JPH09321341A - Photo-semiconductor device and manufacture thereof - Google Patents

Photo-semiconductor device and manufacture thereof

Info

Publication number
JPH09321341A
JPH09321341A JP13682596A JP13682596A JPH09321341A JP H09321341 A JPH09321341 A JP H09321341A JP 13682596 A JP13682596 A JP 13682596A JP 13682596 A JP13682596 A JP 13682596A JP H09321341 A JPH09321341 A JP H09321341A
Authority
JP
Japan
Prior art keywords
electrode
optical semiconductor
package
electrodes
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13682596A
Other languages
Japanese (ja)
Inventor
Hiroaki Tamemoto
広昭 為本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP13682596A priority Critical patent/JPH09321341A/en
Publication of JPH09321341A publication Critical patent/JPH09321341A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Abstract

PROBLEM TO BE SOLVED: To provide a photo-semiconductor device which provides a uniform optical characteristic and semiconductor characteristic and superior color mixture property at the polychromatic emission, by using the same package and photo semiconductor elements if the polarity applied to these elements is changed as desired. SOLUTION: The photo semiconductor device comprises package electrodes 101 for feeding a power from the outside of a package, and 2 or more independently driven photo-semiconductor elements 105 fixed to them. One type photo- semiconductor elements each have electrodes; one electrode is connected through a conductive adhesive 102 and the other connected through a conductive wire 104. On an insulate substrate the photo-semiconductor elements and electrodes for emitting light are disposed, and a first electrode is connected to the second package electrode through the conductive wire 104.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、光半導体素子を
利用した光半導体装置及びその製造方法に関し、特に光
半導体素子に供給されるの極性を任意に変えた場合にお
いても同一のパッケージ、及び光半導体素子を使用し、
光特性、半導体特性が均一で多色発光時の混色性などに
優れたものとすることができる光半導体装置及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device using an optical semiconductor element and a method for manufacturing the same, and particularly to the same package and optical device even when the polarity of the voltage supplied to the optical semiconductor element is arbitrarily changed. Using semiconductor elements,
The present invention relates to an optical semiconductor device which has uniform optical characteristics and semiconductor characteristics and is excellent in color mixing properties in multicolor emission, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光半導体装置の1つとして発光装置であ
るチップ部品型LEDアッセンブリが挙げられる。この
様な、発光装置などは、電気的及び機械的に安定化させ
た素子の如く使用できるように光半導体素子である発光
素子をチップ型保護体で保護させている。この様な発光
装置は、用途上より外形が小型であると共に光特性など
が安定であることが要求される。
2. Description of the Related Art As one of optical semiconductor devices, there is a chip component type LED assembly which is a light emitting device. In such a light emitting device, a light emitting element, which is an optical semiconductor element, is protected by a chip type protector so that it can be used like an element which is electrically and mechanically stabilized. Such a light emitting device is required to have a small outer shape and stable light characteristics and the like for the purpose of use.

【0003】図5に、RGB3色発光型発光ダイオード
アッセンブリの一例を示す。このアッセンブリは、外部
環境から発光素子を保護するためのパッケージ内に複数
の発光素子を配置してある。各発光素子は、P型、N型
などの各電極がそれぞれ発光素子の表裏各面に設けられ
たものが使用される。各発光素子は、それぞれ独立に駆
動し複数色の発光などが行えるように一方の電極がある
表側とパッケージ電極を電気的接続部材である導電性ワ
イヤーによってワイヤーボンド接続され電気的に接続さ
せてある。また、他方の電極がある裏側と、パッケージ
電極と、を導電性接着剤である導電性ペーストやハンダ
によってダイボンド固着接続させてある。各発光素子
は、熱伝導性及び光の有効利用を考慮して同一パッケー
ジ電極上に設けてあるため、この電極の極性と各発光素
子の極性が一致しており、同一パッケージ電極がコモン
電極となる。これによって、発光装置は、各発光素子を
独立に駆動させつつ密集して配置することができ集光
性、混色性を向上させることができる。
FIG. 5 shows an example of an RGB three-color light emitting diode assembly. This assembly has a plurality of light emitting elements arranged in a package for protecting the light emitting elements from the external environment. As each light emitting element, one in which electrodes of P type, N type, etc. are provided on each surface of the light emitting element is used. Each light emitting element is electrically connected by wire-bonding the front side having one electrode and the package electrode with a conductive wire which is an electrical connecting member so that each light emitting element can be independently driven to emit light of a plurality of colors. . Further, the back side having the other electrode and the package electrode are die-bonded and fixedly connected by a conductive paste or solder which is a conductive adhesive. Since each light emitting element is provided on the same package electrode in consideration of thermal conductivity and effective use of light, the polarity of this electrode and the polarity of each light emitting element are the same, and the same package electrode is the common electrode. Become. Accordingly, in the light emitting device, the respective light emitting elements can be independently driven and densely arranged, and the light condensing property and the color mixing property can be improved.

【0004】一方、発光装置は、駆動回路の特性或いは
パッケージ電極、基板に設けられた電極などの電食防止
のために、その発光素子の共通電極を変える必要がある
場合がある。この場合、発光装置が配置される回路設計
の自由度、発光装置の放熱性、スペースを考慮した装置
特性などのために同一のパッケージ及びパッケージ電極
を利用して極性だけ変える必要がある。
On the other hand, in the light emitting device, there is a case where the common electrode of the light emitting element needs to be changed in order to prevent the characteristics of the driving circuit or the electrolytic corrosion of the package electrode, the electrode provided on the substrate and the like. In this case, it is necessary to use the same package and the same package electrode to change only the polarities because of the degree of freedom in the circuit design in which the light emitting device is arranged, the heat dissipation of the light emitting device, and the device characteristics in consideration of space.

【0005】しかしながら、上述の如き図5の発光装置
においては、いずれのLEDチップも表裏各面にP型導
電性、N型導電性、I型導電性などの各電極が設けられ
たものが使用され、LEDチップ裏面である同一パッケ
ージ電極と対向する面側の電極が導電性ペースト又はは
んだ等で、固着・導通がなされている。その為、パッケ
ージ電極の極性とその上に配置されるLEDチップ裏面
電極の極性は必ず一致していなければならない。したが
って、LEDチップそのものの発光特性を維持しつつコ
モン極性を変更しようとする時は、各パッケージ電極の
極性を変えなければならない。LEDチップも変更され
たパッケージ各電極極性に合せて 極性を変更すべく、
その配置形態を変更するか、又は極性の異なるLEDチ
ップを使用せざるを得なかった。図6に、図5と同一の
パッケージ・発光素子にてコモン電極の極性を変更した
ものを示す。各発光素子のN型電極(又は、P型電極)
は、各個別パッケージ電極と極性が一致している。コモ
ン電極とは異なる極性となるため、各発光素子は、それ
ぞれ各パッケージ電極上にダイボンド固着接続され、コ
モン電極となる図5の同一パッケージ電極であったパッ
ケージ電極に、各発光素子のP型電極(N型電極)とワ
イヤーボンド接続される。すなわち、コモン極性を変え
るためにLEDチップの配置形態を図6の如き変更する
と、各発光素子の配置は離散的になってしまう。そのた
め、光源の位置が変わり、混色性の低下、光の指向特性
の拡大、変更さらには、放熱性の低下を招くという問題
を有する。例えば光センサー、ホトインタラプタなどの
光源等に利用される場合は、厳密な指向特性が要求され
るため実質的に光半導体素子の位置が変わるこのような
変更は特に大きな問題となる。なお、図6の各光半導体
素子の極性は、図4と同一であり、配線図は図3とな
る。
However, in the light-emitting device shown in FIG. 5 as described above, any LED chip is used in which electrodes of P-type conductivity, N-type conductivity, I-type conductivity, etc. are provided on the front and back surfaces. The electrodes on the surface of the LED chip, which is the back surface of the LED chip facing the same package electrode, are fixed and electrically connected by a conductive paste or solder. Therefore, the polarity of the package electrode and the polarity of the LED chip rear surface electrode arranged thereon must be the same. Therefore, in order to change the common polarity while maintaining the light emitting characteristics of the LED chip itself, the polarities of the package electrodes must be changed. The LED chip has also been changed. To change the polarity according to the polarity of each electrode,
It was unavoidable to change the layout or use LED chips with different polarities. FIG. 6 shows the same package and light emitting element as in FIG. 5, but with the polarity of the common electrode changed. N-type electrode (or P-type electrode) of each light emitting element
Has the same polarity as each individual package electrode. Since each light emitting element has a polarity different from that of the common electrode, each light emitting element is die-bonded and fixedly connected to each package electrode, and the package electrode, which is the same package electrode in FIG. Wire-bonded to the (N-type electrode). That is, when the arrangement form of the LED chips is changed as shown in FIG. 6 to change the common polarity, the arrangement of the light emitting elements becomes discrete. Therefore, there is a problem in that the position of the light source is changed, the color mixture is deteriorated, the directional characteristics of light are expanded and changed, and further the heat dissipation is deteriorated. For example, when it is used for a light source such as an optical sensor or a photo interrupter, a strict directional characteristic is required, and thus such a change in which the position of the optical semiconductor element is substantially changed becomes a particularly serious problem. The polarities of the optical semiconductor elements in FIG. 6 are the same as those in FIG. 4, and the wiring diagram is shown in FIG.

【0006】また、発光ダイオードの極性を単に変更し
LEDチップの上下を逆転させて使用すると、光取りだ
し効率が変わる。即ち、発光ダイオードはその構成上の
ため禁制帯の異なる半導体を積層させざるを得ない。こ
の各半導体を通して発光させる場合は、禁制帯の違いに
よって発光ダイオードのどちらの面から光を取り出すか
によって光取りだし効率が異なる。そのため単純に極性
を変えて配置するだけでは均一な光特性を有する発光装
置とすることができない。さらに、同一な光特性を有
し、極性のみ異なる各LEDチップごとに探し出し配置
することや個々の発光素子ごとに電気補正を行うことは
使用部品の共通化という生産性向上の面からも問題とな
る。
Further, when the polarity of the light emitting diode is simply changed and the LED chip is turned upside down and used, the light extraction efficiency changes. That is, since the light emitting diode has a structure, semiconductors having different forbidden bands must be stacked. When light is emitted through each semiconductor, the light extraction efficiency differs depending on which side of the light emitting diode the light is extracted from, depending on the difference in the forbidden band. Therefore, it is not possible to obtain a light emitting device having uniform light characteristics simply by arranging the electrodes with different polarities. In addition, finding and arranging LED chips having the same light characteristics but different polarities and performing electrical correction for each light-emitting element poses a problem from the viewpoint of improving productivity because common parts are used. Become.

【0007】[0007]

【発明が解決しようとする課題】したがって、より優れ
た光特性及び生産性などが求められる今日においては上
記構成の光半導体装置及びその製造方法では十分ではな
く、更なる特性向上が求められる。本願発明はかかる問
題に鑑み、光半導体素子に供給される電力の極性が変わ
っても光特性が一定であり、量産性、混色性などに優れ
小型が可能な光半導体装置及びその製造方法とすること
である。
Therefore, in the present day when more excellent optical characteristics and productivity are required, the optical semiconductor device and the method for manufacturing the optical semiconductor apparatus having the above configurations are not sufficient, and further improvement in characteristics is required. In view of the above problems, the present invention provides an optical semiconductor device and a method of manufacturing the same, which have constant optical characteristics even when the polarity of electric power supplied to the optical semiconductor element is changed, are excellent in mass productivity, color mixing property, and can be downsized. That is.

【0008】[0008]

【課題を解決するための手段】本願発明は、パッケージ
外部から内部に電力を供給するための複数のパッケージ
電極と、前記パッケージ内に内包し同一パッケージ電極
に固定された少なくとも2以上の独立に駆動できる光半
導体素子と、を有する光半導体装置であって、前記光半
導体素子が、光半導体素子の両面にそれぞれ電極を有
し、一方の電極と導電性接着剤を介して同一パッケージ
電極と接続されると共に他方を導電性ワイヤーによって
第1のパッケージ電極と電気的に接続された1種類の光
半導体素子と、絶縁性基体上に半導体接合を有する半導
体層を発光させるための第1及び第2の電極が配置さ
れ、第1の電極と第2のパッケージ電極とを導電性ワイ
ヤーによって電気的に接続させると共に第2の電極と同
一パッケージ電極或いは第1のパッケージ電極と導電性
ワイヤーによって電気的に接続された1種類以上の光半
導体素子とを有する光半導体装置である。
According to the present invention, a plurality of package electrodes for supplying electric power from the outside to the inside of the package, and at least two or more independently driven electrodes that are contained in the package and fixed to the same package electrode. An optical semiconductor device having an optical semiconductor element capable of forming an optical semiconductor element, wherein the optical semiconductor element has electrodes on both sides of the optical semiconductor element, and is connected to the same package electrode via one electrode and a conductive adhesive. In addition, one type of optical semiconductor element, the other of which is electrically connected to the first package electrode by a conductive wire, and the first and second optical layers for emitting light from the semiconductor layer having a semiconductor junction on the insulating substrate. An electrode is disposed, the first electrode and the second package electrode are electrically connected by a conductive wire, and the same package electrode as the second electrode or The first package electrode and the conductive wire is an optical semiconductor device having a one or more optical semiconductor elements electrically connected.

【0009】また、前記導電性接着剤がすべての光半導
体素子を固定させる共通接着剤である光半導体装置であ
り、前記導電性ペーストがAg、C、Cu、Au、A
l、Pdから選択される少なくとも一つを含有させた樹
脂バインダーである光半導体装置である。
Further, the conductive adhesive is an optical semiconductor device which is a common adhesive for fixing all the optical semiconductor elements, and the conductive paste is Ag, C, Cu, Au, A.
An optical semiconductor device, which is a resin binder containing at least one selected from l and Pd.

【0010】さらに、パッケージ外部から内部に電力を
供給するための複数のパッケージ電極と、前記パッケー
ジ内に内包し同一パッケージ電極上に固定された少なく
とも2以上の独立に駆動できる光半導体素子と、を有
し、前記光半導体素子が、半導体を介して対抗する第1
の面及び第2の面にそれぞれ電極を有し、前記第1の面
の電極と導電性接着剤を介して前記同一パッケージ電極
に接続させると共に第2の面の電極と第1のパッケージ
電極とを導電性ワイヤーによって電気的に接続させる第
1の光半導体素子と、絶縁性基体上に半導体及び該半導
体を発光させるための各電極が配置され少なくとも一方
の電極と第2のパッケージ電極とを導電性ワイヤーによ
って電気的に接続されている第2の光半導体素子と、を
有する光半導体装置の製造方法であって、前記第2の光
半導体素子の他方の電極を光半導体装置のコモン極性に
応じて、同一パッケージ電極或いは第1のパッケージ電
極へ導電性ワイヤーの接続を変える光半導体装置の製造
方法である。
Further, a plurality of package electrodes for supplying electric power from the outside of the package to the inside, and at least two or more independently driven optical semiconductor elements which are included in the package and fixed on the same package electrode are provided. A first semiconductor device having the opto-semiconductor element, which opposes through a semiconductor.
Electrodes on the first surface and the second surface, respectively, and are connected to the same package electrode via the conductive adhesive and the electrodes on the first surface, and the electrodes on the second surface and the first package electrode. A first optical semiconductor element for electrically connecting the semiconductors with a conductive wire, a semiconductor and electrodes for illuminating the semiconductor are arranged on an insulating substrate, and at least one of the electrodes and the second package electrode is electrically conductive. And a second optical semiconductor element electrically connected by a conductive wire, wherein the other electrode of the second optical semiconductor element is provided in accordance with a common polarity of the optical semiconductor device. And a method for manufacturing an optical semiconductor device in which the connection of the conductive wire to the same package electrode or the first package electrode is changed.

【0011】[0011]

【発明の実施の形態】本願発明者は種々の実験の結果、
複数の光半導体素子と電気的に接続されたコモン電極の
極性を変化させた場合、パッケージ、パッケージ電極及
び光半導体素子を共通の物を用い極性を変えるためには
光半導体素子の配置や構造によって光特性、半導体特
性、混色性及び量産性などが大きく変化することを見い
だし本願発明を成すに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has conducted various experiments,
When the polarity of the common electrode electrically connected to a plurality of optical semiconductor elements is changed, it is necessary to change the polarity by using a common package, package electrode, and optical semiconductor element depending on the arrangement and structure of the optical semiconductor element. The inventors have found that the light characteristics, the semiconductor characteristics, the color mixing properties, the mass productivity, and the like are significantly changed, and have completed the present invention.

【0012】即ち、光半導体素子の構造上、一対の電極
を介して配され半導体接合を有する半導体素子は、光特
性がその方向ごとに異なる。そのため、特性の均一な光
半導体装置とするためには光の取りだし或いは入射方向
を揃える必要がある。特に、外部駆動回路の極性に応じ
て半導体装置の極性を変えるためには、光取りだし方向
を揃えたまま同一部材を共有し極性を変化させることが
必要となる。以下、図面を用いて本願発明を詳細に説明
する。
That is, in terms of the structure of the optical semiconductor element, the semiconductor element arranged with a pair of electrodes and having a semiconductor junction has different optical characteristics in each direction. Therefore, in order to obtain an optical semiconductor device with uniform characteristics, it is necessary to take out light or make incident directions uniform. In particular, in order to change the polarity of the semiconductor device according to the polarity of the external drive circuit, it is necessary to change the polarity by sharing the same member while keeping the light extraction directions aligned. Hereinafter, the present invention will be described in detail with reference to the drawings.

【0013】図1は、本願発明の光半導体装置の一例を
示したRGB3色発光型発光ダイオードアッセンブリの
模式的平面図である。パッケージ1内に、個別パッケー
ジ電極及び同一パッケージ電極がそれぞれ配置されてい
る。同一パッケージ電極上には、光半導体素子としてR
GBがそれぞれ発光可能なLEDチップが3個設けられ
ている。1種類のLEDチップは、半導体層を介して表
層面側(発光観測面側)のN型電極(又はP型電極)
と、底層面側のP型電極(又はN型電極)と、を有して
いる。この光半導体素子のP型電極(又はN型電極)の
極性は、コモン電極となる同一パッケージ電極と一致し
ており導電性ペーストにてダイボンド固着接続されてい
る。またN型電極(又はP型電極)は、ワイヤボンド接
続され個別パッケージ電極と一致した極性を有する。
FIG. 1 is a schematic plan view of an RGB three-color light emitting diode assembly showing an example of an optical semiconductor device of the present invention. An individual package electrode and the same package electrode are arranged in the package 1. R as an optical semiconductor device on the same package electrode
Three LED chips capable of emitting light from each GB are provided. One type of LED chip is an N-type electrode (or P-type electrode) on the surface side (light emission observation side) through the semiconductor layer.
And a P-type electrode (or N-type electrode) on the bottom layer surface side. The P-type electrode (or N-type electrode) of this optical semiconductor element has the same polarity as that of the same package electrode as the common electrode, and is die-bonded and fixed by a conductive paste. The N-type electrode (or P-type electrode) is wire-bonded and has the same polarity as the individual package electrode.

【0014】他の種類のLEDチップは、表層面側にそ
れぞれ各極性の電極を有し、底層面は絶縁性基体により
同一パッケージ電極と電気的に独立している。このLE
DチップのP型電極(又はN型電極)は、同一パッケー
ジ電極にワイヤボンド接続されることによりコモン電極
と一致した極性を有する。また、このLEDチップの他
方の電極であるN型電極(又はP型電極)は、個別パッ
ケージ電極にそれぞれワイヤボンド接続されている。
(なお、図1及び後述の図4、5、6において、各発光
ダイオード素子の四角形で示される発光素子の電極はそ
れぞれすべて同一の極性の電極を示す。同様に、円形で
示される各発光素子の電極もそれぞれすべて同一の極性
の電極を示す。)この様な光半導体装置は、各パッケー
ジ電極の外部露出部と駆動回路とはんだ付け等で固着導
通させることによってそれぞれ駆動させることができ
る。同一パッケージ電極上に各光半導体素子をダイボン
ド固着させたために、アッセンブリの混色性、指向特性
の均一化を考慮して密接的に配置されていると共に同一
パッケージ電極から放熱性を向上させることができる。
Other types of LED chips have electrodes of respective polarities on the surface layer side, and the bottom layer surface is electrically independent of the same package electrode by an insulating substrate. This LE
The P-type electrode (or N-type electrode) of the D chip has the same polarity as the common electrode by being wire-bonded to the same package electrode. The N-type electrode (or P-type electrode) which is the other electrode of this LED chip is wire-bonded to each individual package electrode.
(Note that, in FIG. 1 and FIGS. 4, 5, and 6 described later, all the electrodes of the light emitting elements indicated by the squares of the respective light emitting diode elements have the same polarity. Similarly, the light emitting elements indicated by the circles are the same. All of the electrodes also have the same polarity.) Such an optical semiconductor device can be driven by fixing and conducting the external exposed portion of each package electrode and the drive circuit by soldering or the like. Since each optical semiconductor element is die-bonded and fixed on the same package electrode, they are closely arranged in consideration of the color mixture of the assembly and the uniformity of the directional characteristics, and the heat dissipation from the same package electrode can be improved. .

【0015】一方、図2は、図1の発光ダイオードアッ
センブリの配線図である。図3は、別の配線図であり、
図2に対して、コモン電極と個別電極の極性が切り換わ
ったものとなっている。また、図4は、図3の配線に対
応するように、図1に示された発光ダイオードアッセン
ブリの4箇所のボンディングワイヤーの接続を変更させ
ることによりコモン電極の極性を変更したものを示す。
図1と図4で発光素子は、絶縁体上に半導体を形成させ
た発光素子の電極と接続された導電性ワイヤーの接続先
を変更した以外、パッケージ、パッケージ電極、発光素
子及びその配置は同様に形成させてある。この最小の変
更により、図2から図3のように駆動回路極性を変更さ
せることができる。
On the other hand, FIG. 2 is a wiring diagram of the light emitting diode assembly of FIG. FIG. 3 is another wiring diagram,
2, the polarities of the common electrode and the individual electrode are switched. Also, FIG. 4 shows a configuration in which the polarity of the common electrode is changed by changing the connection of four bonding wires of the light emitting diode assembly shown in FIG. 1 so as to correspond to the wiring of FIG.
1 and 4, the light emitting device has the same package, package electrode, light emitting device and its arrangement except that the connection destination of the conductive wire connected to the electrode of the light emitting device having a semiconductor formed on an insulator is changed. Is formed. With this minimum change, the drive circuit polarity can be changed as shown in FIGS.

【0016】図1と図4を比較すると、4箇所のワイヤ
ボンド接続点のみを変更することによって3つの光半導
体素子のコモン電極の極性を変更することができる。光
半導体素子のP型電極(又はN型電極)と接続されるワ
イヤーが、同一パッケージ電極からそれぞれ個別パッケ
ージ電極に、また、光半導体素子のN型電極(又はP型
電極)と接続されるワイヤーが同一パッケージ電極から
コモン電極となる個別パッケージ電極に変更されたのみ
である。図1では同一パッケージ電極がコモン電極とな
り、図4では個別パッケージ電極がコモン電極となる。
以下本願発明の各構成について詳述する。
Comparing FIG. 1 and FIG. 4, the polarities of the common electrodes of the three optical semiconductor elements can be changed by changing only the four wire bond connection points. Wires connected to the P-type electrode (or N-type electrode) of the optical semiconductor element are connected to the individual package electrodes from the same package electrode and also to the N-type electrode (or P-type electrode) of the optical semiconductor element. Is only changed from the same package electrode to an individual package electrode that becomes a common electrode. In FIG. 1, the same package electrode is the common electrode, and in FIG. 4, the individual package electrode is the common electrode.
Hereinafter, each configuration of the present invention will be described in detail.

【0017】(パッケージ電極)パッケージ電極とは、
パッケージ外部とパッケージ内部に配置された光半導体
素子105とを電気的に接続させるものである。パッケ
ージ電極は、放熱性電気伝導性、光半導体素子の特性な
どから種々の大きさに形成させることができる。また、
内部に設けられる光半導体素子の種類及び/又は数に応
じて種々設けることができる。本願発明において同一パ
ッケージ電極101とは、各光半導体素子が互いに近接
して配置される同一電極のことをしめし、光半導体素子
を固定せず電気的に独立したパッケージ電極を個別パッ
ケージ電極という。したがって、各発光素子と同一パッ
ケージ電極101とが全て電気的に接続されていてもよ
く、また、そのうちの少なくとも一つが接続されていて
もよい。同一パッケージ電極101上に各光半導体素子
を固定させるために他のパッケージ電極は光半導体素子
と導電性ワイヤー等で電気的に接続できる程度に極めて
小さくすることができる。また、特に、同一パッケージ
電極101は、各光半導体素子105を配置すると共に
光半導体素子105から放出された熱を外部に放熱させ
るため熱伝導性がよいことが好ましい。また、パッケー
ジ電極上に光半導体素子が配置されることから光半導体
素子が放出した光を有効利用させるため反射率が高いこ
とが好ましい。具体的には、光半導体素子105が配置
される同一パッケージ電極101の表面粗さが0.1s
以上0.8s以下が好ましい。一方、ボンディングワイ
ヤーが接続されるパッケージ電極の表面粗さは、1.6
S以上10S以下が好ましい。パッケージ電極の具体的
材料としては、銅やりん青銅板表面に銀或いは金などの
貴金属メッキを施したものが好適に用いられる。パッケ
ージ電極は、電気伝導度、熱伝導度によって種々利用で
きるが加工性の観点から板厚0.1mmから2mmが好
ましい。
(Package electrode) What is a package electrode?
The outside of the package is electrically connected to the optical semiconductor element 105 arranged inside the package. The package electrode can be formed in various sizes depending on heat dissipation, electrical conductivity, characteristics of the optical semiconductor element, and the like. Also,
Various types can be provided according to the type and / or number of optical semiconductor elements provided inside. In the present invention, the same package electrode 101 refers to the same electrode in which the optical semiconductor elements are arranged close to each other, and the package electrodes electrically independent of each other without fixing the optical semiconductor element are called individual package electrodes. Therefore, all the light emitting elements and the same package electrode 101 may be electrically connected, or at least one of them may be connected. In order to fix each optical semiconductor element on the same package electrode 101, the other package electrodes can be made extremely small enough to be electrically connected to the optical semiconductor element by a conductive wire or the like. Further, in particular, the same package electrode 101 preferably has good thermal conductivity in order to dispose the heat emitted from the optical semiconductor element 105 to the outside while disposing each optical semiconductor element 105. Further, since the optical semiconductor element is arranged on the package electrode, it is preferable that the reflectance is high in order to effectively use the light emitted by the optical semiconductor element. Specifically, the surface roughness of the same package electrode 101 on which the optical semiconductor element 105 is arranged is 0.1 s.
It is preferably not less than 0.8 s. On the other hand, the surface roughness of the package electrode to which the bonding wire is connected is 1.6.
It is preferably S or more and 10 S or less. As a specific material for the package electrode, a copper or phosphor bronze plate surface plated with a noble metal such as silver or gold is preferably used. The package electrode can be variously used depending on electric conductivity and thermal conductivity, but from the viewpoint of workability, the plate thickness is preferably 0.1 mm to 2 mm.

【0018】(接着剤)接着剤は、光半導体素子105
を同一パッケージ電極101上に配置するために用いら
れる。絶縁性基体上に半導体が形成された光半導体素子
105と同一パッケージ電極101との接着は、絶縁性
樹脂によって行っても良いし、半導体接合が電極を介し
て配置された光半導体素子105と同様導電性接着剤と
して導電性ペーストを硬化させたものを用いてもよい。
さらに、各光半導体素子を固定させる接着剤が連結して
連なっている1つの接着剤を共通接着剤102として用
いてもよい。光半導体素子が発光素子の場合、共通接着
剤102は発光素子からの放熱を同一パッケージ電極へ
と伝導させるために熱伝導性がよいことが好ましい。ま
た、接着剤は、電気伝導性がよいことも求められる。接
着剤としては、導電性部材としてAg、C、Cu、A
u、Al、Pdなどを含有させたn-2-メチルピロリド
ン、アセトン等の溶媒で希釈されたエポキシ樹脂、アク
リル樹脂やイミド樹脂などの熱硬化性樹脂が好適に挙げ
られる。共通接着剤は、塗布性を向上させさせるために
流動性の大きなものを用いてもよいし、LEDチップの
大幅な移動を防ぐために流動性の小さなものを用いても
よい。いずれにしても硬化前に流動性を有し硬化後は固
定されるものが望ましい。この様な共通接着剤102を
用いることにより接着剤硬化時の流動により各光半導体
素子105が近接して配置させることができる。
(Adhesive) The adhesive is an optical semiconductor element 105.
Are arranged on the same package electrode 101. The optical semiconductor element 105 in which a semiconductor is formed on an insulating substrate and the same package electrode 101 may be adhered by an insulating resin, or similar to the optical semiconductor element 105 in which a semiconductor junction is arranged via an electrode. A cured conductive paste may be used as the conductive adhesive.
Further, one adhesive in which the adhesives for fixing the respective optical semiconductor elements are connected and continuous may be used as the common adhesive 102. When the optical semiconductor element is a light emitting element, it is preferable that the common adhesive 102 has good thermal conductivity in order to conduct the heat radiation from the light emitting element to the same package electrode. The adhesive is also required to have good electrical conductivity. As the adhesive, Ag, C, Cu, A as a conductive member
Suitable examples include n-2-methylpyrrolidone containing u, Al, Pd and the like, an epoxy resin diluted with a solvent such as acetone, and a thermosetting resin such as an acrylic resin and an imide resin. As the common adhesive, one having a large fluidity may be used in order to improve the coating property, or one having a small fluidity may be used in order to prevent a large movement of the LED chip. In any case, it is desirable that it has fluidity before curing and is fixed after curing. By using such a common adhesive 102, the optical semiconductor elements 105 can be arranged close to each other due to the flow when the adhesive is cured.

【0019】(パッケージ103)パッケージは10
3、光半導体素子105を凹部に固定保護すると共に外
部との電気的接続が可能な如く電極を有するものであ
る。導電性ワイヤー104や光半導体素子105をさら
に外部力、塵芥や水分などの外部環境から保護するため
に透光性保護体などをパッケージの凹部に収容させても
よい。したがって、パッケージ103は、透光性保護体
との接着性がよく透光性保護体よりも剛性の高いものが
求められる。透光性保護体と光半導体素子105とは密
着して形成されていてもよいし、放熱性や応力緩和のた
め光半導体素子105と密着していなくとも良い。ま
た、透光性保護体は、透過率の異なる層の多層構成など
所望に応じて2層以上に分割させて構成させてもよい。
透光性保護体の材料としては、エポキシ樹脂、ユリア樹
脂、シリコン樹脂、フッ素樹脂、ポリカーボネート樹脂
などなどの耐候性に優れた樹脂が好適に用いられる。ま
た、透光性保護体との接着性を向上させ熱膨張時に透光
性保護体から働く力を外部に向かわせるためにパッケー
ジ103の凹部を外部に向けて広がる摺鉢形状としても
良い。さらに、可視光に分光特性を有する発光素子を収
容し利用させるためには遮光機能を持たせるために着色
しても良いし、受光素子を収容し利用させるためには所
望の受光波長に感度を合わせるために着色しても良い。
(Package 103) Package 10
3. The optical semiconductor element 105 is fixedly protected in the concave portion and has electrodes so that it can be electrically connected to the outside. In order to further protect the conductive wire 104 and the optical semiconductor element 105 from an external force, an external environment such as dust and water, a translucent protective body may be housed in the recess of the package. Therefore, the package 103 is required to have good adhesiveness to the translucent protective body and higher rigidity than the translucent protective body. The light-transmitting protective body and the optical semiconductor element 105 may be formed in close contact with each other, or may not be in close contact with the optical semiconductor element 105 for heat dissipation and stress relaxation. Further, the translucent protective body may be divided into two or more layers, if desired, such as a multilayer structure of layers having different transmittances.
As a material of the translucent protective body, a resin having excellent weather resistance such as an epoxy resin, a urea resin, a silicon resin, a fluororesin, a polycarbonate resin, or the like is preferably used. In addition, the recess of the package 103 may be shaped like a sloping pot that spreads outward in order to improve the adhesiveness with the translucent protective body and to direct the force exerted by the translucent protective body during thermal expansion to the outside. Further, in order to accommodate and use a light emitting element having a spectral characteristic in visible light, it may be colored to have a light shielding function, and in order to accommodate and use a light receiving element, sensitivity to a desired light receiving wavelength is required. It may be colored to match.

【0020】パッケージ103は、光半導体素子105
と外部とを電気的に遮断させるために絶縁性を有するこ
とが望まれる。さらに、パッケージ103は、発光素子
や外部環境などからの熱の影響をうけた場合、保護体と
の密着性を考慮して熱膨張率の小さい物が好ましい。パ
ッケージの内部表面は、エンボス加工させて接着面積を
増やしたり、プラズマ処理して保護体との密着性を向上
させることもできる。
The package 103 is an optical semiconductor element 105.
It is desired to have an insulating property in order to electrically cut off the electric field from the outside. Furthermore, when the package 103 is affected by heat from the light emitting element or the external environment, it is preferable that the package 103 has a small coefficient of thermal expansion in consideration of the adhesion to the protective body. The inner surface of the package can be embossed to increase the adhesion area, or plasma-treated to improve the adhesion with the protector.

【0021】この様なパッケージとしてポリカーボネー
ト樹脂、ポリフェニレンサルファイド(PPS)、液晶
ポリマー(LCP)、ABS樹脂、エポキシ樹脂、フェ
ノール樹脂、アクリル樹脂、PBT樹脂等の樹脂を用い
ることができる。パッケージの形成は、パッケージとパ
ッケージ電極と一体的に形成させてもよく、また、パッ
ケージを複数に分け、はめ込みなどにより組み合わせて
構成させてもよい。この様なパッケージは、インサート
成形などにより比較的簡単に形成することができる。ま
た、パッケージを成形品に電極をインサートしたもので
示したが、本願発明は、これのみに限らずプリント基板
等種々のパッケージ形態に適用可能である。
Resins such as polycarbonate resin, polyphenylene sulfide (PPS), liquid crystal polymer (LCP), ABS resin, epoxy resin, phenol resin, acrylic resin and PBT resin can be used for such a package. The package may be formed integrally with the package and the package electrode, or the package may be divided into a plurality of pieces and combined by fitting or the like. Such a package can be formed relatively easily by insert molding or the like. Further, although the package is shown as a molded product with electrodes inserted therein, the present invention is not limited to this, and can be applied to various package forms such as a printed circuit board.

【0022】(導電性ワイヤー104)本願発明に用い
られる導電性ワイヤー104としては、各光半導体素子
電極とのオーミック性、機械的接続性、電気伝導性及び
熱伝導性がよいものが求められる。熱伝導度としては
0.01cal/cm2/cm/℃以上が好ましく、よ
り好ましくは0.5cal/cm2/cm/℃以上であ
る。この様な導電性ワイヤーとして具体的には、金、
銅、白金、アルミニウム等及びそれらの合金を用いた導
電性ワイヤーが挙げられる。このような導電性ワイヤー
は、パッケージ電極と、各光半導体素子105の電極
と、をワイヤーボンディング機器によって容易に接続さ
せることができる。
(Conductive Wire 104) The conductive wire 104 used in the present invention is required to have good ohmic properties, mechanical connectivity, electrical conductivity and thermal conductivity with each optical semiconductor element electrode. The thermal conductivity is preferably 0.01 cal / cm 2 / cm / ° C or higher, more preferably 0.5 cal / cm 2 / cm / ° C or higher. Specifically as such a conductive wire, gold,
Examples of the conductive wire include copper, platinum, aluminum and the like and alloys thereof. Such a conductive wire can easily connect the package electrode and the electrode of each optical semiconductor element 105 with a wire bonding device.

【0023】(光半導体素子105)本願発明に用いら
れる光半導体素子105としては、電気を光に変換する
発光素子や光を電気に変換する受光素子が挙げられる。
(Optical semiconductor element 105) Examples of the optical semiconductor element 105 used in the present invention include a light emitting element for converting electricity into light and a light receiving element for converting light into electricity.

【0024】発光素子としては、液相成長法やMOCV
D法等により基板上にGaAlN、ZnS、ZnSe、
SiC、GaP、GaAlAs、AlInGaP、In
GaN、GaN、AlInGaN等の半導体を発光層と
して形成させたものが用いられる。半導体の構造として
は、MIS接合、PIN接合やPN接合を有したホモ構
造、ヘテロ構造あるいはダブルへテロ構成のものが挙げ
られる。半導体層の材料やその混晶度によって発光波長
を紫外光から赤外光まで種種選択することができる。さ
らに、量子効果を持たせるため発光層を単一量子井戸構
造、多重量子井戸構造とさせても良い。
As the light emitting device, a liquid phase growth method or MOCV method is used.
GaAlN, ZnS, ZnSe,
SiC, GaP, GaAlAs, AlInGaP, In
A light emitting layer formed of a semiconductor such as GaN, GaN, or AlInGaN is used. Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, and a PN junction, a heterostructure, and a double heterostructure. The emission wavelength can be selected from ultraviolet light to infrared light depending on the material of the semiconductor layer and its degree of mixed crystal. Furthermore, in order to have a quantum effect, the light emitting layer may have a single quantum well structure or a multiple quantum well structure.

【0025】こうしてできた半導体に真空蒸着法や熱、
光、放電エネルギーなどを利用した各種CVD法を用い
て所望の電極を形成させる。半導体の電極は、半導体の
一方の側に設けてもよいし、両面にそれぞれ設けてもよ
い。電極が形成された半導体ウエハーをダイヤモンド製
の刃先を有するブレードが回転するダイシングソーによ
り直接フルカットするか、又は刃先幅よりも広い幅の溝
を切り込んだ後(ハーフカット)、外力によって半導体
ウエハーを割る。あるいは、先端のダイヤモンド針が往
復直線運動するスクライバーにより半導体ウエハーに極
めて細いスクライブライン(経線)を例えば碁盤目状に
引いた後、外力によってウエハーを割り半導体ウエハー
からチップ状にカットさせるなどしてLEDチップを形
成させる。また、光半導体素子の発光観測面側に各電極
を形成するためには各半導体を所望の形状にエッチング
することによって形成させることができる。この様な、
エッチングとしては、ドライエッチングや、ウエットエ
ッチングがある。ドライエッチングとしては例えば反応
性イオンエッチング、イオンミリング、集束ビームエッ
チング、ECRエッチング等が挙げられる。又、ウエッ
トエッチングとしては、硝酸と燐酸の混酸を用いること
が出来る。ただし、エッチングを行う前に所望の形状に
窒化珪素や二酸化珪素等の材料を用いてマスクを形成す
ることは言うまでもない。
The semiconductor thus formed is subjected to a vacuum deposition method, heat,
A desired electrode is formed by using various CVD methods utilizing light, discharge energy and the like. The semiconductor electrode may be provided on one side of the semiconductor or on both sides thereof. The semiconductor wafer on which the electrodes are formed is directly full-cut by a dicing saw in which a blade having a diamond cutting edge rotates, or after a groove having a width wider than the cutting edge width is cut (half cut), the semiconductor wafer is cut by an external force. Divide. Alternatively, an extremely thin scribe line (meridian line) is drawn on the semiconductor wafer by, for example, a grid pattern by a scriber in which a diamond needle at the tip moves reciprocally linearly, and then the wafer is split by external force to cut the semiconductor wafer into chips. Form chips. Further, in order to form each electrode on the emission observation surface side of the optical semiconductor element, each semiconductor can be formed by etching into a desired shape. Like this,
Examples of etching include dry etching and wet etching. Examples of the dry etching include reactive ion etching, ion milling, focused beam etching, and ECR etching. For wet etching, a mixed acid of nitric acid and phosphoric acid can be used. However, it goes without saying that a mask is formed in a desired shape using a material such as silicon nitride or silicon dioxide before etching.

【0026】光半導体装置用いてをフルカラー発光させ
るためには、RGBの発光色を発光するLEDチップを
用いることができる。特に、野外などの使用を考慮する
場合、高輝度な半導体材料として緑色及び青色を窒化ガ
リウム系化合物半導体を用いることが好ましく、また、
赤色ではガリウム・アルミニウム・砒素系の半導体やア
ルミニウム・インジュウム・ガリウム・燐系の半導体を
用いることが好ましいが、用途によって種々利用でき
る。なお、フルカラー発光色とするためにはR:赤色の
発光波長が600nmから700nm、G:緑色の発光
波長が495nmから565nm、B:青色の発光波長
が430nmから490nmであることが好ましい。ま
た、発光輝度を調整させるために各光半導体素子は、そ
れぞれ複数設けることもできる。具体的には、4つの同
一種類の青色を発光する光半導体素子と、3つの同一種
類の緑色を発光する光半導体素子と、2つの同一種類の
赤色を発光する光半導体素子とすることができる。同一
種類ごとに電気的接続の極性を同じくすることにより、
各発光波長ごとに駆動制御することができる。
In order to use the optical semiconductor device to emit full-color light, an LED chip that emits RGB emission colors can be used. In particular, when considering use outdoors, it is preferable to use green and blue gallium nitride-based compound semiconductors as the high-luminance semiconductor material.
For red, it is preferable to use a gallium / aluminum / arsenic-based semiconductor or an aluminum / indium / gallium / phosphorus-based semiconductor, but various types can be used depending on the application. In order to obtain a full-color emission color, it is preferable that the emission wavelength of R: red is 600 nm to 700 nm, the emission wavelength of G: green is 495 nm to 565 nm, and the emission wavelength of B: blue is 430 nm to 490 nm. Further, a plurality of optical semiconductor elements may be provided to adjust the emission brightness. Specifically, four optical semiconductor elements that emit the same type of blue, three optical semiconductor elements that emit the same type of green, and two optical semiconductor elements that emit the same type of red can be used. . By making the polarity of the electrical connection the same for each type,
Drive control can be performed for each emission wavelength.

【0027】一方、受光素子としては、液晶成長法を利
用して形成させたGe、Si、InAs、CdS等の単
結晶半導体や多結晶半導体を用いたもの、プラズマ、
熱、光などのエネルギーを利用した微結晶、非晶質半導
体のSi、SiC、SiGe等の半導体を利用した光セ
ンサー、太陽電池などが用いられる。半導体の構造とし
てはPN接合やPIN接合を有したホモ構造、ヘテロ構
造のものが挙げられる。半導体の材料やその混晶度によ
って受光素子の受光波長を種々選択できる。ガラス、耐
熱性樹脂やアルミニウム、ステンレスなどの金属基板上
に上記構成の半導体を所望の大きさや形状に形成し、電
気的接続を取ることによって受光素子が形成できる。受
光素子の電極には、スパッタリングや真空蒸着により形
成させたAl、Ag、Au等の各種金属やZnO2、I
TO、SnO2等の各種金属酸化物、n+型の半導体など
を好適に利用することができる。受光素子を各波長ごと
に駆動させるためには各光半導体素子ごとにカラーフィ
ルターを形成させる或いは、波長ごとに半導体を変える
などして行うことができる。上述と同様、受光素子が2
種類あるいは4種類以上でも同様の効果を奏することが
できる。また、他のダイオード素子においても製造工程
の共通化推進、アッセンブリ設計の自由化等の効果が得
られる。以下、本願発明の具体的実施例について詳述す
るが本願発明はこの具体的実施例のみに限定されるもの
でないことは言うまでもない。
On the other hand, as the light receiving element, one using a single crystal semiconductor or a polycrystalline semiconductor such as Ge, Si, InAs, CdS formed by utilizing the liquid crystal growth method, plasma,
A microcrystal that uses energy such as heat and light, an optical sensor that uses a semiconductor such as an amorphous semiconductor of Si, SiC, SiGe, or a solar cell is used. Examples of the semiconductor structure include a homostructure and a heterostructure having a PN junction and a PIN junction. Various light receiving wavelengths of the light receiving element can be selected depending on the material of the semiconductor and the degree of mixed crystal thereof. A light-receiving element can be formed by forming a semiconductor having the above-described structure into a desired size and shape on a metal substrate such as glass, heat-resistant resin, aluminum, and stainless steel, and establishing electrical connection. For the electrodes of the light receiving element, various metals such as Al, Ag and Au formed by sputtering or vacuum deposition, ZnO 2 , I
Various metal oxides such as TO and SnO 2 and n + type semiconductors can be preferably used. In order to drive the light receiving element for each wavelength, a color filter may be formed for each optical semiconductor element, or the semiconductor may be changed for each wavelength. Similar to the above, the light receiving element is 2
Similar effects can be obtained with four or more types. Further, in other diode elements, effects such as promotion of standardization of manufacturing process and liberalization of assembly design can be obtained. Hereinafter, specific embodiments of the present invention will be described in detail, but it is needless to say that the present invention is not limited to only the specific embodiments.

【0028】[0028]

【実施例】【Example】

(実施例1)光半導体素子としてそれぞれ赤色、緑色及
び青色の発光色を有し、各々の組み合わせでフルカラー
発光が可能な3個のLEDチップを用いた。光半導体素
子の半導体発光層としてそれぞれGaAlAs(発光波
長660nm)、InGaN(発光波長525nm)、
InGaN(発光波長470nm)を使用して各LED
チップを構成させた。
(Example 1) As an optical semiconductor element, three LED chips each having red, green, and blue emission colors and capable of full-color emission by each combination were used. GaAlAs (emission wavelength 660 nm), InGaN (emission wavelength 525 nm), semiconductor light emitting layers of the optical semiconductor element,
Each LED using InGaN (emission wavelength 470 nm)
Configured chip.

【0029】具体的には、赤色を発光するLEDチップ
用の半導体ウエハーは、温度差液相成長法で連続的に導
電性基板であるP型ガリウム・砒素基板上にP型GaA
lAsを成長し、その上にN型GaAlAsを成長し、
P型GaAlAsを形成させる。青色及び緑色を発光す
る半導体ウエハーは、絶縁性基板として厚さ400μm
のサファイヤ基板上にN型及びP型窒化ガリウム化合物
半導体をMOCVD成長法でそれぞれ5μm、1μm堆
積させヘテロ構造のPN接合を形成したものである。な
お、P型窒化ガリウム半導体は、P型ドーパントである
Mgをドープした後アニールし形成させる。次に、LE
Dチップの各電極となるようスパッタリングにより電極
を形成させた後、各半導体ウエハーをLEDチップとし
て使用するためにスクライバーによってスクライブライ
ンを引き、外力によって350μm角の大きさに切断し
た。
Specifically, a semiconductor wafer for an LED chip that emits red light is a P-type GaA substrate on a P-type gallium arsenide substrate which is a conductive substrate continuously by a temperature difference liquid phase epitaxy method.
lAs is grown, N-type GaAlAs is grown on it,
P-type GaAlAs is formed. The semiconductor wafer that emits blue and green light has a thickness of 400 μm as an insulating substrate.
N-type and P-type gallium nitride compound semiconductors are deposited on the sapphire substrate of 5 .mu.m and 1 .mu.m respectively by MOCVD to form a heterostructure PN junction. The P-type gallium nitride semiconductor is formed by annealing after doping Mg which is a P-type dopant. Next, LE
After electrodes were formed by sputtering so as to be the electrodes of the D chip, a scribe line was drawn by a scriber to use each semiconductor wafer as an LED chip, and the semiconductor wafer was cut into a size of 350 μm square by an external force.

【0030】一方、りん青銅板表面に銀メッキさせたパ
ッケージ電極を液晶ポリマー内にインサート成形させて
パッケージ凹部及び底面にパッケージ電極を有するパッ
ケージを形成させた。各LEDチップをパッケージ内の
凹部に設けられたパッケージ電極上にダイボンダによっ
てAgペーストを用い固定させた。LEDチップが積置
させるパッケージ電極上には、各LEDチップがそれぞ
れ共通のAgペースト上に配置できるようコレットを用
いて多く塗り一つの接着面を形成している。LEDチッ
プをパッケージ電極上に配置後Agペーストを硬化させ
固定させた。こうして、同一パッケージ電極上に光半導
体素子が固着されたものを100個形成した後、ワイヤ
ーホンデング機器を用いて直径0.03mmのAu線を
LEDチップの各電極、パッケージ電極にワイヤーボン
デイングした。ワイヤーボンディングの接続は、図1に
示すコモン極性を有する光半導体装置と、図4に示すコ
モン極性を有する光半導体装置とにワイヤーボンディン
グの接続先を替えることのみで行った。
On the other hand, a package electrode having a phosphor bronze plate surface plated with silver was insert-molded in a liquid crystal polymer to form a package having a package recess and a package electrode on the bottom surface. Each LED chip was fixed on a package electrode provided in a recess in the package with a die bonder using Ag paste. On the package electrode on which the LED chips are stacked, many adhesives are formed by using a collet so that each LED chip can be arranged on a common Ag paste. After the LED chip was placed on the package electrode, the Ag paste was cured and fixed. Thus, after forming 100 optical semiconductor elements fixed on the same package electrode, an Au wire having a diameter of 0.03 mm was wire bonded to each electrode of the LED chip and the package electrode using a wire bonding apparatus. The wire bonding connection was performed only by changing the wire bonding connection destination between the optical semiconductor device having the common polarity shown in FIG. 1 and the optical semiconductor device having the common polarity shown in FIG.

【0031】次に、パッケージ内の凹部に透光性保護体
として無着色のエポキシ樹脂を充填させ120℃16時
間で硬化させた。こうして3色のLEDチップが封入さ
れコモン極性が異なる光半導体装置をそれぞれ50個ず
つ形成させた。こうして形成された光半導体装置は、い
ずれも多色発光時の混色性が良好でありパッケージ内で
色むらが生じなかった。
Next, a non-colored epoxy resin as a translucent protective member was filled in the recess in the package and cured at 120 ° C. for 16 hours. In this way, 50 optical semiconductor devices each having an LED chip of three colors encapsulated and having different common polarities were formed. Each of the optical semiconductor devices formed in this way had good color mixing properties during multicolor emission, and no color unevenness occurred in the package.

【0032】[0032]

【発明の効果】上述の如く本願発明の請求項1の構成と
することによって、光半導体装置のコモン極性変更時に
おいても、光半導体素子及びその配置位置形態を変更す
ることなく対応することができる。そのため、光特性の
変化を防止でき、また使用部品の共通化が図られる。ま
た、同一パッケージ電極を用いることにより、放熱部を
大型化できるため光半導体装置の温度上昇を抑制するこ
とができる。また、主要放熱経路が1経路であるので熱
設計の容易化が図られる。
As described above, with the configuration of claim 1 of the present invention, even when the common polarity of the optical semiconductor device is changed, it is possible to cope with the change without changing the optical semiconductor element and its arrangement position form. . Therefore, changes in optical characteristics can be prevented, and common parts can be used. Further, by using the same package electrode, it is possible to increase the size of the heat dissipation portion, and thus it is possible to suppress the temperature rise of the optical semiconductor device. Further, since the main heat radiation path is one, the heat design can be facilitated.

【0033】本願発明の請求項2の構成とすることによ
って、同一電極上に共通接着剤を用いて光半導体素子が
配置されるので光特性を低下させることなく各光半導体
素子間隔を密にできる。
According to the second aspect of the present invention, since the optical semiconductor elements are arranged on the same electrode by using the common adhesive, the intervals between the optical semiconductor elements can be reduced without deteriorating the optical characteristics. .

【0034】本願発明の請求項3の構成とすることによ
って、より熱伝導性及び電気伝導性に優れた光半導体装
置とすることができる。
With the structure according to the third aspect of the present invention, an optical semiconductor device having more excellent thermal conductivity and electrical conductivity can be obtained.

【0035】本願発明の請求項4の構成とすることによ
って、光特性を維持しつつ光半導体装置のコモン極性を
変更させることができる。また、量産性よく生産するこ
とができる。
With the configuration of claim 4 of the present invention, the common polarity of the optical semiconductor device can be changed while maintaining the optical characteristics. Further, it can be mass-produced with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の光半導体装置の模式図を示し、図1
(A)は、本願発明の光半導体装置の概略上面図であり
図1(B)は図1(A)のA−A断面図である。
1 is a schematic view of an optical semiconductor device of the present invention, and FIG.
1A is a schematic top view of an optical semiconductor device of the present invention, and FIG. 1B is a sectional view taken along the line AA of FIG.

【図2】本願発明の光半導体素子とパッケージ電極とが
接続された光半導体装置の模式的透視図である。
FIG. 2 is a schematic perspective view of an optical semiconductor device in which an optical semiconductor element of the present invention and a package electrode are connected.

【図3】本願発明の図2に示した光半導体装置の内部配
線図である。
3 is an internal wiring diagram of the optical semiconductor device shown in FIG. 2 of the present invention.

【図4】図2に示した光半導体装置の電気的接続を変え
コモン電極の極性を変更させた本願発明に用いられる光
半導体装置の模式的透視図である。
FIG. 4 is a schematic perspective view of an optical semiconductor device used in the present invention in which the electrical connection of the optical semiconductor device shown in FIG. 2 is changed and the polarity of the common electrode is changed.

【図5】本願発明の図4に示した光半導体装置の内部配
線図である。
5 is an internal wiring diagram of the optical semiconductor device shown in FIG. 4 of the present invention.

【図6】本願発明と比較のために示した光半導体装置の
透視図である。
FIG. 6 is a perspective view of an optical semiconductor device shown for comparison with the present invention.

【図7】本願発明と比較のために示した光半導体装置の
電気的接続を変えコモン電極の極性を変更させた光半導
体装置の模式的透視図である。
FIG. 7 is a schematic perspective view of an optical semiconductor device in which the electrical connection of the optical semiconductor device shown for comparison with the present invention is changed and the polarity of the common electrode is changed.

【符号の説明】[Explanation of symbols]

101・・・同一パッケージ電極 102・・・共通接着剤 103・・・パッケージ 104・・・電気的接続部材である導電性ワイヤー 105・・・光半導体素子であるLEDチップ 106・・・ハンダ 107・・・外部電極 108・・・基板 601・・・同一パッケージ電極 602・・・接着剤 603・・・パッケージ 604・・・電気的接続部材 605・・・光半導体素子であるLEDチップ 101 ... Same package electrode 102 ... Common adhesive 103 ... Package 104 ... Conductive wire which is an electrical connection member 105 ... LED chip which is an optical semiconductor element 106 ... Solder 107 ..External electrode 108 ... Substrate 601 ... Same package electrode 602 ... Adhesive 603 ... Package 604 ... Electrical connection member 605 ... LED chip which is an optical semiconductor element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】パッケージ外部から内部に電力を供給する
ための複数のパッケージ電極と、前記パッケージ内に内
包し同一パッケージ電極に固定された少なくとも2以上
の独立に駆動できる光半導体素子と、を有する光半導体
装置であって、 前記光半導体素子が、光半導体素子の両面にそれぞれ電
極を有し、一方の電極と導電性接着剤を介して同一パッ
ケージ電極と接続されると共に他方を導電性ワイヤーに
よって第1のパッケージ電極と電気的に接続された1種
類の光半導体素子と、絶縁性基体上に半導体接合を有す
る半導体層を発光させるための第1及び第2の電極が配
置され、第1の電極と第2のパッケージ電極とを導電性
ワイヤーによって電気的に接続させると共に第2の電極
と同一パッケージ電極或いは第1のパッケージ電極と導
電性ワイヤーによって電気的に接続された1種類以上の
光半導体素子とを有することを特徴とする光半導体装
置。
1. A plurality of package electrodes for supplying electric power from the outside to the inside of the package, and at least two or more independently driven optical semiconductor elements included in the package and fixed to the same package electrode. An optical semiconductor device, wherein the optical semiconductor element has electrodes on both sides of the optical semiconductor element, and one electrode is connected to the same package electrode via a conductive adhesive and the other is connected by a conductive wire. An optical semiconductor element of one type electrically connected to the first package electrode, and first and second electrodes for emitting light from a semiconductor layer having a semiconductor junction on an insulating substrate are arranged. The electrode and the second package electrode are electrically connected by a conductive wire and conductive with the same package electrode as the second electrode or the first package electrode. An optical semiconductor device having one or more types of optical semiconductor elements electrically connected by a conductive wire.
【請求項2】前記導電性接着剤がすべての光半導体素子
を固定させる共通接着剤である請求項1記載の光半導体
装置。
2. The optical semiconductor device according to claim 1, wherein the conductive adhesive is a common adhesive for fixing all optical semiconductor elements.
【請求項3】前記導電性ペーストがAg、C、Cu、A
u、Al、Pdから選択される少なくとも一つを含有さ
せた樹脂バインダーである請求項2記載の光半導体装
置。
3. The conductive paste is Ag, C, Cu, A
The optical semiconductor device according to claim 2, which is a resin binder containing at least one selected from u, Al, and Pd.
【請求項4】パッケージ外部から内部に電力を供給する
ための複数のパッケージ電極と、前記パッケージ内に内
包し同一パッケージ電極上に固定された少なくとも2以
上の独立に駆動できる光半導体素子と、を有し、前記光
半導体素子が、半導体を介して対抗する第1の面及び第
2の面にそれぞれ電極を有し、前記第1の面の電極と導
電性接着剤を介して前記同一パッケージ電極に接続させ
ると共に第2の面の電極と第1のパッケージ電極とを導
電性ワイヤーによって電気的に接続させる第1の光半導
体素子と、絶縁性基体上に半導体及び該半導体を発光さ
せるための各電極が配置され少なくとも一方の電極と第
2のパッケージ電極とを導電性ワイヤーによって電気的
に接続されている第2の光半導体素子と、を有する光半
導体装置の製造方法であって、 前記第2の光半導体素子の他方の電極を光半導体装置の
コモン極性に応じて、同一パッケージ電極或いは第1の
パッケージ電極へ導電性ワイヤーの接続を変えることを
特徴とする光半導体装置の製造方法。
4. A plurality of package electrodes for supplying electric power from the outside to the inside of the package, and at least two or more independently driven optical semiconductor elements which are contained in the package and fixed on the same package electrode. The optical semiconductor element has electrodes on a first surface and a second surface facing each other via a semiconductor, and the same package electrode is provided via an electrically conductive adhesive with the electrode on the first surface. And a first optical semiconductor element for electrically connecting the second surface electrode and the first package electrode to each other by a conductive wire, and a semiconductor on the insulating substrate and each for emitting the semiconductor light. A method for manufacturing an optical semiconductor device having a second optical semiconductor element in which electrodes are arranged and at least one of the electrodes and the second package electrode are electrically connected by a conductive wire. Wherein the connection of the conductive wire to the other electrode of the second optical semiconductor element is changed to the same package electrode or the first package electrode according to the common polarity of the optical semiconductor device. Device manufacturing method.
JP13682596A 1996-05-30 1996-05-30 Photo-semiconductor device and manufacture thereof Pending JPH09321341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13682596A JPH09321341A (en) 1996-05-30 1996-05-30 Photo-semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13682596A JPH09321341A (en) 1996-05-30 1996-05-30 Photo-semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09321341A true JPH09321341A (en) 1997-12-12

Family

ID=15184395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13682596A Pending JPH09321341A (en) 1996-05-30 1996-05-30 Photo-semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09321341A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079605A1 (en) * 1999-06-23 2000-12-28 Citizen Electronics Co., Ltd. Light emitting diode
US6841931B2 (en) 2001-04-12 2005-01-11 Toyoda Gosei Co., Ltd. LED lamp
WO2005020338A1 (en) * 2003-08-26 2005-03-03 Sumitomo Electric Industries, Ltd. Semiconductor light-emitting device mounting member, light-emitting diode constituting member using same, and light-emitting diode using same
JP2005353814A (en) * 2004-06-10 2005-12-22 Stanley Electric Co Ltd Led lamp for large power
WO2006012842A3 (en) * 2004-07-26 2006-05-11 Osram Opto Semiconductors Gmbh Optoelectronic component that emits electromagnetic radiation and illumination module
EP1526581A3 (en) * 2003-08-20 2006-05-17 Stanley Electric Co., Ltd. Light source and vehicle lamp
JP2006128701A (en) * 2004-10-29 2006-05-18 Ledengin Inc Universal connection pad and high-output led package having connection structure
JP2006156603A (en) * 2004-11-26 2006-06-15 Kyocera Corp Package for housing light emitting element, light emitting device, and illuminating device
JP2008103558A (en) * 2006-10-19 2008-05-01 Furukawa Electric Co Ltd:The Semiconductor power module
US7385574B1 (en) 1995-12-29 2008-06-10 Cree, Inc. True color flat panel display module
JP2009515367A (en) * 2005-11-09 2009-04-09 謝 清雄 Manufacturing method of surface mount type precision resistor
JP2009152639A (en) * 1997-07-29 2009-07-09 Osram Opto Semiconductors Gmbh Surface-mountable photoelectric element
US7915618B2 (en) 2007-04-04 2011-03-29 Toyoda Gosei Co., Ltd. Light-emitting device with point symetrical bonding electrodes
US8246216B2 (en) 2008-10-14 2012-08-21 Ledengin, Inc. Total internal reflection lens with pedestals for LED emitter
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
DE102008003670B4 (en) * 2007-01-12 2014-05-08 Intellectual Discovery Co., Ltd. Light source with several LED chips
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
JP2016505879A (en) * 2012-11-29 2016-02-25 リヤード オプトエレクトロニック カンパニー リミテッドLeyard Optoelectronic Co., Ltd. LED display
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
US9929326B2 (en) 2004-10-29 2018-03-27 Ledengin, Inc. LED package having mushroom-shaped lens with volume diffuser

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8766885B2 (en) 1995-12-29 2014-07-01 Cree, Inc. True color flat panel display module
US7385574B1 (en) 1995-12-29 2008-06-10 Cree, Inc. True color flat panel display module
JP2009152639A (en) * 1997-07-29 2009-07-09 Osram Opto Semiconductors Gmbh Surface-mountable photoelectric element
WO2000079605A1 (en) * 1999-06-23 2000-12-28 Citizen Electronics Co., Ltd. Light emitting diode
US6914267B2 (en) 1999-06-23 2005-07-05 Citizen Electronics Co. Ltd. Light emitting diode
KR100425566B1 (en) * 1999-06-23 2004-04-01 가부시키가이샤 시티즌 덴시 Light emitting diode
US6841931B2 (en) 2001-04-12 2005-01-11 Toyoda Gosei Co., Ltd. LED lamp
EP1526581A3 (en) * 2003-08-20 2006-05-17 Stanley Electric Co., Ltd. Light source and vehicle lamp
US8506147B2 (en) 2003-08-20 2013-08-13 Stanley Electric Co., Ltd. Light source and vehicle lamp
US7645062B2 (en) 2003-08-20 2010-01-12 Stanley Electric Co., Ltd. Light source and vehicle lamp
WO2005020338A1 (en) * 2003-08-26 2005-03-03 Sumitomo Electric Industries, Ltd. Semiconductor light-emitting device mounting member, light-emitting diode constituting member using same, and light-emitting diode using same
US7491980B2 (en) 2003-08-26 2009-02-17 Sumitomo Electric Industries, Ltd. Semiconductor light-emitting device mounting member, light-emitting diode constituting member using same, and light-emitting diode using same
JP2005353814A (en) * 2004-06-10 2005-12-22 Stanley Electric Co Ltd Led lamp for large power
JP4485856B2 (en) * 2004-06-10 2010-06-23 スタンレー電気株式会社 LED lamp for high power
WO2006012842A3 (en) * 2004-07-26 2006-05-11 Osram Opto Semiconductors Gmbh Optoelectronic component that emits electromagnetic radiation and illumination module
US8071990B2 (en) 2004-07-26 2011-12-06 Osram Opto Semiconductors Gmbh Optoelectronic component that emits electromagnetic radiation and illumination module
JP2006128701A (en) * 2004-10-29 2006-05-18 Ledengin Inc Universal connection pad and high-output led package having connection structure
US9929326B2 (en) 2004-10-29 2018-03-27 Ledengin, Inc. LED package having mushroom-shaped lens with volume diffuser
US9842973B2 (en) 2004-10-29 2017-12-12 Ledengin, Inc. Method of manufacturing ceramic LED packages with higher heat dissipation
US9653663B2 (en) 2004-10-29 2017-05-16 Ledengin, Inc. Ceramic LED package
US8816369B2 (en) 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
JP4601404B2 (en) * 2004-11-26 2010-12-22 京セラ株式会社 Light emitting device and lighting device
JP2006156603A (en) * 2004-11-26 2006-06-15 Kyocera Corp Package for housing light emitting element, light emitting device, and illuminating device
JP2009515367A (en) * 2005-11-09 2009-04-09 謝 清雄 Manufacturing method of surface mount type precision resistor
JP2008103558A (en) * 2006-10-19 2008-05-01 Furukawa Electric Co Ltd:The Semiconductor power module
DE102008003670B4 (en) * 2007-01-12 2014-05-08 Intellectual Discovery Co., Ltd. Light source with several LED chips
US7915618B2 (en) 2007-04-04 2011-03-29 Toyoda Gosei Co., Ltd. Light-emitting device with point symetrical bonding electrodes
US8324641B2 (en) 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US8430537B2 (en) 2008-10-14 2013-04-30 Ledengin, Inc. Total internal reflection lens for color mixing
US8246216B2 (en) 2008-10-14 2012-08-21 Ledengin, Inc. Total internal reflection lens with pedestals for LED emitter
US8507300B2 (en) 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
JP2016505879A (en) * 2012-11-29 2016-02-25 リヤード オプトエレクトロニック カンパニー リミテッドLeyard Optoelectronic Co., Ltd. LED display

Similar Documents

Publication Publication Date Title
US9741640B2 (en) Semiconductor device
JPH09321341A (en) Photo-semiconductor device and manufacture thereof
US8546832B2 (en) Thin-film LED with p and n contacts electrically isolated from the substrate
US6876008B2 (en) Mount for semiconductor light emitting device
US8791548B2 (en) Optoelectronic semiconductor chip, optoelectronic component and a method for producing an optoelectronic component
KR101230622B1 (en) Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same
US7632691B2 (en) Surface mountable chip
US7683396B2 (en) High power light emitting device assembly utilizing ESD protective means sandwiched between dual sub-mounts
US9583681B2 (en) Light emitter device packages, modules and methods
US8936953B2 (en) Light emitting diode thermally enhanced cavity package and method of manufacture
WO2008093880A1 (en) Semiconductor device and method for manufacturing the same
JPH06177429A (en) Blue color led device
KR20010088929A (en) AlGaInN LED device and their fabrication method
KR100887072B1 (en) Semiconductor light emitting device and semiconductor light emitting device package using the same
JPH09307145A (en) Optical semiconductor device
JPH09298314A (en) Light emitting device
JP3211870B2 (en) Light emitting device and light emitting diode using the same
JP3900595B2 (en) Photoelectric device
KR102410790B1 (en) Semiconductor device package
CN105679886A (en) Manufacturing method of light-emitting diode
KR101448588B1 (en) Light emitting diode and manufacturing method thereof
KR20110038835A (en) Light emitting diode for high power and method of fabricating the same
KR20120068795A (en) Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same