JPH0932511A - Gas turbine exhaust gas re-combustion combined plant - Google Patents

Gas turbine exhaust gas re-combustion combined plant

Info

Publication number
JPH0932511A
JPH0932511A JP18551795A JP18551795A JPH0932511A JP H0932511 A JPH0932511 A JP H0932511A JP 18551795 A JP18551795 A JP 18551795A JP 18551795 A JP18551795 A JP 18551795A JP H0932511 A JPH0932511 A JP H0932511A
Authority
JP
Japan
Prior art keywords
boiler
gas
feed water
gas turbine
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18551795A
Other languages
Japanese (ja)
Other versions
JP3771606B2 (en
Inventor
Hiroshi Mishima
浩史 三島
Nariyuki Maruta
得志 丸田
Yasuhiro Takei
康裕 竹井
Yasuko Osawa
康子 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18551795A priority Critical patent/JP3771606B2/en
Publication of JPH0932511A publication Critical patent/JPH0932511A/en
Application granted granted Critical
Publication of JP3771606B2 publication Critical patent/JP3771606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance plant efficiency by properly keeping a temperature of combustion air of a boiler regardless of an operating condition of a gas turbine in a combined plant using exhaust gas of the gas turbine as combustion air of the boiler. SOLUTION: Exhaust gas of a gas turbine 23 is cooled by a wind tunnel feed water heater or a wind tunnel evaporator 25 before it is inputted to a boiler 4. In that case, a flow rate flowing to a bypass line 26 is adjusted, and a temperature of combustion air is controlled at a temperature optimal for the boiler 4. Heat is recovered from exhaust gas of the boiler by gas feed water heaters 28 and 29.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの排
気をボイラの燃焼用空気として用いる複合プラントに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined plant that uses gas turbine exhaust as combustion air for a boiler.

【0002】[0002]

【従来の技術】図5は従来の発電プラントの一例を示す
概略系統図である。空気(大気)は、押込通風機(1)
により昇圧されて昇圧空気となり、再生式空気予熱器
(2)でボイラ出口により加熱されて温空気となる。そ
の温空気は、風箱(3)に入り、バーナ部から投入され
る燃料を、ボイラ(4)内で燃焼させる。燃焼により発
生したガスは、過熱器(5)、再熱器(6)、節炭器
(7)の水/蒸気と熱交換したのち、ボイラ出口ガスと
してボイラ(4)から出てゆく。そしてボイラ(4)の
燃焼用として使用される昇圧空気を再生式空気予熱器
(2)で加熱し、排ガスとして煙突(8)から大気に放
出される。
2. Description of the Related Art FIG. 5 is a schematic system diagram showing an example of a conventional power plant. Air (atmosphere) is forced draft fan (1)
The pressure is increased by means of the pressure to become the pressure-increased air, and the regenerative air preheater (2) is heated by the boiler outlet to become the temperature air. The warm air enters the wind box (3) and burns fuel injected from the burner section in the boiler (4). The gas generated by the combustion heat-exchanges with water / steam in the superheater (5), the reheater (6) and the economizer (7), and then exits from the boiler (4) as boiler outlet gas. Then, the pressurized air used for combustion in the boiler (4) is heated by the regenerative air preheater (2) and is discharged as exhaust gas from the chimney (8) to the atmosphere.

【0003】一方、水/蒸気系では、復水器(9)で凝
縮した復水が、復水ポンプ(10)で加圧されたのち、
低圧給水加熱器(11)において蒸気タービンからの抽
気蒸気で加熱され、低圧給水となる。その低圧給水は、
脱気器(12)で給水中に溶存している気体を除去され
たのち、給水ポンプ(13)で加圧され、高圧給水とな
る。その後、高圧給水加熱器(14)において蒸気ター
ビンからの抽気蒸気で加熱され、ボイラ給水としてボイ
ラ(4)内へ入り、節炭器(7)、過熱器(5)等でボ
イラの燃焼ガスと熱交換して過熱蒸気となる。そして高
圧蒸気タービン(15)を駆動し、高圧蒸気タービン排
気として再びボイラ(4)内の再燃器(6)へ入り過熱
される。その再熱蒸気は、中圧蒸気タービン(16)を
駆動し、更に低圧蒸気タービン(17)を駆動したの
ち、復水器(6)へ導かれ、復水(108)に戻され
る。
On the other hand, in the water / steam system, the condensate condensed in the condenser (9) is pressurized by the condensate pump (10),
The low-pressure feed water heater (11) is heated by the extracted steam from the steam turbine to form low-pressure feed water. The low pressure water supply is
After the gas dissolved in the water supply is removed by the deaerator (12), it is pressurized by the water supply pump (13) to become high-pressure water supply. After that, it is heated by the extracted steam from the steam turbine in the high-pressure feed water heater (14), enters the boiler (4) as boiler feed water, and is converted into combustion gas of the boiler in the economizer (7), the superheater (5), etc. It exchanges heat to become superheated steam. Then, the high-pressure steam turbine (15) is driven, and as high-pressure steam turbine exhaust, it enters the reburner (6) in the boiler (4) again and is overheated. The reheated steam drives the medium-pressure steam turbine (16) and further drives the low-pressure steam turbine (17), and then is guided to the condenser (6) and returned to the condensate (108).

【0004】また、高圧蒸気タービン(15)、中圧蒸
気タービン(16)、低圧蒸気タービン(17)は、蒸
気タービン発電機(18)を駆動し、発電する。
The high pressure steam turbine (15), the medium pressure steam turbine (16) and the low pressure steam turbine (17) drive a steam turbine generator (18) to generate electricity.

【0005】[0005]

【発明が解決しようとする課題】前記従来の発電プラン
トには次のような解決すべき課題があった。
The conventional power plant has the following problems to be solved.

【0006】1)ボイラの燃焼用空気の加熱に排ガスと
熱交換を行なう再生式空気予熱器を用いている。したが
って空気のガスへのリークが生じる。
1) A regenerative air preheater for exchanging heat with exhaust gas is used to heat combustion air of a boiler. Therefore, air leaks to the gas.

【0007】2)ガスタービン排気をボイラの燃焼用空
気として使用する場合、高温の空気で体積流量が増加す
ると共に低O2 であるため、従来のバーナでは対応でき
ない。
2) When the gas turbine exhaust is used as combustion air for a boiler, the conventional burner cannot handle it because the volume flow rate of the hot air increases and the O 2 content is low.

【0008】3)ガスタービン排気を直接ボイラの燃焼
用空気として供給する場合、ガスタービンの排気温度が
その運転条件で定まり、ボイラの燃焼用空気の温度を制
御できない。また風箱、バーナ、搬送用ダクト等の材
料、耐力が許容を越える。
3) When the gas turbine exhaust is directly supplied as combustion air for the boiler, the exhaust temperature of the gas turbine is determined by the operating conditions, and the temperature of the combustion air for the boiler cannot be controlled. In addition, the materials and proof stress of the wind box, burner, transport duct, etc. exceed the permissible range.

【0009】[0009]

【課題を解決するための手段】本発明者は、前記従来の
課題を解決する手段として、ガスタービン排気をボイラ
の燃焼用空気として用いる複合プラントにおいて、上記
ガスタービン排気を上記ボイラに導くダクト内に設けら
れた風道蒸発器と、同風道蒸発器の水/蒸気系統の入口
と出口を連通するバイパスラインと、上記ボイラの排ガ
スによってボイラ給水を加熱するガス給水加熱器とを備
えたことを特徴とするガスタービン排気再燃複合プラン
ト;ならびにガスタービン排気をボイラの燃焼用空気と
して用いる複合プラントにおいて、上記ボイラの排ガス
によってボイラ給水を加熱するガス給水加熱器と、上記
ガスタービン排気によってボイラ給水を加熱する風道給
水加熱器と、同風道給水加熱器の給水系統の入口と出口
を連通するバイパスラインとを備えたことを特徴とする
ガスタービン排気再燃複合プラントを提案するものであ
る。
Means for Solving the Problems As a means for solving the above-mentioned problems, the present inventor has proposed a gas turbine exhaust gas in a duct for guiding the gas turbine exhaust gas to the boiler in a complex plant using the gas turbine exhaust gas as combustion air for the boiler. And a bypass line connecting the inlet and the outlet of the water / steam system of the air duct evaporator, and a gas feed water heater for heating the boiler feed water with the exhaust gas of the boiler. A gas turbine exhaust gas re-combustion complex plant; and a complex plant using the gas turbine exhaust gas as combustion air for a boiler; a gas feed water heater for heating boiler feed water by the exhaust gas of the boiler; and a boiler feed water by the gas turbine exhaust gas. Air supply water heater that heats the air passage and a bypass that connects the inlet and outlet of the water supply system of the air passage water supply heater. It proposes a gas turbine repowering combined plant, characterized in that a line.

【0010】ガスタービンの排気は、酸素を14%程度
含むので、ボイラの燃焼用空気として十分利用できる。
また温度も600℃程度なので、これをボイラへ投入す
ることは、熱回収の面でも有効であり、これによりプラ
ント効率が向上する。
Since the exhaust gas of the gas turbine contains about 14% oxygen, it can be sufficiently used as combustion air for the boiler.
Moreover, since the temperature is about 600 ° C., it is also effective to recover the heat from the boiler, so that the plant efficiency is improved.

【0011】そこで本発明ではガスタービン排気をボイ
ラの燃焼用空気として用いるのであるが、上記第1の解
決手段においては、ガスタービン排気をボイラに導くダ
クト内に設けられた風道蒸発器と、同風道蒸発器の水/
蒸気系統の入口と出口を連通するバイパスラインを備え
ているので、ガスタービンの運転条件の変化に対応して
風道蒸発器の通過流量とバイパス流量の配分を変えるこ
とにより、ガスタービン排気をボイラの安定した燃焼が
確保できる最適な温度に調整し、ボイラの燃焼用空気と
して投入することができる。
Therefore, in the present invention, the gas turbine exhaust is used as combustion air for the boiler. In the first solution, however, an air duct evaporator provided in a duct for guiding the gas turbine exhaust to the boiler, Water from the same wind evaporator /
Since a bypass line that connects the inlet and outlet of the steam system is provided, the gas turbine exhaust can be discharged from the boiler by changing the distribution of the passage flow rate of the air duct evaporator and the bypass flow rate in response to changes in the operating conditions of the gas turbine. The temperature can be adjusted to the optimum temperature that can ensure stable combustion, and can be input as combustion air for the boiler.

【0012】また、ボイラの燃焼用空気の温度を低減す
ることにより風箱、バーナ、搬送用ダクト等の材料、耐
力も保持できる。
Further, by reducing the temperature of the combustion air in the boiler, the materials and proof stress of the wind box, burner, transfer duct, etc. can be maintained.

【0013】一方、ボイラ排ガスの熱回収には、再生式
空気予熱器の代わりに、ボイラの排ガスによってボイラ
給水を加熱するガス給水加熱器を用いるので、プラント
効率の低下を防止できる。
On the other hand, for recovering heat from the boiler exhaust gas, a gas feed water heater for heating the boiler feed water by the exhaust gas from the boiler is used instead of the regenerative air preheater, so that a reduction in plant efficiency can be prevented.

【0014】また上記第2の解決手段においては、ガス
タービン排気によってボイラ給水を加熱する風道給水加
熱器と、同風道給水加熱器の給水系統の入口と出口を連
通するバイパスラインとを備えているので、同風道給水
加熱器により、ボイラの安定した燃焼が確保でき風道・
風箱が低合金鋼ですむ最適な温度にガスタービン排気の
温度を調整して、ボイラの燃焼用空気として投入するこ
とができる。
Further, in the second solution means, there is provided an air duct feed water heater for heating the boiler feed water by the gas turbine exhaust, and a bypass line connecting the inlet and outlet of the water feed system of the air duct feed water heater. Therefore, stable combustion of the boiler can be secured with the same air duct water heater.
The temperature of the gas turbine exhaust can be adjusted to the optimum temperature that the wind box can be made of low alloy steel, and can be input as combustion air for the boiler.

【0015】そして、この第2の解決手段でもボイラ排
ガスの熱をガス給水加熱器で回収するので、再生式空気
予熱器が不要となる。
Also in this second means, the heat of the boiler exhaust gas is recovered by the gas feed water heater, so that the regenerative air preheater becomes unnecessary.

【0016】[0016]

【発明の実施の形態】図1は本発明の実施の第1形態を
示す概略系統図である。この図において、前記図5によ
り説明した従来のプラントと同様の部分については、冗
長になるのを避けるため、同一の符号を付け詳しい説明
を省く。
FIG. 1 is a schematic system diagram showing a first embodiment of the present invention. In this figure, the same parts as those of the conventional plant described with reference to FIG. 5 are designated by the same reference numerals to avoid redundancy, and detailed description thereof is omitted.

【0017】空気(大気)はコンプレッサ(21)によ
り加圧されて加圧空気となり、コンバスタ(22)へ供
給される。そのコンバスタ(22)にはガスタービン燃
料が投入され、上記加圧空気により燃焼してガスタービ
ン入口ガスを発生する。このガスタービン入口ガスは、
ガスタービン(23)を駆動してガスタービン排気とな
る。ガスタービン(23)は、ガスタービン発電機(2
4)とコンプレッサ(21)を駆動する。
Air (atmosphere) is pressurized by the compressor (21) to become pressurized air, which is supplied to the combustor (22). Gas turbine fuel is injected into the combustor (22) and burned by the pressurized air to generate gas turbine inlet gas. This gas turbine inlet gas is
The gas turbine (23) is driven to become gas turbine exhaust. The gas turbine (23) is a gas turbine generator (2
4) and the compressor (21) are driven.

【0018】ガスタービン排気は、風道蒸発器(25)
に導入され、図示しない節炭器へ送られる給水から一部
分岐した給水によって冷却された後、ボイラ(4)の燃
焼用空気として、風箱(3)を通りボイラ(4)へ供給
される。風道蒸発器(25)には入口部から出口部へ給
水をバイパスするバイパスライン(26)が設けられて
おり、そのバイパスライン(26)を通る給水の流量と
風道蒸発器(25)を通過する給水の流量との配分を風
道蒸発器(25)の熱吸収量の変動に応じて制御するこ
とによりボイラ燃焼用空気の温度をボイラに最適な温度
に制御する。風道蒸発器(25)を通った給水とバイパ
スライン(26)を流れた給水は合流して、図示しない
セパレータへ導かれる。
The gas turbine exhaust is used for the wind duct evaporator (25).
After being cooled by the feed water partially introduced from the feed water sent to the economizer (not shown), it is supplied to the boiler (4) as combustion air for the boiler (4) through the wind box (3). The air duct evaporator (25) is provided with a bypass line (26) that bypasses the water supply from the inlet part to the outlet part, and the flow rate of the water feed through the bypass line (26) and the air duct evaporator (25) The temperature of the boiler combustion air is controlled to the optimum temperature for the boiler by controlling the distribution with the flow rate of the feed water passing therethrough according to the fluctuation of the heat absorption amount of the wind duct evaporator (25). The feed water that has passed through the air duct evaporator (25) and the feed water that has flowed through the bypass line (26) join together and are guided to a separator (not shown).

【0019】最適温度まで冷却されてボイラ(4)へ供
給された燃焼用空気は、ボイラ燃料を燃焼し、ボイラ
(4)内の節炭器、過熱器、再熱器等の水/蒸気系と熱
交換を行なった後、ボイラ出口ガスとしてガス高圧給水
加熱器(28)へ入り、ここで図示しない給水ポンプか
ら送り出された高圧給水の一部により冷却される。高圧
給水の残部は、分岐して高圧給水加熱器(14)に導入
される。ガス高圧給水加熱器(28)では、熱吸収量の
増減に対して、高圧給水加熱器(14)を通る給水の流
量を制御することにより対応する。高圧給水加熱器(1
4)とガス高圧給水加熱器(28)を出た給水は、その
後合流し図示しない節炭器へ導かれる。
The combustion air cooled to the optimum temperature and supplied to the boiler (4) burns the boiler fuel, and a water / steam system such as a economizer, a superheater or a reheater in the boiler (4). After exchanging heat with the high pressure feed water heater (28) as a boiler outlet gas, it is cooled by a part of the high pressure feed water sent from a feed pump (not shown). The rest of the high pressure feed water is branched and introduced into the high pressure feed water heater (14). The gas high-pressure feed water heater (28) responds to an increase or decrease in the amount of heat absorption by controlling the flow rate of feed water passing through the high-pressure feed water heater (14). High-pressure water heater (1
4) and the water supplied from the high-pressure gas feed water heater (28) are then merged and guided to a economizer (not shown).

【0020】ガス高圧給水加熱器(28)を出た排ガス
は、ガス低圧給水加熱器(29)へ入り、図示しない低
圧給水加熱器からの給水により冷却される。ガス低圧給
水加熱器(29)を出た給水は、図示しない脱気器へ導
かれる。但し、ガス低圧給水加熱器(29)へ入る給水
は、ガス低圧給水加熱器(29)が硫酸腐食を発生しな
い温度(120℃)に制御する必要があるので、熱負荷
に応じて、再循環ポンプ(30)を運転し、ガス低圧給
水加熱器(29)出口の給水の一部を入口に戻す。
The exhaust gas discharged from the gas high pressure feed water heater (28) enters the gas low pressure feed water heater (29) and is cooled by the feed water from a low pressure feed water heater (not shown). The feed water exiting the gas low pressure feed water heater (29) is guided to a deaerator (not shown). However, since the water supplied to the gas low-pressure feed water heater (29) needs to be controlled to a temperature (120 ° C.) at which the gas low-pressure feed water heater (29) does not generate sulfuric acid corrosion, it is recirculated according to the heat load. The pump (30) is operated to return a part of the feed water at the outlet of the low pressure gas feed water heater (29) to the inlet.

【0021】低圧ガス給水加熱器(29)で熱回収され
た排ガスは、図示しない煙突から、大気へ放出される。
The exhaust gas whose heat is recovered by the low pressure gas feed water heater (29) is discharged to the atmosphere from a stack (not shown).

【0022】本実施形態のように、ガスタービン(2
3)の排気をボイラ(4)の燃焼用空気として用いるプ
ラントで、風道蒸発器(25)を設けるとともにボイラ
排ガスの熱回収をガス給水加熱器(28)、(29)で
行なうことにより、次の効果が得られる。
As in this embodiment, the gas turbine (2
In the plant where the exhaust gas of 3) is used as the combustion air of the boiler (4), by providing the air duct evaporator (25) and performing heat recovery of the boiler exhaust gas with the gas feed water heaters (28) and (29), The following effects are obtained.

【0023】1)図2に示されるようにプラント効率が
従来と比較して3%程度向上する。 2)再生式空気予熱器が不要となり、空気のリークがな
くなる。 3)起動時にガスタービン排気熱量が減少した場合は、
風道蒸発器(25)をバイパスさせることにより、蒸気
温度制御の応答性を向上させることができる。 4)風箱、バーナ、搬送用ダクトの材料、耐力を強化す
る必要が軽減され、コストが低減される。
1) As shown in FIG. 2, the plant efficiency is improved by about 3% as compared with the conventional one. 2) No need for a regenerative air preheater, eliminating air leaks. 3) When the gas turbine exhaust heat quantity decreases at startup,
By bypassing the air duct evaporator (25), the responsiveness of steam temperature control can be improved. 4) The need for strengthening the material of the wind box, burner, transport duct, and proof stress is alleviated, and the cost is reduced.

【0024】次に図3は本発明の実施の第2形態を示す
概略系統図である。この図においても、前記と同様の部
分については同一の符号を付け、詳しい説明を省く。
Next, FIG. 3 is a schematic system diagram showing a second embodiment of the present invention. In this figure as well, the same parts as those described above are designated by the same reference numerals, and detailed description thereof will be omitted.

【0025】本実施形態においても、空気(大気)はコ
ンプレッサ(21)により加圧されて加圧空気となり、
コンバスタ(22)へ供給される。そのコンバスタ(2
2)にはガスタービン燃料が投入され、上記加圧空気に
より燃焼してガスタービン入口ガスを発生する。このガ
スタービン入口ガスは、ガスタービン(23)を駆動し
てガスタービン排気となる。ガスタービン(23)はガ
スタービン発電機(24)とコンプレッサ(21)を駆
動する。
Also in this embodiment, the air (atmosphere) is pressurized by the compressor (21) to become pressurized air,
It is supplied to the combustor (22). The combustor (2
Gas turbine fuel is injected into 2) and burns with the pressurized air to generate gas turbine inlet gas. The gas turbine inlet gas drives the gas turbine (23) and becomes gas turbine exhaust. The gas turbine (23) drives a gas turbine generator (24) and a compressor (21).

【0026】本実施形態では、ガスタービン排気は、風
道給水加熱器(31)に導入され、復水ポンプ(10)
出口の復水(給水)の一部によって冷却された後、ボイ
ラ(4)の燃焼用空気として、風箱(3)を通り、ボイ
ラ(4)へ供給される。風道給水加熱器(31)には、
給水系の入口部から出口部へバイパスするバイパスライ
ン(32)が設けられており、そのバイパスライン(3
2)を流れる給水の流量と風道給水加熱器(31)を流
れる給水の流量との配分を風道給水加熱器(31)の熱
回収量の変動に応じ制御することによって、ボイラ燃焼
用空気の温度をボイラ(4)に最適な温度に制御する。
風道給水加熱器(31)を通った給水とバイパスライン
(32)を通った給水は合流した後、前記復水ポンプ
(10)出口給水の残部と合流する。
In the present embodiment, the gas turbine exhaust is introduced into the air duct feed water heater (31) and the condensate pump (10).
After being cooled by part of the condensate water (water supply) at the outlet, it is supplied to the boiler (4) as combustion air for the boiler (4) through the wind box (3). The airway water heater (31)
A bypass line (32) for bypassing from the inlet to the outlet of the water supply system is provided, and the bypass line (3
The boiler combustion air is controlled by controlling the distribution of the flow rate of the feed water flowing through 2) and the flow rate of the feed water flowing through the airway water heater (31) according to the fluctuation of the heat recovery amount of the airway water heater (31). The temperature of is controlled to the optimum temperature for the boiler (4).
The feed water that has passed through the air duct feed heater (31) and the feed water that has passed through the bypass line (32) join and then join the rest of the feed water at the outlet of the condensate pump (10).

【0027】最適温度まで冷却されてボイラ(4)に供
給された燃焼用空気は、ボイラ燃料を燃焼し、ボイラ
(4)内の節炭器、過熱器、再熱器等の水/蒸気系と熱
交換を行なった後、ボイラ出口ガスとしてガス高圧給水
加熱器(28)へ入り、ここで給水によって冷却され、
更にガス低圧給水加熱器(29)でも給水によって冷却
された後、排ガスとして図示しない煙突から大気へ放出
される。
The combustion air cooled to the optimum temperature and supplied to the boiler (4) burns boiler fuel, and a water / steam system such as a economizer, a superheater or a reheater in the boiler (4). After exchanging heat with the gas, it enters the gas high pressure feed water heater (28) as the boiler outlet gas, where it is cooled by the feed water,
Further, the gas low-pressure feed water heater (29) is also cooled by the feed water and then discharged as exhaust gas from a stack (not shown) to the atmosphere.

【0028】給水系統について述べると、低圧蒸気ター
ビン排気が復水器(9)で復水となり、復水ポンプ(1
0)で加圧されたのち、低圧給水加熱器(11)、ガス
低圧給水加熱器(29)、風道給水加熱器(31)に分
岐する。
Explaining the water supply system, the low pressure steam turbine exhaust becomes condensed water in the condenser (9), and the condensed water pump (1)
After being pressurized in 0), it branches into a low pressure feed water heater (11), a gas low pressure feed water heater (29) and an airway feed water heater (31).

【0029】風道給水加熱器(31)へ流れる給水は、
前記のとおり風道給水加熱器(31)の熱吸収量の増減
に応じて風道給水加熱器(31)とバイパスライン(3
2)とに流量分配されたのち、合流して前記復水ポンプ
(10)の出口給水の一部と合流する。そして、ガス低
圧給水加熱器(29)で排ガスを冷却し、自らは加熱さ
れる。しかし、低負荷における硫酸腐食対策として、ガ
ス低圧給水加熱器(29)内の給水が酸露点温度を下廻
らないように、出口の給水の一部が再循環ポンプ(3
0)により入口へ戻される。
The water supplied to the air duct water heater (31) is
As described above, the air passage water heater (31) and the bypass line (3) are changed according to the increase or decrease of the heat absorption amount of the air passage water heater (31).
After the flow rate is distributed to 2), they are merged and merge with a part of the outlet water supply of the condensate pump (10). Then, the low-pressure gas feed water heater (29) cools the exhaust gas and heats itself. However, as a measure against sulfuric acid corrosion under a low load, a part of the feed water at the outlet is recirculated so that the feed water in the gas low pressure feed water heater (29) does not fall below the acid dew point temperature.
0) to return to the entrance.

【0030】復水ポンプ(10)出口給水の一部は、低
圧給水加熱器(11)で加熱された後、ガス低圧給水加
熱器(29)の出口給水と合流し、低圧給水として脱気
器(12)へ導かれる。そして給水中に溶存している気
体が除去され、給水ポンプ(13)で加圧されて高圧給
水となった後、高圧給水加熱器(14)とガス高圧給水
加熱器(29)に分配される。高圧給水加熱器(10)
では蒸気タービン抽気により給水が加熱される。また、
ガス高圧給水加熱器(28)ではボイラ出口ガスによっ
て給水が加熱される。高圧給水加熱器(14)を出た給
水とガス高圧給水加熱器(28)を出た給水は合流し、
ボイラ給水としてボイラ(4)内の節炭器へ供給され
る。
A part of the feed water at the outlet of the condensate pump (10) is heated by the low-pressure feed water heater (11), then joins with the outlet feed water of the gas low-pressure feed water heater (29), and is a deaerator as low-pressure feed water. You are led to (12). Then, the gas dissolved in the feed water is removed, pressurized by the feed water pump (13) to become high pressure feed water, and then distributed to the high pressure feed water heater (14) and the gas high pressure feed water heater (29). . High-pressure water heater (10)
The steam turbine bleed air heats the feed water. Also,
In the gas high pressure feed water heater (28), the feed water is heated by the boiler outlet gas. The water supplied from the high-pressure water heater (14) and the water supplied from the gas high-pressure water heater (28) join together,
It is supplied to the economizer in the boiler (4) as boiler feed water.

【0031】本実施形態においては、ガスタービン(2
3)の排気をボイラ(4)に導くダクト内に風道給水加
熱器(31)を設けるとともに、ボイラ排ガスの熱回収
をガス給水加熱器(28)、(29)で行なうので、プ
ラント効率が従来と比較して2%程度向上し、また再生
式空気予熱器が不要となる等、前記第1の実施形態と同
様の効果が得られる他、ガスタービン排気およびボイラ
排ガスによる低圧給水系の熱回収量を、排ガスによる高
圧給水系の熱吸収量よりも大きく配分することにより、
高圧給水系のスピルオーバを開始する点を低くすること
ができて、部分負荷運用性を高めることができる。すな
わち給水系統において、ガスタービン排気から風道給水
加熱器(31)で熱回収を行ない、更にボイラ排ガスか
らガス低圧給水加熱器(29)で熱回収することによ
り、これらの熱吸収量の合計がガス高圧給水加熱器(2
8)の熱吸収量よりも大きくなるので、高圧給水側での
スピルオーバを開始する点を低くすることができ、部分
負荷運用性を高めることができる。但し脱気器の圧力を
高める必要はある。
In this embodiment, the gas turbine (2
Since the air duct feed water heater (31) is provided in the duct that guides the exhaust gas of 3) to the boiler (4), and the heat recovery of the boiler exhaust gas is performed by the gas feed water heaters (28) and (29), the plant efficiency is improved. Compared with the conventional one, the effect similar to that of the first embodiment can be obtained, such as an improvement of about 2% and the need for a regenerative air preheater. In addition, the heat of the low-pressure water supply system by the gas turbine exhaust and boiler exhaust gas can be obtained. By allocating the recovery amount larger than the heat absorption amount of the high pressure water supply system by exhaust gas,
The point where spillover of the high-pressure water supply system starts can be lowered, and the partial load operability can be improved. That is, in the water supply system, heat is recovered from the gas turbine exhaust by the air duct water heater (31) and further by heat recovery from the boiler exhaust gas by the gas low-pressure water heater (29), so that the total amount of heat absorption is Gas high pressure feed water heater (2
Since it becomes larger than the heat absorption amount of 8), the point at which spillover starts on the high-pressure water supply side can be lowered, and the partial load operability can be improved. However, it is necessary to increase the pressure of the deaerator.

【0032】図4は本発明の実施の第3形態を示す概略
系統図である。この図においても、前記と同様の部分に
ついては同一の符号を付けて詳しい説明を省略する。
FIG. 4 is a schematic system diagram showing a third embodiment of the present invention. In this figure as well, the same parts as those described above are designated by the same reference numerals, and detailed description thereof will be omitted.

【0033】本実施形態においても、空気(大気)はコ
ンプレッサ(21)により加圧されて加圧空気となり、
コンバスタ(22)へ供給される。そのコンバスタ(2
2)にはガスタービン燃料が投入され、上記加圧空気に
より燃焼してガスタービン入口ガスを発生する。このガ
スタービン入口ガスは、ガスタービン(23)を駆動し
ガスタービン排気となる。ガスタービン(23)はガス
タービン発電機(24)とコンプレッサ(21)を駆動
する。
Also in this embodiment, air (atmosphere) is pressurized by the compressor (21) to become pressurized air,
It is supplied to the combustor (22). The combustor (2
Gas turbine fuel is injected into 2) and burns with the pressurized air to generate gas turbine inlet gas. This gas turbine inlet gas drives the gas turbine (23) and becomes gas turbine exhaust. The gas turbine (23) drives a gas turbine generator (24) and a compressor (21).

【0034】また本実施形態でも、ガスタービン排気
は、風道給水加熱器(31)に導入され、ガス高圧給水
加熱器(28)から来た給水で冷却された後、ボイラ
(4)の燃焼用空気として、風箱(3)を通りボイラ
(4)へ供給される。風道給水加熱器(31)には、給
水を入口部から出口部へバイパスするバイパスライン
(32)が設けられており、風道給水加熱器(31)を
通る給水量とバイパスライン(32)を通る給水量との
配分を風道給水加熱器(31)の熱吸収量の変動に対応
して制御することにより、ボイラ(4)の燃焼用空気の
温度をボイラに最適な温度に制御する。
Also in this embodiment, the gas turbine exhaust gas is introduced into the airway feedwater heater (31), cooled by the feedwater coming from the gas high pressure feedwater heater (28), and then burned in the boiler (4). Air for use is supplied to the boiler (4) through the wind box (3). The wind passage water heater (31) is provided with a bypass line (32) that bypasses the water supply from the inlet portion to the outlet portion, and the amount of water supplied through the wind passage water heater (31) and the bypass line (32). The temperature of the combustion air of the boiler (4) is controlled to the optimum temperature for the boiler by controlling the distribution with the amount of water supplied through the boiler according to the fluctuation of the heat absorption amount of the air duct water heater (31). .

【0035】最適温度まで冷却されてボイラ(4)に供
給された燃焼用空気は、ボイラ燃料を燃焼し、ボイラ
(4)内の節炭器、過熱器、再熱器等の水/蒸気系と熱
交換を行なった後、ボイラ出口ガスとしてガス高圧給水
加熱器(28)へ入り、更にガス低圧給水加熱器(2
9)へ入って、給水により冷却され、排ガスとして煙突
から大気へ放出される。
The combustion air cooled to the optimum temperature and supplied to the boiler (4) burns the boiler fuel, and a water / steam system such as a economizer, a superheater or a reheater in the boiler (4). After exchanging heat with the gas, it enters the gas high pressure feed water heater (28) as the boiler outlet gas, and further enters the gas low pressure feed water heater (2
It goes into 9), is cooled by water supply, and is discharged from the chimney to the atmosphere as exhaust gas.

【0036】給水系統では、低圧蒸気タービン排気が復
水器(9)で復水となり、復水ポンプ(10)で加圧さ
れた後、分岐して低圧給水加熱器(11)とガス低圧給
水加熱器(29)に導かれる。
In the water supply system, the low-pressure steam turbine exhaust becomes condensed water in the condenser (9), is pressurized by the condensate pump (10), and then branches into a low-pressure feed water heater (11) and a gas low-pressure feed water. It is led to a heater (29).

【0037】ガス低圧給水加熱器(29)に導入された
給水は、ここでガス高圧給水加熱器(28)を出た排ガ
スを冷却して自らは加熱されるが、低負荷域では硫酸腐
食対策として、給水の温度が酸露点温度を下廻らないよ
うに、再循環ポンプ(30)によりガス低圧給水加熱器
(29)出口の給水の一部が入口へ戻される。
The feed water introduced into the gas low-pressure feed water heater (29) cools the exhaust gas discharged from the gas high-pressure feed water heater (28) here and is heated by itself, but in the low load region, sulfuric acid corrosion countermeasures are taken. As a result, a part of the feed water at the outlet of the gas low pressure feed water heater (29) is returned to the inlet by the recirculation pump (30) so that the temperature of the feed water does not fall below the acid dew point temperature.

【0038】低圧給水加熱器(11)に導入された給水
は、タービン抽気で加熱され、ガス低圧給水加熱器(2
9)出口の給水と合流して低圧給水となる。その低圧給
水は脱気器(12)へ導かれ、給水中に溶存している気
体が除去されたのち、給水ポンプ(13)で加圧されて
高圧給水となる。その後、高圧給水加熱器(14)の入
口とガス高圧給水加熱器(28)の入口に分岐する。
The feed water introduced into the low pressure feed water heater (11) is heated by turbine bleed air, and the gas low pressure feed water heater (2
9) Combines with the water supply at the outlet to form low-pressure water supply. The low-pressure feed water is guided to the deaerator (12) to remove gas dissolved in the feed water, and then pressurized by the feed water pump (13) to become high-pressure feed water. Then, it branches into the inlet of the high pressure feed water heater (14) and the inlet of the gas high pressure feed water heater (28).

【0039】高圧給水加熱器(14)に導入された給水
は、タービン抽気により加熱されたのち、ボイラ給水と
してボイラ(4)内の節炭器(11)へ供給される。一
方、ガス高圧給水加熱器(28)に導入された給水は、
ボイラ(4)の出口ガスと熱交換して加熱されたのち、
風道給水加熱器(31)へ導かれてガスタービン(2
3)の排気を冷却する。その際、前記のように風道給水
加熱器(31)の熱吸収量の変動に対応して一部がバイ
パスライン(32)に分岐するが、その後、風道給水加
熱器(31)を通過した給水とバイパスした給水は合流
し、更に上記高圧給水加熱器(14)を出た給水と合流
して、ボイラ(4)へ供給される。
The feed water introduced into the high-pressure feed water heater (14) is heated by turbine bleed air and then supplied to the economizer (11) in the boiler (4) as boiler feed water. On the other hand, the feed water introduced into the gas high pressure feed water heater (28) is
After being heated by exchanging heat with the outlet gas of the boiler (4),
Guided to the air duct feed heater (31), the gas turbine (2
Cool the exhaust of 3). At that time, as described above, a part of the branch branches into the bypass line (32) in response to the fluctuation of the heat absorption amount of the air duct feed water heater (31), but thereafter, it passes through the air duct feed water heater (31). The supplied water and the bypassed water are combined and further combined with the water supplied from the high-pressure water heater (14) to be supplied to the boiler (4).

【0040】本実施形態においても、ガスタービン(2
3)の排気を風道給水加熱器(31)で冷却するととも
に、ボイラ排ガスの熱回収をガス給水加熱器(28)、
(29)により行なうので、前記実施形態と同様、プラ
ント効率が3%程度向上し、また再生式空気予熱器が不
要となるので、その設置スペースにガス給水加熱器が設
置でき、敷地を削減できる。風箱、バーナ、搬送用ダク
トの材料、耐力を強化する必要がなく、コストが低減さ
れることも、前記実施形態と同様である。
Also in this embodiment, the gas turbine (2
The exhaust gas of 3) is cooled by the air duct water heater (31), and the heat recovery of the boiler exhaust gas is performed by the gas water heater (28),
Since it is performed according to (29), the plant efficiency is improved by about 3%, and the regenerative air preheater is not required, as in the above-described embodiment, so that the gas feed water heater can be installed in the installation space and the site can be reduced. . Similar to the above-described embodiment, it is not necessary to strengthen the materials of the wind box, the burner, the transport duct, and the yield strength, and the cost is reduced.

【0041】更に本実施形態では、ガスタービン排気を
冷却する風道給水加熱器(31)とボイラ出口ガスを冷
却するガス高圧給水加熱器(28)で高圧給水系を構成
することにより、高圧給水系の熱吸収量が増大し、ボイ
ラへの給水温度を最大限に上げることができて、プラン
ト効率の向上に寄与する。すなわち、給水系統として
は、ガスタービン排気から高圧給水系の風道給水加熱器
(31)で熱回収を行ない、更にボイラ排ガスからの熱
回収を高圧給水系と低圧給水系のガス給水加熱器(2
8)、(29)で行なうので、高圧給水系の熱吸収量が
増大し、ボイラへの給水温度が上がりやすくなって、プ
ラント効率を高めることができる。
Further, in the present embodiment, the high pressure water supply system is configured by the air passage water supply heater (31) for cooling the gas turbine exhaust and the gas high pressure water supply heater (28) for cooling the boiler outlet gas, so that the high pressure water supply system is formed. The amount of heat absorbed by the system increases, and the temperature of the water supplied to the boiler can be maximized, contributing to improved plant efficiency. That is, as a water supply system, heat recovery from a gas turbine exhaust is performed by a high-pressure water supply airway water heater (31), and further heat recovery from boiler exhaust gas is performed by a high-pressure water supply system and a low-pressure water supply system ( Two
Since steps 8) and 29) are performed, the amount of heat absorbed by the high-pressure water supply system increases, the temperature of the water supplied to the boiler easily rises, and plant efficiency can be increased.

【0042】[0042]

【発明の効果】本発明によれば次の効果が得られる。According to the present invention, the following effects can be obtained.

【0043】1)プラント効率が従来と比較して2%〜
3%程度向上する。 2)再生式空気予熱器が不要となり、空気のリークがな
くなる。 3)風箱、バーナ、搬送用ダクト等の材料、耐力を強化
する必要が軽減されるので、コストが低減する。
1) Plant efficiency is 2% to
Improves by about 3%. 2) No need for a regenerative air preheater, eliminating air leaks. 3) Costs are reduced because the materials for wind box, burner, transport duct, and the like, and the need to strengthen the proof stress are alleviated.

【0044】4)起動時にガスタービン排気熱量が減少
した場合、風道蒸発器等をバイパスさせることにより、
蒸気温度制御の応答性を向上させることができる。
4) When the heat quantity of exhaust gas from the gas turbine decreases at startup, by bypassing the air duct evaporator,
The responsiveness of steam temperature control can be improved.

【0045】5)ガスタービンの排気およびボイラの排
ガスによる低圧給水系の熱吸収量を、排ガスによる高圧
給水系の熱吸収量よりも大きく配分することにより、高
圧給水系のスピルオーバを開始する点を低くすることが
できて、部分負荷運用性を高めることができる。
5) The point at which the spillover of the high-pressure water supply system is started by allocating the heat absorption amount of the low-pressure water supply system by the exhaust gas of the gas turbine and the exhaust gas of the boiler larger than the heat absorption amount of the high-pressure water supply system by the exhaust gas. It can be lowered and the partial load operability can be improved.

【0046】6)ガスタービン排気を冷却する風道給水
加熱器とボイラ出口排ガスを冷却するガス高圧給水加熱
器で高圧給水系を構成することにより、高圧給水系の熱
吸収量を増大させ、ボイラへの給水温度を最大限に上げ
ることができ、プラント効率の向上に寄与する。
6) By constructing a high-pressure water supply system with an air duct water heater for cooling the gas turbine exhaust and a gas high-pressure water heater for cooling the exhaust gas from the boiler outlet, the amount of heat absorbed by the high-pressure water supply system is increased, and the boiler is heated. The temperature of water supplied to the plant can be maximized, contributing to the improvement of plant efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施の第1形態を示す概略系統
図である。
FIG. 1 is a schematic system diagram showing a first embodiment of the present invention.

【図2】図2は本発明の効果を例示する図である。FIG. 2 is a diagram illustrating an effect of the present invention.

【図3】図3は本発明の実施の第2形態を示す概略系統
図である。
FIG. 3 is a schematic system diagram showing a second embodiment of the present invention.

【図4】図4は本発明の実施の第3形態を示す概略系統
図である。
FIG. 4 is a schematic system diagram showing a third embodiment of the present invention.

【図5】図5は従来の発電プラントの一例を示す概略系
統図である。
FIG. 5 is a schematic system diagram showing an example of a conventional power plant.

【符号の説明】[Explanation of symbols]

(1) 押込通風機 (2) 再生式空気予熱器 (3) 風箱 (4) ボイラ (5) 過熱器 (6) 再熱器 (7) 節炭器 (8) 煙突 (9) 復水器 (10) 復水ポンプ (11) 低圧給水加熱器 (12) 脱気器 (13) 給水ポンプ (14) 高圧給水加熱器 (15) 高圧蒸気タービン (16) 中圧蒸気タービン (17) 低圧蒸気タービン (18) 蒸気タービン発電機 (21) コンプレッサ (22) コンバスタ (23) ガスタービン (24) ガスタービン発電機 (25) 風道蒸発器 (26) バイパスライン (28) ガス高圧給水加熱器 (29) ガス低圧給水加熱器 (30) 再循環ポンプ (31) 風道給水加熱器 (32) バイパスライン (1) Push-in fan (2) Regenerative air preheater (3) Wind box (4) Boiler (5) Superheater (6) Reheater (7) Economizer (8) Chimney (9) Condenser (10) Condensate pump (11) Low pressure feed water heater (12) Deaerator (13) Water feed pump (14) High pressure feed water heater (15) High pressure steam turbine (16) Medium pressure steam turbine (17) Low pressure steam turbine (18) Steam turbine generator (21) Compressor (22) Combustor (23) Gas turbine (24) Gas turbine generator (25) Air duct evaporator (26) Bypass line (28) Gas high pressure feed water heater (29) Gas low-pressure feed water heater (30) Recirculation pump (31) Wind passage feed water heater (32) Bypass line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大沢 康子 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yasuko Osawa 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービン排気をボイラの燃焼用空気
として用いる複合プラントにおいて、上記ガスタービン
排気を上記ボイラに導くダクト内に設けられた風道蒸発
器と、同風道蒸発器の水/蒸気系統の入口と出口を連通
するバイパスラインと、上記ボイラの排ガスによってボ
イラ給水を加熱するガス給水加熱器とを備えたことを特
徴とするガスタービン排気再燃複合プラント。
1. In a combined plant using gas turbine exhaust as combustion air for a boiler, an air duct evaporator provided in a duct for guiding the gas turbine exhaust to the boiler, and water / steam of the air duct evaporator. A gas turbine exhaust gas re-combustion combined plant, comprising: a bypass line that connects an inlet and an outlet of the system; and a gas feed water heater that heats boiler feed water by the exhaust gas from the boiler.
【請求項2】 ガスタービン排気をボイラの燃焼用空気
として用いる複合プラントにおいて、上記ボイラの排ガ
スによってボイラ給水を加熱するガス給水加熱器と、上
記ガスタービン排気によってボイラ給水を加熱する風道
給水加熱器と、同風道給水加熱器の給水系統の入口と出
口を連通するバイパスラインとを備えたことを特徴とす
るガスタービン排気再燃複合プラント。
2. In a complex plant using gas turbine exhaust as combustion air for a boiler, a gas feed water heater that heats boiler feed water by the exhaust gas of the boiler, and airway feed water heating that heats boiler feed water by the gas turbine exhaust. And a bypass line connecting an inlet and an outlet of a water supply system of the air duct feed water heater.
JP18551795A 1995-07-21 1995-07-21 Gas turbine exhaust reburn complex plant Expired - Fee Related JP3771606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18551795A JP3771606B2 (en) 1995-07-21 1995-07-21 Gas turbine exhaust reburn complex plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18551795A JP3771606B2 (en) 1995-07-21 1995-07-21 Gas turbine exhaust reburn complex plant

Publications (2)

Publication Number Publication Date
JPH0932511A true JPH0932511A (en) 1997-02-04
JP3771606B2 JP3771606B2 (en) 2006-04-26

Family

ID=16172180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18551795A Expired - Fee Related JP3771606B2 (en) 1995-07-21 1995-07-21 Gas turbine exhaust reburn complex plant

Country Status (1)

Country Link
JP (1) JP3771606B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545945A (en) * 2005-06-08 2008-12-18 マン トゥルボ アクチエンゲゼルシャフト Steam generating facility, method of operating steam generating facility, and additional equipment
KR20230055174A (en) * 2021-10-18 2023-04-25 한국전력공사 Burner for coal-fired power plant and power generation system for recycling coal-fired power plant having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545945A (en) * 2005-06-08 2008-12-18 マン トゥルボ アクチエンゲゼルシャフト Steam generating facility, method of operating steam generating facility, and additional equipment
KR20230055174A (en) * 2021-10-18 2023-04-25 한국전력공사 Burner for coal-fired power plant and power generation system for recycling coal-fired power plant having the same

Also Published As

Publication number Publication date
JP3771606B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US5442908A (en) Combined combustion and steam turbine power plant
US20070017207A1 (en) Combined Cycle Power Plant
US6397575B2 (en) Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system
JPH094417A (en) Composite cycle-system
US8387356B2 (en) Method of increasing power output of a combined cycle power plant during select operating periods
US10900418B2 (en) Fuel preheating system for a combustion turbine engine
AU2014323409B2 (en) Flue gas heat recovery integration
JP3795124B2 (en) Steam turbine operation
CN101713334A (en) Peak load management by combined cycle power augmentation using peaking cycle exhaust heat recovery
JP3925985B2 (en) Combined cycle power plant
CN109312635A (en) Condensate recirculation
JPH11173111A (en) Thermal power plant
EP3219940B1 (en) Combined cycle power plant and method for operating such a combined cycle power plant
JPH08210151A (en) Power plant
JPH1061413A (en) Exhaust reburning type compound power plant
JPH0932511A (en) Gas turbine exhaust gas re-combustion combined plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JPH06212909A (en) Compound electric power plant
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPH09303113A (en) Combined cycle generating plant
JP2001214758A (en) Gas turbine combined power generation plant facility
JPH09166002A (en) Combined cycle power generation plant
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPH0245763B2 (en) JOKITAABINPURANTONOKYUSUIKANETSUKEITO
JP2004044533A (en) Turbine equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050317

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050912

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Effective date: 20060210

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees