JPH09321700A - Method and device for generating electromagnetic wave - Google Patents

Method and device for generating electromagnetic wave

Info

Publication number
JPH09321700A
JPH09321700A JP8157552A JP15755296A JPH09321700A JP H09321700 A JPH09321700 A JP H09321700A JP 8157552 A JP8157552 A JP 8157552A JP 15755296 A JP15755296 A JP 15755296A JP H09321700 A JPH09321700 A JP H09321700A
Authority
JP
Japan
Prior art keywords
light
frequency
optical
seed
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8157552A
Other languages
Japanese (ja)
Inventor
Kenichi Kitayama
研一 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Communications Research Laboratory
Original Assignee
Communications Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Communications Research Laboratory filed Critical Communications Research Laboratory
Priority to JP8157552A priority Critical patent/JPH09321700A/en
Publication of JPH09321700A publication Critical patent/JPH09321700A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a electromagnetic wave generating method and a device in which the frequency is stably varied. SOLUTION: An output beam of a light source 1 whose frequency is f1 is modulated by a modulation signal whose frequency is Δf by an optical modulator 2 and two side band waves are generated and amplified by an optical amplifier 3 and the side band waves whose frequency difference is NΔf are generated by a single mode optical fiber 4 based on the ternary nonlinear optical effect. Then two side band waves whose frequency is f1±NΔf are produced by a multistage optical frequency filter 5 and subject to optical heterodyne detection at a photo-detector 7, then an electromagnetic wave whose frequency is 2NΔf is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はミリ波帯等といった
周波数の高い電磁波を発生させる方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for generating electromagnetic waves having a high frequency such as millimeter wave band.

【0002】[0002]

【従来の技術】従来、光・電波発生には2つの方法が試
みられていた。いずれも原理は、周波数の異なる2つの
光波を発生させ、一方の光波を情報信号で変調し、最後
に両者のビート周波数を検出することによって、周波数
差に相当したマイクロ波を生成するものである。このと
き2つの光波の位相や周波数が安定であることが重要な
条件である。
2. Description of the Related Art Conventionally, two methods have been tried for generating light and radio waves. In both cases, the principle is to generate two light waves having different frequencies, modulate one of the light waves with an information signal, and finally detect the beat frequencies of the two to generate a microwave corresponding to the frequency difference. . At this time, it is an important condition that the phases and frequencies of the two light waves are stable.

【0003】その1つは発振周波数が安定で互いに異な
り、且つ両者の光の位相関係を固定された2つコヒーレ
ントな光源を用いる方法である。図4はその方法を示す
ブロック図であり、41はコヒーレントな第1の光源、
42はコヒーレントな第2の光源、43は光変調器、4
4は3dBカップラ、45はフォトディテクタである。
One of them is a method using two coherent light sources whose oscillation frequencies are stable and different from each other and whose phase relationship between the two lights is fixed. FIG. 4 is a block diagram showing the method, 41 is a coherent first light source,
42 is a coherent second light source, 43 is an optical modulator, 4
4 is a 3 dB coupler, and 45 is a photodetector.

【0004】光源41の出力ビームは光変調器43によ
ってデータで変調され、3dBカップラ44で光源42
の出力ビームと合波され、フォトディテクタ45でヘテ
ロダイン検波される。その結果、差のビート周波数に相
当する周波数の電磁波信号が得られる。
The output beam of the light source 41 is modulated with data by an optical modulator 43, and a light source 42 is output by a 3 dB coupler 44.
Is combined with the output beam of (1) and is heterodyne detected by the photodetector 45. As a result, an electromagnetic wave signal having a frequency corresponding to the difference beat frequency is obtained.

【0004】本方法の最大の問題点は、位相同期が困難
なことである。位相同期は精密なループフィルタの利得
調整を要し、位相同期回路の構成が複雑である。また2
つのレーザを用いるために小型化と経済化が困難であ
る。以上の理由から、本方法は実用には適していない。
The biggest problem with this method is that phase synchronization is difficult. Phase synchronization requires precise gain adjustment of the loop filter, and the configuration of the phase synchronization circuit is complicated. Also 2
Since two lasers are used, it is difficult to make them compact and economical. For the above reasons, this method is not suitable for practical use.

【0005】上記の欠点を解決するものとして、1つの
光源を用いて2つの周波数の異なる光波を生成する方法
であり、この場合には上記のような位相同期の問題はな
くなる。図5はその方法を示すブロック図であり、51
はコヒーレントな光源、52は第1の光変調器、53は
第1の光周波数フィルタ、54は第2の光周波数フィル
タ、55は第2の光変調器、56はフォトディテクタで
ある。
To solve the above-mentioned drawbacks, there is a method of generating light waves of two different frequencies by using one light source. In this case, the above-mentioned problem of phase synchronization is eliminated. FIG. 5 is a block diagram showing the method.
Is a coherent light source, 52 is a first optical modulator, 53 is a first optical frequency filter, 54 is a second optical frequency filter, 55 is a second optical modulator, and 56 is a photodetector.

【0006】光源51の出力ビームは光変調器52によ
って所要の搬送波周波数の1/2に相当するΔfで変調
され、2つの側帯波が生成される。光周波数フィルタ5
3によって、この中から光源51の周波数成分のみが除
去され、更に光周波数フィルタ54によって両側帯波が
分離される。次に、一方の側帯波のみを光変調器55を
用いてデータで変調し、最後にフォトディテクタ56で
ヘテロダイン検波される。その結果、周波数が2Δfの
電磁波信号が得られる。
The output beam of the light source 51 is modulated by the optical modulator 52 with Δf corresponding to ½ of the required carrier frequency to generate two sidebands. Optical frequency filter 5
3 removes only the frequency component of the light source 51, and the optical frequency filter 54 separates both sidebands. Next, only one of the sidebands is modulated with data using the optical modulator 55, and finally the photodetector 56 performs heterodyne detection. As a result, an electromagnetic wave signal having a frequency of 2Δf can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、本方法
は、位相同期を必要としないという利点があるが、搬送
波の周波数が光変調器の帯域で制限されるので、発生で
きる搬送波の周波数は高々数10GHzが上限であると
いう問題を有していた。
However, this method has the advantage that no phase synchronization is required, but since the carrier frequency is limited by the band of the optical modulator, the carrier frequency that can be generated is at most several. There was a problem that the upper limit was 10 GHz.

【0008】本発明はこれらの欠点を解決し、位相同期
が不要で且つ発生できる無線搬送波の周波数に制限がな
い搬送波発生方法及び装置に関するものである。
The present invention solves these drawbacks, and relates to a carrier generation method and apparatus in which phase synchronization is unnecessary and the frequency of a radio carrier that can be generated is not limited.

【課題を解決するための手段】本発明は上記に鑑みてな
されたもので、光ファイバにポンプ光として連続光(c
w光)と、該ポンプ光と位相が同期し、且つ周波数を連
続的に可変可能なcwシード光を同時に入射し、光ファ
イバの非線形光学現象の1つである第3次非線形光学効
果に基づく光波混合によって、上記ポンプ光と上記cw
シード光との周波数差の整数倍だけ周波数が異なり、且
つ上記cwシード光と位相が同期したcw信号光を発生
させ、上記cwシード光と上記cw信号光を光ヘテロダ
イン検波することによって、上記cwシード光と上記c
w信号光の周波数差に相当する周波数が可変可能な電磁
波を発生する電磁波発生方法を提供する。
The present invention has been made in view of the above, and a continuous light (c) as a pump light is supplied to an optical fiber.
w light) and cw seed light whose phase is synchronized with the pump light and whose frequency can be continuously varied are simultaneously incident, and is based on the third-order nonlinear optical effect which is one of the nonlinear optical phenomena of the optical fiber. By the light wave mixing, the pump light and the cw
By generating a cw signal light having a frequency different by an integer multiple of the frequency difference from the seed light and being in phase with the cw seed light, and performing optical heterodyne detection of the cw seed light and the cw signal light, the cw signal is generated. Seed light and above c
Provided is an electromagnetic wave generation method for generating an electromagnetic wave whose frequency corresponding to the frequency difference of w signal light is variable.

【0009】また、本発明は、上記ポンプ光を分岐して
その一方を光変調器で周波数変調か若しくは位相変調す
ることによって、位相が上記ポンプ光と同期し、周波数
が上記光変調器に印加した変調信号の周波数に応じて変
化するcwシード光を生成する電磁波発生方法を提供す
る。
Further, according to the present invention, the pump light is branched and one of them is frequency-modulated or phase-modulated by an optical modulator so that the phase is synchronized with the pump light and the frequency is applied to the optical modulator. There is provided an electromagnetic wave generation method for generating cw seed light that changes according to the frequency of the modulated signal.

【0010】更に、本発明は、コヒーレントな光源から
出力された連続光を光変調する光変調器と、該光変調器
の出力光を増幅する光増幅器と、該光増幅器の出力光で
あるポンプ光として連続光(cw光)と、該ポンプ光と
位相が同期し、且つ周波数を連続的に可変可能なcwシ
ード光を同時に入射して、非線形光学現象の1つである
第3次非線形光学効果に基づく光波混合によって、上記
ポンプ光と上記cwシード光の周波数差の整数倍だけ周
波数が異なり、且つ上記cwシード光と位相が同期した
cw信号光を発生する単一モード光ファイバと、該光フ
ァイバの出力光から上記cwシード光と上記cw信号光
を抽出する光周波数フィルタと、該光周波数フィルタの
出力光である上記cwシード光と上記cw信号光とを光
ヘテロダイン検波する受光素子とからなる電磁波発生装
置を提供する。
Further, according to the present invention, an optical modulator for optically modulating the continuous light output from the coherent light source, an optical amplifier for amplifying the output light of the optical modulator, and a pump which is the output light of the optical amplifier. Continuous light (cw light) as light, and cw seed light whose phase is synchronized with the pump light and whose frequency can be continuously varied are simultaneously incident, and a third-order nonlinear optical phenomenon that is one of nonlinear optical phenomena A single-mode optical fiber that generates a cw signal light whose frequency is different by an integer multiple of the frequency difference between the pump light and the cw seed light and whose phase is synchronized with the cw seed light by the effect-based light wave mixing; An optical frequency filter for extracting the cw seed light and the cw signal light from the output light of the optical fiber, and an optical heterodyne detection of the cw seed light and the cw signal light which are the output light of the optical frequency filter. That provides an electromagnetic wave generating device comprising a light receiving element.

【0011】[0011]

【発明の実施の形態】図1は本発明の一実施形態におけ
る電磁波発生装置のブロック図であり、1はコヒーレン
ト光源、2は第1の光変調器、3は光増幅器、4は光フ
ァイバ、5は多段光周波数フィルタ、6は第2の光変調
器、7はフォトディテクタである。
1 is a block diagram of an electromagnetic wave generator according to an embodiment of the present invention, in which 1 is a coherent light source, 2 is a first optical modulator, 3 is an optical amplifier, 4 is an optical fiber, Reference numeral 5 is a multistage optical frequency filter, 6 is a second optical modulator, and 7 is a photodetector.

【0012】以下に本実施例における動作原理を説明す
る。光源1の出力ビームは光変調器2に周波数Δfの変
調信号を印加することによって所要の搬送波周波数の1
/Nに相当するΔfで変調され、2つの側帯波が生成さ
れ、光増幅器3によって光強度が増幅されたのち、光フ
ァイバ4に入射される。
The operating principle of this embodiment will be described below. The output beam of the light source 1 has a required carrier frequency of 1 by applying a modulation signal of frequency Δf to the optical modulator 2.
After being modulated by Δf corresponding to / N, two sidebands are generated, the optical intensity is amplified by the optical amplifier 3, and then the optical signal is incident on the optical fiber 4.

【0013】光ファイバ4内で第3次非線形光学効果に
よって周波数差がNΔf(N=1,2,・・・)の側帯
波が生成され、多段光周波数フィルタ5によってこの中
から周波数がf1± NΔfの2つの側帯波が分離抽出
される。
Sidebands having a frequency difference of NΔf (N = 1, 2, ...) Are generated in the optical fiber 4 due to the third-order nonlinear optical effect, and the frequency is f1 ± from the multistage optical frequency filter 5. Two sidebands of NΔf are separated and extracted.

【0014】2つの周波数成分は必要に応じて増幅さ
れ、一方の側帯波のみを光変調器6を用いてデータで変
調し、最後にフォトディテクタ7でヘテロダイン検波さ
れる。その結果、周波数が2NΔfの電磁波信号が得ら
れる。光変調器2に印加する変調信号の周波数Δfを変
化することによって、搬送波の周波数はその変化分のN
倍変化させることが可能である。
The two frequency components are amplified as needed, only one sideband is modulated with data using the optical modulator 6, and finally the photodetector 7 performs heterodyne detection. As a result, an electromagnetic wave signal having a frequency of 2NΔf can be obtained. By changing the frequency Δf of the modulation signal applied to the optical modulator 2, the frequency of the carrier wave is changed by N.
It is possible to change it twice.

【0015】次に、光ファイバの第3次非線形光学効果
によって、周波数がf1± NΔf(N=1,2,・・
・)の側帯波が生成される原理を説明する。
Next, due to the third-order nonlinear optical effect of the optical fiber, the frequency is f1 ± NΔf (N = 1, 2, ...
The principle of generation of sidebands in () will be explained.

【0016】図2において、3つの光波、光周波数f1
± Δfとf1が入射したときに誘導3波混合で新たな
周波数の光波が発生する。その光波の周波数はエネルギ
保存則から決定される。例えば、 周波数がf1− Δ
f、f1の2つの光波から発生する光波の周波数fは次
式を満足しなければならない。
In FIG. 2, three light waves and an optical frequency f1
When ± Δf and f1 are incident, a light wave of a new frequency is generated by the induced three-wave mixing. The frequency of the light wave is determined by the law of conservation of energy. For example, if the frequency is f1-Δ
The frequency f of the light wave generated from the two light waves f and f1 must satisfy the following equation.

【0017】[0017]

【数1】 [Equation 1]

【0018】[0018]

【数2】 [Equation 2]

【0019】数式1、数式2の解はそれぞれf1+Δ
f、f1−2Δfとなる。このようにしてf1±NΔf
(N=1,2,・・・)の側帯波が生成される。一方、
誘導3波混合においては、混合する3つの光波は運動量
保存則を同時に満足していなければならない。光ファイ
バの分散が小さくなる零分散周波数帯では、運動量保存
則はほぼ自動的に満足される。
The solutions of equations 1 and 2 are f1 + Δ, respectively.
f and f1-2Δf. In this way, f1 ± NΔf
(N = 1, 2, ...) Sidebands are generated. on the other hand,
In guided three-wave mixing, the three light waves to be mixed must simultaneously satisfy the law of conservation of momentum. In the zero-dispersion frequency band where the dispersion of the optical fiber is small, the law of conservation of momentum is satisfied almost automatically.

【0020】本実施形態で用いられる光ファイバ4は単
一モードファイバであり、更に使用する波長域で分散を
零にした零分散ファイバか、あるいは使用する波長域を
中心とする広い波長範囲にわたって分散を零化したいわ
ゆる分散フラットファイバを用いる。零分散ファイバは
1.55μm帯のものが実用化されており、分散フラッ
トファイバも実験段階のものが既に試作されている。
The optical fiber 4 used in this embodiment is a single-mode fiber, and is a zero-dispersion fiber with zero dispersion in the wavelength range used, or a dispersion over a wide wavelength range centered on the wavelength range used. A so-called dispersion flat fiber with zero is used. The zero-dispersion fiber in the 1.55 μm band has been put into practical use, and the dispersion flat fiber has already been experimentally manufactured.

【0021】この方法では、光ファイバ4に入射する光
波は互いに位相が同期しているので、光ファイバ4内で
発生する光波も全て位相が揃っている点が重要である。
したがって、これらの中から任意の2つの光波をヘテロ
ダイン検波した差のビート周波数として得られる搬送波
には、周波数や強度の揺らぎがない。
In this method, since the light waves incident on the optical fiber 4 are in phase with each other, it is important that all the light waves generated in the optical fiber 4 are also in phase.
Therefore, the carrier wave obtained as the beat frequency of the difference obtained by heterodyne detection of any two light waves from these has no fluctuation in frequency or intensity.

【0022】次に、多段光周波数フィルタ5の構成およ
び設計方法を示す。図2はマッハ−ツェンダー干渉計
(MZI)型光周波数フィルタであり、11は3dBカ
ップラ、12はMZIの第1のアーム、13はMZIの
第2のアーム、14は移相器、15は3dBカップラで
ある。
Next, the structure and design method of the multistage optical frequency filter 5 will be described. FIG. 2 shows a Mach-Zehnder interferometer (MZI) type optical frequency filter, 11 is a 3 dB coupler, 12 is a first arm of MZI, 13 is a second arm of MZI, 14 is a phase shifter, and 15 is 3 dB. It is a coupler.

【0023】例えば、入力端子I1の入力に対する出力
端子O1、O2の出力は、それぞれsin2(πf
τ)、cos2(πfτ)で与えられる。前段のフィル
タでfcを阻止し、出力端子O1にfs、faを通過さ
せるためには、MZIの光路長差をv/(2Δf)(v
は導波路中の光速)にする必要がある。ここで、光路長
差の調整は移相器で行うことができ、通常TOを用い温
度で調整する。
For example, the outputs of the output terminals O1 and O2 with respect to the input of the input terminal I1 are sin2 (πf
τ), cos2 (πfτ). In order to block fc by the filter at the previous stage and pass fs and fa to the output terminal O1, the optical path length difference of MZI is v / (2Δf) (v
Is the speed of light in the waveguide). Here, the adjustment of the optical path length difference can be performed by a phase shifter, and is normally adjusted by using TO.

【0024】後段のフィルタでは光路長差をv/(4Δ
f)もこれと同一のものを用いると、出力端子O1には
fsが、出力端子O2にはfaが出力するので両波を分
離することができる。この(MZI)型多段光周波数フ
ィルタを用いて、図3のように周波数間隔Δfで等間隔
に並んだスペクトルの中から、2つの周波数成分のみを
分離抽出する方法について述べる。
In the latter filter, the optical path length difference is v / (4Δ
If the same f) is used, fs is output to the output terminal O1 and fa is output to the output terminal O2, so that both waves can be separated. A method of separating and extracting only two frequency components from the spectrum arranged at equal intervals with the frequency interval Δf as shown in FIG. 3 using this (MZI) type multi-stage optical frequency filter will be described.

【0025】第1段(m=1)のフィルタで隣接するス
ペクトルを分離除去する。これには光路差をv/(2Δ
f)とする。次段(m=2)で更に光路差がv/(4Δ
f)にフィルタで隣接するスペクトルを分離除去する。
最終の第m段のフィルタは光路差がv/(2mΔf)と
し、両出力アームから所望の2つの周波数成分のみが得
られる。
The adjacent spectrum is separated and removed by the first stage (m = 1) filter. The optical path difference is v / (2Δ
f). In the next stage (m = 2), the optical path difference is further reduced to v / (4Δ
The spectrum adjacent to f) is separated and removed.
The final m-th stage filter has an optical path difference of v / (2mΔf), and only two desired frequency components are obtained from both output arms.

【0026】本方法は、位相同期を必要としないという
利点があり、また無線搬送波の周波数が光変調器の帯域
で制限されることがなく、周波数を変化できるという利
点も具えており、従来の2つの方法の欠点を一挙に解決
できる。
The method has the advantage that it does not require phase synchronization and has the advantage that the frequency of the radio carrier is not limited by the band of the optical modulator and can be changed. The drawbacks of the two methods can be solved at once.

【0027】以上、本発明を実施形態に基づいて説明し
たが、本発明は上記した実施形態に限定されるものでは
なく、特許請求の範囲に記載した構成を変更しない限
り、どのようにでも実施できる。
As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and may be implemented in any way unless the configuration described in the claims is changed. it can.

【発明の効果】以上述べたように、本発明においては、
単一のコヒーレントな光源と光ファイバの非線形光学効
果を利用しているので、安定した周波数可変可能な電磁
波信号を簡単な構成で発生することができる。
As described above, in the present invention,
Since a single coherent light source and the non-linear optical effect of the optical fiber are used, a stable frequency variable electromagnetic wave signal can be generated with a simple configuration.

【0028】また、電磁波発生装置は、例えば無線通信
においてアンテナを設置した無線基地と無線基地を統合
する制御局間の通信を光ファイバで行う、いわゆる光フ
ァイバフィーダとして利用できる等、多大な効果を奏す
る。
In addition, the electromagnetic wave generator has a great effect that it can be used as a so-called optical fiber feeder, for example, by performing communication between a radio base station provided with an antenna and a control station which integrates the radio base station with an optical fiber in radio communication. Play.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態における電磁波発生装置を
示すブロック図である。
FIG. 1 is a block diagram showing an electromagnetic wave generator according to an embodiment of the present invention.

【図2】多段光周波数フィルタの構成を示すブロック図
である。
FIG. 2 is a block diagram showing a configuration of a multistage optical frequency filter.

【図3】周波数間隔Δfで等間隔に並んだスペクトルの
中から、2つの周波数成分のみを分離抽出する多段光周
波数フィルタの設計方法を示す概念図である。
FIG. 3 is a conceptual diagram showing a method of designing a multistage optical frequency filter for separating and extracting only two frequency components from a spectrum arranged at equal intervals with a frequency interval Δf.

【図4】従来の電磁波発生装置を示すブロック図であ
る。
FIG. 4 is a block diagram showing a conventional electromagnetic wave generator.

【図5】従来の電磁波発生装置を示すブロック図であ
る。
FIG. 5 is a block diagram showing a conventional electromagnetic wave generator.

【符号の説明】[Explanation of symbols]

1 光源 2、6 光変調器 3 光増幅器 4 光ファイバ 5 多段周波数フィルタ 7 フォトディテクタ 11、15 3dBカップラ 12、13 アーム 14 移相器 DESCRIPTION OF SYMBOLS 1 light source 2, 6 optical modulator 3 optical amplifier 4 optical fiber 5 multi-stage frequency filter 7 photodetector 11, 15 3 dB coupler 12, 13 arm 14 phase shifter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバにポンプ光として連続光(c
w光)と、該ポンプ光と位相が同期し、且つ周波数を連
続的に可変可能なcwシード光を同時に入射し、光ファ
イバの非線形光学現象の1つである第3次非線形光学効
果に基づく光波混合によって、上記ポンプ光と上記cw
シード光との周波数差の整数倍だけ周波数が異なり、且
つ上記cwシード光と位相が同期したcw信号光を発生
させ、上記cwシード光と上記cw信号光を光ヘテロダ
イン検波することによって、上記cwシード光と上記c
w信号光の周波数差に相当する周波数が可変可能な電磁
波を発生することを特徴とする電磁波発生方法。
1. A continuous light (c) as a pump light for an optical fiber.
w light) and cw seed light whose phase is synchronized with the pump light and whose frequency can be continuously varied are simultaneously incident, and is based on the third-order nonlinear optical effect which is one of the nonlinear optical phenomena of the optical fiber. By the light wave mixing, the pump light and the cw
By generating a cw signal light having a frequency different by an integer multiple of the frequency difference from the seed light and being in phase with the cw seed light, and performing optical heterodyne detection of the cw seed light and the cw signal light, the cw signal is generated. Seed light and above c
A method for generating an electromagnetic wave, characterized in that an electromagnetic wave having a variable frequency corresponding to the frequency difference of w signal light is generated.
【請求項2】 請求項1に記載の電磁波発生方法おい
て、 上記ポンプ光を分岐してその一方を光変調器で周波数変
調か若しくは位相変調することによって、位相が上記ポ
ンプ光と同期し、周波数が上記光変調器に印加した変調
信号の周波数に応じて変化するcwシード光を生成する
ことを特徴とする電磁波発生方法。
2. The electromagnetic wave generation method according to claim 1, wherein the pump light is branched and one of the pump light is frequency-modulated or phase-modulated by an optical modulator to synchronize the phase with the pump light. An electromagnetic wave generation method characterized in that cw seed light whose frequency changes according to the frequency of a modulation signal applied to the optical modulator is generated.
【請求項3】 コヒーレントな光源から出力された連続
光を光変調する光変調器と、該光変調器の出力光を増幅
する光増幅器と、該光増幅器の出力光であるポンプ光と
して連続光(cw光)と、該ポンプ光と位相が同期し、
且つ周波数を連続的に可変可能なcwシード光を同時に
入射して、非線形光学現象の1つである第3次非線形光
学効果に基づく光波混合によって、上記ポンプ光と上記
cwシード光の周波数差の整数倍だけ周波数が異なり、
且つ上記cwシード光と位相が同期したcw信号光を発
生する単一モード光ファイバと、該光ファイバの出力光
から上記cwシード光と上記cw信号光を抽出する光周
波数フィルタと、該光周波数フィルタの出力光である上
記cwシード光と上記cw信号光とを光ヘテロダイン検
波する受光素子とからなることを特徴とする電磁波発生
装置。
3. An optical modulator that optically modulates continuous light output from a coherent light source, an optical amplifier that amplifies output light of the optical modulator, and continuous light as pump light that is output light of the optical amplifier. (Cw light) and the pump light are in phase with each other,
In addition, cw seed light whose frequency can be continuously changed is simultaneously incident, and the frequency difference between the pump light and the cw seed light is changed by light wave mixing based on the third-order nonlinear optical effect, which is one of nonlinear optical phenomena. The frequency differs by an integer multiple,
A single mode optical fiber that generates a cw signal light whose phase is synchronized with the cw seed light, an optical frequency filter that extracts the cw seed light and the cw signal light from the output light of the optical fiber, and the optical frequency An electromagnetic wave generator comprising: a light receiving element that optically heterodyne-detects the cw seed light and the cw signal light, which are output lights of a filter.
JP8157552A 1996-05-29 1996-05-29 Method and device for generating electromagnetic wave Pending JPH09321700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8157552A JPH09321700A (en) 1996-05-29 1996-05-29 Method and device for generating electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8157552A JPH09321700A (en) 1996-05-29 1996-05-29 Method and device for generating electromagnetic wave

Publications (1)

Publication Number Publication Date
JPH09321700A true JPH09321700A (en) 1997-12-12

Family

ID=15652184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8157552A Pending JPH09321700A (en) 1996-05-29 1996-05-29 Method and device for generating electromagnetic wave

Country Status (1)

Country Link
JP (1) JPH09321700A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168042A2 (en) * 2000-06-23 2002-01-02 Communications Research Laboratory, Independent Administrative Institution Optical frequency converter using reciprocating modulation
EP1168040A3 (en) * 2000-06-22 2003-08-27 Communications Research Laboratory, Independent Administrative Institution Optical modulation system
WO2004001500A1 (en) * 2002-06-25 2003-12-31 Matsushita Electric Industrial Co., Ltd. Optical signal-electric signal converter
JP2008197448A (en) * 2007-02-14 2008-08-28 Nippon Telegr & Teleph Corp <Ntt> 2 mode light generator
JP2011501618A (en) * 2007-10-25 2011-01-06 バッテル メモリアル インスティテュート Light to millimeter wave conversion

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168040A3 (en) * 2000-06-22 2003-08-27 Communications Research Laboratory, Independent Administrative Institution Optical modulation system
EP1168042A2 (en) * 2000-06-23 2002-01-02 Communications Research Laboratory, Independent Administrative Institution Optical frequency converter using reciprocating modulation
EP1168042A3 (en) * 2000-06-23 2003-08-27 Communications Research Laboratory, Independent Administrative Institution Optical frequency converter using reciprocating modulation
US6707586B2 (en) 2000-06-23 2004-03-16 Communications Research Laboratory, Independent Administrative Institution Optical frequency converter using reciprocating modulation
WO2004001500A1 (en) * 2002-06-25 2003-12-31 Matsushita Electric Industrial Co., Ltd. Optical signal-electric signal converter
US7283704B2 (en) 2002-06-25 2007-10-16 Matsushita Electric Industrial Co., Ltd. Optical signal-electric signal converter
CN100349060C (en) * 2002-06-25 2007-11-14 松下电器产业株式会社 Optical signal-electric signal converter
JP2008197448A (en) * 2007-02-14 2008-08-28 Nippon Telegr & Teleph Corp <Ntt> 2 mode light generator
JP4641028B2 (en) * 2007-02-14 2011-03-02 日本電信電話株式会社 Two-mode light generator
JP2011501618A (en) * 2007-10-25 2011-01-06 バッテル メモリアル インスティテュート Light to millimeter wave conversion

Similar Documents

Publication Publication Date Title
US7085499B2 (en) Agile RF-lightwave waveform synthesis and an optical multi-tone amplitude modulator
US5379309A (en) High frequency source having heterodyned laser oscillators injection-locked to a mode-locked laser
US5574588A (en) Phase lock loop circuit using optical correlation detection
US4893352A (en) Optical transmitter of modulated signals
EP0692165B1 (en) Generation of optical signals with rf components
CN108768539B (en) Photon type microwave frequency-halving method and photon type microwave frequency-halving device
Li et al. Tutorial on optoelectronic oscillators
US7151897B2 (en) Optical clock phase-locked loop circuit
CN112421371B (en) Cold atom interferometer single laser light source system
JPH10163961A (en) Optical pll circuit
Banerjee et al. Phase-locking dynamics in optoelectronic oscillator
JP2001296506A (en) Rz optical transmitter
Brunetti et al. Chip-scaled Ka-band photonic linearly chirped microwave waveform generator
JP3467507B2 (en) High-frequency signal transmission method and high-frequency signal transmission device using optical carrier
US5822103A (en) Signal generation using optical pulses
JP3697350B2 (en) Optical transmitter
US20070104492A1 (en) System for and method of single slideband modulation for analog optical link
JPH09321700A (en) Method and device for generating electromagnetic wave
US7324256B1 (en) Photonic oscillator
JP2003195380A (en) Generator for optical millimeter wave or sub-millimeter wave
JPH08160475A (en) Superhigh-speed optical solinton pulse generating device
JP3314797B2 (en) Optical correlation detection circuit and optical clock phase locked loop circuit
JP3386090B2 (en) Optical clock phase locked loop circuit
JP2000122015A (en) Optical modulator
JP3575653B2 (en) Ultra-fast synchronous pulse light source