 5 through the gas sampler 53 and send the carrier gas from which carbon dioxide has been separated to the gas chromatograph 6, use the passage shown by the broken line in the gas sampler 53. You can In the gas sampler 53, the carrier gas is supplied to b in FIG. 1 and is sent to the inlet of the separation container 51 (lower part in FIG. 1) through e. The introduced carrier gas comes into contact with the hollow fiber membrane 52 and takes in carbon dioxide,
The separation container 51 is returned from the outlet (upper part in the drawing) to f in FIG. After that, the carrier gas containing carbon dioxide is sent to the gas chromatograph 6 through a, and carbon dioxide is measured.

【0019】なお、ガスサンプラー53中の実線で示す
通路を使用する場合には、バルブ54を開いて、図中の
c,fを介して分離部5にキャリヤーガスを通した後、
図中のe,fを介して排出する。これによって、捕集液
中から二酸化炭素を除去して捕集液の浄化を行うことが
できる。
When the passage shown by the solid line in the gas sampler 53 is used, the valve 54 is opened, and after passing the carrier gas through the separating portion 5 through c and f in the figure,
It is discharged via e and f in the figure. As a result, carbon dioxide can be removed from the collected liquid to purify the collected liquid.

【0020】図2は、図1に示す構成の好気的生分解度
測定装置において、培養槽21を大気中に開放し、捕集
液23によって大気中の約350ppmの二酸化炭素を
ガスクロマトグラフで測定した結果を、従来のBOD計
を用いたガスクロマトグラフの測定結果と比較して示し
ている。図2中において、G1は本発明の好気的生分解
度測定装置による測定結果を示し、G2は従来のBOD
計による測定結果を示している。また、各測定結果にお
いて、P1は空気によるピークを示し、P2は二酸化炭
素によるピークを示している。図2の測定結果から、本
発明の好気的生分解度測定によれば、従来の測定方法よ
り感度の良い測定結果を得ることができる。
FIG. 2 shows an apparatus for measuring the degree of aerobic biodegradation having the structure shown in FIG. 1 in which the culture tank 21 is opened to the atmosphere, and the collected liquid 23 is used to collect carbon dioxide of about 350 ppm in the atmosphere by gas chromatography. The measurement results are shown in comparison with the measurement results of a gas chromatograph using a conventional BOD meter. In FIG. 2, G1 shows the measurement result by the aerobic biodegradation measuring apparatus of the present invention, and G2 shows the conventional BOD.
The measurement result by the meter is shown. Moreover, in each measurement result, P1 shows the peak by air and P2 shows the peak by carbon dioxide. From the measurement result of FIG. 2, according to the aerobic biodegradation measurement of the present invention, a measurement result with higher sensitivity than the conventional measurement method can be obtained.

【0021】本発明の好気的生分解度測定装置は、図1
に示す二酸化炭素捕集部を複数個設けた構成とすること
によって、複数の試料の好気的生分解度測定に対応する
ことができる。図3は複数個の二酸化炭素捕集部を備え
た好気的生分解度測定装置の概略構成図である。図2に
おいて、第1二酸化炭素捕集部11,第2二酸化炭素捕
集部12,〜第n二酸化炭素捕集部1nのn個の二酸化
炭素捕集部は、前記図1に示す二酸化炭素捕集部と同様
の構成とすることができ、それぞれ第1ペレスターポン
プ41,第2ペレスターポンプ42〜第nペレスターポ
ンプ4nのn個のペレスターポンプによって捕集液タン
ク3から捕集液の供給を受けるとともに、二酸化炭素を
吸収した捕集液を分離部5に送液し、ガスクロマトグラ
フ6により測定を行う。この構成では、ペレスターポン
プによって捕集液を送液する二酸化炭素捕集部を選択す
ることによって、n個の二酸化炭素捕集部に対して分離
部5の個数を1個とすることができる。
The aerobic biodegradability measuring apparatus of the present invention is shown in FIG.
By adopting a configuration in which a plurality of carbon dioxide traps shown in (2) are provided, it is possible to deal with aerobic biodegradation measurement of a plurality of samples. FIG. 3 is a schematic configuration diagram of an aerobic biodegradation degree measuring device including a plurality of carbon dioxide traps. In FIG. 2, the n carbon dioxide traps of the first carbon dioxide trap 11, the second carbon dioxide trap 12, to the nth carbon dioxide trap 1n are the carbon dioxide traps shown in FIG. The collecting unit may have the same configuration as that of the collecting unit, and the collecting liquid is collected from the collecting liquid tank 3 by n number of the Pelestar pumps, that is, the first Pelestar pump 41, the second Peleester pump 42 to the n-th Pelestar pump 4n. Is supplied, the collected liquid that has absorbed carbon dioxide is sent to the separation unit 5, and measurement is performed by the gas chromatograph 6. In this configuration, the number of the separation units 5 can be set to one for n carbon dioxide collection units by selecting the carbon dioxide collection unit that feeds the collection liquid by the perester pump. .

【0022】次に、本発明の好気的生分解度測定装置
と、従来から知られるBOD計との組み合わせた構成に
ついて図4を用いて説明する。図中のAは本発明の好気
的生分解度測定装置による炭素ガス測定部であり、Bは
従来から知られるBOD計の酸素要求量測定部であっ
て、微生物が培養液中で活動することにより消費した酸
素量により求める生物化学的酸素要求量(BOD値)を
測定する構成である。
Next, a configuration in which the aerobic biodegradability measuring device of the present invention and a conventionally known BOD meter are combined will be described with reference to FIG. In the figure, A is a carbon gas measuring part by the aerobic biodegradability measuring device of the present invention, B is an oxygen demand measuring part of a conventionally known BOD meter, and microorganisms are active in the culture solution. Thus, the biochemical oxygen demand (BOD value) determined by the amount of oxygen consumed is measured.

【0023】炭素ガス測定部Aは、酸素要求量測定部B
内に設けられた培養槽81内に捕集液タンク3から捕集
液を供給し、二酸化炭素を捕集した捕集液83を取り出
してガスクロマトグラフ6で二酸化炭素の測定を行う。
一方、酸素要求量測定部Bは、捕集槽81内で発生した
二酸化炭素が捕集液83内に吸収されるたことによる減
圧をマノメータ87で検出し、電解制御部89によって
電解槽86を駆動して酸素を発生させ、培養槽81内の
減圧を補償する構成であり、電解制御部89において酸
素発生に要した電流を測定することによって酸素要求量
を測定する。
The carbon gas measuring unit A is an oxygen demand measuring unit B.
The collection liquid is supplied from the collection liquid tank 3 into the culture tank 81 provided inside, and the collection liquid 83 that collects carbon dioxide is taken out and the carbon dioxide is measured by the gas chromatograph 6.
On the other hand, the oxygen demand measurement unit B detects the pressure reduction due to the absorption of the carbon dioxide generated in the collection tank 81 into the collection liquid 83 by the manometer 87, and the electrolysis control unit 89 controls the electrolysis tank 86. It is configured to drive and generate oxygen to compensate for the reduced pressure in the culture tank 81, and the oxygen demand is measured by measuring the current required for oxygen generation in the electrolysis control unit 89.

【0024】図4に示す構成により、本発明の好気的生
分解度測定装置によって、二酸化炭素量に基づいた生分
解度の測定値と、従来の消費した酸素量により求める生
物化学的酸素要求量(BOD値)との比較を行うことが
できる。
With the configuration shown in FIG. 4, the aerobic biodegradability measuring apparatus of the present invention measures the biodegradability based on the amount of carbon dioxide and the biochemical oxygen demand obtained by the conventional amount of consumed oxygen. A comparison with the amount (BOD value) can be made.

【0025】また、図5は、前記図3と図4に示した構
成例を組み合わせた構成を示し、複数個の培養槽81を
備えた炭素ガス測定部Aと、該培養槽81の気相と連結
した電解槽86およびマノメータ87を備えた酸素要求
量測定部Bとを備えるとともに、捕集液の送液を行うペ
レスターポンプ41,42,〜4nを備えた部分と、培
養槽81に捕集液を供給する捕集液タンク3,二酸化炭
素を吸収した捕集液を取り出して二酸化炭素を分離する
分離部5,分離した捕集液を廃液として溜める廃液タン
ク7,二酸化炭素の測定を行うガスクロマトグラフ6,
ペレスターポンプ4や酸素要求量測定部Bの制御を行う
制御部9,およびガスクロマトグラフ6で測定したデー
タ処理を行うデータ処理装置10等を備えた部分とを含
んでいる。
Further, FIG. 5 shows a constitution in which the constitution examples shown in FIG. 3 and FIG. 4 are combined, and a carbon gas measuring section A having a plurality of culture tanks 81 and a gas phase of the culture tank 81. An oxygen demand amount measuring unit B having an electrolyzer 86 and a manometer 87 connected to each other, and a portion equipped with the Pellester pumps 41, 42, to 4n for feeding the collected liquid, and the culture tank 81. Collection liquid tank for supplying collection liquid 3, Separation part for taking out collection liquid absorbing carbon dioxide and separating carbon dioxide 5, Waste liquid tank 7 for collecting separated collection liquid as waste liquid, measurement of carbon dioxide Gas Chromatograph 6
It includes a control unit 9 for controlling the Pellester pump 4 and the oxygen demand measurement unit B, and a unit including a data processing device 10 for processing the data measured by the gas chromatograph 6.

【0026】制御部9はペレスターポンプ4や酸素要求
量測定部Bの制御を行ことにより、測定時期の制御や、
測定を行う培養槽の選択を行うことができ、これによっ
て、測定の自動化を行うことができる。
The control unit 9 controls the perester pump 4 and the oxygen demand measuring unit B to control the measurement timing and
It is possible to select the culture tank in which the measurement is to be performed, which allows automation of the measurement.

【0027】なお、複数個の培養槽の内の一つの培養槽
内の試料を既知の溶液として、基準の培養槽として使用
することもできる。本発明の実施の形態によれば、二酸
化炭素量に基づいて求めた生分解度によって、河川や排
水等の環境の汚染の程度や廃棄物処理の処理状況を測る
ことができ、また、微生物の生分解の活性度を測定する
ことができる。
The sample in one of the plurality of culture tanks may be used as a known solution and used as a reference culture tank. According to the embodiment of the present invention, the degree of biodegradation obtained based on the amount of carbon dioxide can measure the degree of pollution of the environment such as rivers and drainage and the treatment status of waste treatment. The activity of biodegradation can be measured.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
培養液中の微生物による有機物の分解の程度を表す好気
的生分解度を正確に求めることができる好気的生分解度
測定装置を提供することができる。
As described above, according to the present invention,
It is possible to provide an aerobic biodegradation degree measuring device capable of accurately obtaining the degree of aerobic biodegradation, which indicates the degree of decomposition of organic matter by microorganisms in a culture solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の装置の一構成例を説明するための図で
ある。
FIG. 1 is a diagram for explaining a configuration example of an apparatus of the present invention.

【図2】本発明の装置によるガスクロマトグラフの測定
結果例である。
FIG. 2 is an example of a measurement result of a gas chromatograph by the device of the present invention.

【図3】複数個の二酸化炭素捕集部を備えた好気的生分
解度測定装置の概略構成図である。
FIG. 3 is a schematic configuration diagram of an aerobic biodegradation degree measuring device including a plurality of carbon dioxide traps.

【図4】好気的生分解度測定装置とBOD計との組み合
わせた概略構成図である。
FIG. 4 is a schematic configuration diagram in which an aerobic biodegradability measuring device and a BOD meter are combined.

【図5】好気的生分解度測定装置とBOD計との組み合
わせた概略構成図である。
FIG. 5 is a schematic configuration diagram in which an aerobic biodegradability measuring device and a BOD meter are combined.

【図6】従来から知られているBOD計の概略構成図で
ある。
FIG. 6 is a schematic configuration diagram of a conventionally known BOD meter.

【符号の説明】[Explanation of symbols]

1,11〜1n…二酸化炭素捕集部、3…捕集液タン
ク、4,41〜4n…ペレスターポンプ、5…分離部、
6…ガスクロマトグラフ、7…廃液タンク、9…制御
部、10…データ処理装置、21,81…培養槽、2
2,82…捕集容器、23、83…捕集液、24…培養
液、25,85…攪拌子、51…分離容器、52…中空
糸膜、53…ガスサンプラー、54…バルブ、84…マ
グネットスターラー、86…電解槽、87…マノメー
タ、88…エアータンク、89…電解制御部、A…炭酸
ガス測定部、B…酸素要求量測定部。
1, 11-1n ... Carbon dioxide collecting part, 3 ... Collection liquid tank, 4, 41-4n ... Pellester pump, 5 ... Separation part,
6 ... Gas chromatograph, 7 ... Waste liquid tank, 9 ... Control part, 10 ... Data processing device 21, 81 ... Culture tank, 2
2, 82 ... Collection container, 23, 83 ... Collection liquid, 24 ... Culture liquid, 25, 85 ... Stirrer, 51 ... Separation container, 52 ... Hollow fiber membrane, 53 ... Gas sampler, 54 ... Valve, 84 ... Magnet stirrer, 86 ... Electrolyzer, 87 ... Manometer, 88 ... Air tank, 89 ... Electrolysis control section, A ... Carbon dioxide measuring section, B ... Oxygen demand measuring section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松居 正巳 茨城県つくば市吾妻3−17−1 株式会社 島津製作所つくば環境分析センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masami Matsui 3-17-1 Azuma Tsukuba, Ibaraki Shimadzu Corporation Tsukuba Environmental Analysis Center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 微生物による有機物の分解により発生す
る二酸化炭素を捕集液内に捕集する二酸化炭素捕集部
と、前記捕集液から二酸化炭素を分離する分離部と、分
離した二酸化炭素を検出する二酸化炭素検出部と、少な
くとも二酸化炭素捕集部から分離部へ捕集液を送液する
送液部とを備え、検出した二酸化炭素量に基づいて生分
解度を測定することを特徴とする好気的生分解度測定装
置。
1. A carbon dioxide collection part for collecting carbon dioxide generated by decomposition of organic matter by microorganisms in a collection liquid, a separation part for separating carbon dioxide from the collection liquid, and the separated carbon dioxide A carbon dioxide detecting unit for detecting and a liquid feeding unit for feeding the collected liquid to the separating unit from at least the carbon dioxide collecting unit, and the biodegradation degree is measured based on the detected carbon dioxide amount. Aerobic biodegradability measuring device.
JP14262296A 1996-06-05 1996-06-05 Aerobic biodegradation measuring device Expired - Lifetime JP4025862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14262296A JP4025862B2 (en) 1996-06-05 1996-06-05 Aerobic biodegradation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14262296A JP4025862B2 (en) 1996-06-05 1996-06-05 Aerobic biodegradation measuring device

Publications (2)

Publication Number Publication Date
JPH09325144A true JPH09325144A (en) 1997-12-16
JP4025862B2 JP4025862B2 (en) 2007-12-26

Family

ID=15319629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14262296A Expired - Lifetime JP4025862B2 (en) 1996-06-05 1996-06-05 Aerobic biodegradation measuring device

Country Status (1)

Country Link
JP (1) JP4025862B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265070A (en) * 2005-03-25 2006-10-05 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai Method and apparatus for judging degree of aging
KR20210111427A (en) * 2020-03-03 2021-09-13 (주)테크넬 Compost maturity measuring device
CN113533683A (en) * 2021-06-02 2021-10-22 广东新泓环境咨询有限公司 Surface soil petroleum hydrocarbon pollution early warning method and system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265070A (en) * 2005-03-25 2006-10-05 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai Method and apparatus for judging degree of aging
JP4521841B2 (en) * 2005-03-25 2010-08-11 国立大学法人静岡大学 Determination of maturity
KR20210111427A (en) * 2020-03-03 2021-09-13 (주)테크넬 Compost maturity measuring device
CN113533683A (en) * 2021-06-02 2021-10-22 广东新泓环境咨询有限公司 Surface soil petroleum hydrocarbon pollution early warning method and system

Also Published As

Publication number Publication date
JP4025862B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP2510368B2 (en) Method and apparatus for determining carbon dissolved in water
US3740320A (en) Apparatus and method for measuring the amount of gas absorbed or released by a substance
USRE41695E1 (en) Fuel cell system
CN1043078C (en) Device for analyzing a fluid medium
US7572323B2 (en) Fluid separating device
EP1497451B1 (en) Method and device for detecting toxic material in water using microbial fuel cell
US6623974B1 (en) Method and apparatus for the analysis of a liquid carrying a suspension of organic matter
US5667651A (en) Apparatus and associated method for reducing an undesired constituent of gas associated with wastewater and having sensor fault detection
JPH09325144A (en) Aerobic biodegrability measuring apparatus
AU2004208761B2 (en) Method for the detection of carbon monoxide in a hydrogen-rich gas stream
WO2004024633A2 (en) Dipping sensor for real-time bod monitoring of water
JPH11113595A (en) Assessment of biodegradability of organic matter and apparatus therefor
JP2783376B2 (en) Automatic chemical analyzer
CN212459368U (en) Photoionization toxic gas detection device and system
JP3505559B2 (en) Pollution load meter
EP0466303B1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
US4842709A (en) Electrolytic cell and process for the operation of electrolytic cells, for moisture analyzers
CN205687736U (en) Physics & chemistry lab comprehensive wastewater processing means
CN1037373C (en) Cell for measuring trace oxygen in gas
JPH06230006A (en) Closet provided with urine detector
JP4071686B2 (en) Conductivity measurement cell
JP2005238089A (en) Reactivity evaluation method and device
Jolly et al. Ultrapure water total organic carbon analyzer—advanced component development
SU850600A1 (en) Device for automatic control of waste and natural water purification process
JPS634139B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19961001

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010925

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20020605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030605

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20030605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041118

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term