JPH09320573A - Dry battery manufacturing die member - Google Patents

Dry battery manufacturing die member

Info

Publication number
JPH09320573A
JPH09320573A JP13902196A JP13902196A JPH09320573A JP H09320573 A JPH09320573 A JP H09320573A JP 13902196 A JP13902196 A JP 13902196A JP 13902196 A JP13902196 A JP 13902196A JP H09320573 A JPH09320573 A JP H09320573A
Authority
JP
Japan
Prior art keywords
silicon nitride
die
dry battery
ceramics
nitride ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13902196A
Other languages
Japanese (ja)
Inventor
Tatsuo Takada
達夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13902196A priority Critical patent/JPH09320573A/en
Publication of JPH09320573A publication Critical patent/JPH09320573A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PROBLEM TO BE SOLVED: To enhance the corrosion resistance to alkali component, and attain a long-term use without breakage by forming the part at least making contact with the mix of a dry battery of a die member by use of silicon nitride ceramics having a high bending strength. SOLUTION: A device for forming a mix of dry battery is formed of a die 1 provided on the inside of a metallic cylinder 2, an upper punch 3, and a lower punch 4. The part making contact with at least the mix of either one of these die members is formed by use of silicon nitride ceramics having a bending strength of 80kg/mm<2> or more. The silicon nitride ceramics preferably has an average crystalline particle diameter of 0.1-10μm, and contains 75% or more of silicon nitride particle having an aspect ratio of 3 or more. Even when a stress based on thermal expansion difference after shrinkage fitting is added when the die 1 is shrinkage fitted to the cylinder 2, the die is never broken since it is highly strong.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、乾電池の合剤を成
形する際に用いる乾電池製造用型部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold member for manufacturing a dry battery, which is used when molding a mixture for a dry battery.

【0002】[0002]

【従来の技術】乾電池は、炭素棒の周囲に合剤の成形体
を配置して構成される。この合剤は電池の特性を支配す
る重要な要素であり、使用用途に応じて種々配合され
る。例えば、一般的なマンガン電池では、二酸化マンガ
ンを主成分とし、アセチレンブラック、黒鉛、塩化アン
モニウム等を混合し、ダイス、上下パンチ等の型部材に
よって所定形状にプレス成形することによって合剤の成
形体を作製している。
2. Description of the Related Art A dry battery is constructed by arranging a molded body of a mixture around a carbon rod. This mixture is an important element that controls the characteristics of the battery, and is mixed in various ways depending on the intended use. For example, in a general manganese battery, manganese dioxide is used as a main component, acetylene black, graphite, ammonium chloride, etc. are mixed and press-molded into a predetermined shape with a die member, a die member such as an upper and lower punch, and the mixture is molded. Is being made.

【0003】一方、近年、寿命の長い乾電池としてアル
カリ電池が広く使用されているが、この場合の合剤は、
例えば溶融亜鉛に水銀、アルミニウム、ニッケル及び/
又はコバルト、アルカリ金属及び/又はアルカリ土類金
属、またはこれらに加えてインジウム、鉛、カドミウ
ム、タリウム、ガリウムから選ばれる1種以上を混合し
た組成のものが用いられている。
On the other hand, in recent years, alkaline batteries have been widely used as long-life dry batteries.
For example, molten zinc with mercury, aluminum, nickel and / or
Alternatively, cobalt, alkali metal and / or alkaline earth metal, or those having a composition in which one or more kinds selected from indium, lead, cadmium, thallium, and gallium are mixed with these are used.

【0004】これらの合剤を成形するための型部材とし
ては、従来よりステライト、ハステロイ、金属チタン等
が用いられてきたが、耐食性、耐摩耗性を高めるため
に、セラミックスを用いることが提案されている。例え
ば、特公平4−58427号公報には、ZrO2 を主成
分として安定化剤を含むジルコニア系セラミックスを用
4ることが、特公平4−59268号公報にはSi3
4 とAl2 3 の固溶体であるサイアロン系セラミック
スを用いることが、それぞれ提案されている。
Stellite, hastelloy, titanium metal, etc. have been conventionally used as a mold member for molding these mixtures, but it has been proposed to use ceramics in order to enhance corrosion resistance and wear resistance. ing. For example, Japanese Patent Publication No. 4-58427 discloses the use of zirconia-based ceramics containing ZrO 2 as a main component and a stabilizer, and Japanese Patent Publication No. 4-59268 discloses Si 3 N 4.
It has been proposed to use sialon-based ceramics, which is a solid solution of 4 and Al 2 O 3 .

【0005】[0005]

【発明が解決しようとする課題】ところが、サイアロン
系セラミックスからなる乾電池製造用型部材は、強度が
低いために製造時や使用時に割れ、欠けが生じやすいと
いう問題があった。例えば、ダイスをサイアロン系セラ
ミックスで形成すると、成形装置の製造工程中でこのダ
イスが金属製の筒体の内側に焼嵌めにより固定される際
に、焼嵌め後の熱膨張差によりダイスに応力が加わり破
損しやすかった。あるいは、使用時にもダイスやパンチ
には大きな衝撃が加わるため、これらの型部材が破損し
やすかった。
However, the mold member for producing a dry battery, which is made of sialon-based ceramics, has a problem that it is liable to be cracked or chipped during production or use because of its low strength. For example, if the die is made of sialon-based ceramics, when the die is fixed by shrink fitting inside the metal cylinder during the manufacturing process of the molding apparatus, stress is applied to the die due to the difference in thermal expansion after shrink fitting. It was easy to add and break. Alternatively, since a large impact is applied to the die and punch during use, these mold members are easily damaged.

【0006】これに対し、上記ジルコニア系セラミック
スからなる乾電池製造用型部材は、強度、靱性が高いた
め破損しにくいものの、アルカリ成分に対する耐食性が
悪いという問題があった。そのため、近年広く使用され
ているアルカリ電池用の合剤を成形すると、腐食摩耗が
原因で型部材が変形し、その結果成形時の圧力が不均一
となって、割れが生じやすいという問題があった。
On the other hand, the mold member for producing a dry battery, which is made of the zirconia-based ceramics, has high strength and toughness and thus is less likely to be damaged, but has a problem of poor corrosion resistance against alkaline components. Therefore, when a mixture for alkaline batteries, which has been widely used in recent years, is molded, there is a problem that the mold member is deformed due to corrosive wear, and as a result, the pressure during molding becomes uneven and cracking is likely to occur. It was

【0007】[0007]

【課題を解決するための手段】そこで本発明は、乾電池
の合剤を成形するためのダイス、上下パンチ等の型部材
を、曲げ強度80kg/mm2 以上の窒化珪素質セラミ
ックスで形成したことを特徴とする。
Therefore, according to the present invention, a die member for molding a mixture of a dry battery, a die member such as an upper and lower punch, and the like are formed of silicon nitride ceramics having a bending strength of 80 kg / mm 2 or more. Characterize.

【0008】また本発明は、上記乾電池製造用型部材
を、平均結晶粒子径が0.1〜10μmで、かつアスペ
クト比3以上の窒化珪素粒子を75%以上含む窒化珪素
質セラミックスで形成したことを特徴とする。
Further, according to the present invention, the mold member for producing a dry battery is formed of silicon nitride ceramics having an average crystal grain size of 0.1 to 10 μm and containing 75% or more of silicon nitride grains having an aspect ratio of 3 or more. Is characterized by.

【0009】[0009]

【作用】本発明によれば、アルカリ成分への耐食性が高
く、強度の高い窒化珪素質セラミックスで乾電池製造用
型部材を形成したことによって、アルカリ電池用の合剤
の製造に用いても、破損することなく、長期間良好に使
用することができる。
EFFECTS OF THE INVENTION According to the present invention, since a mold member for manufacturing a dry battery is formed of a silicon nitride ceramic having high corrosion resistance to an alkaline component and high strength, even if it is used for manufacturing a mixture for an alkaline battery, it is damaged. It can be used satisfactorily for a long period of time.

【0010】[0010]

【発明の実施の形態】以下本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0011】乾電池の合剤を成形する装置の概略構造
は、図1に示すように、金属製の筒体2の内側に備えた
ダイス1と、上パンチ3、下パンチ4から構成される。
そして、上記ダイス1内の空間に乾電池用の合剤を成す
原料を充填し、上パンチ3と下パンチ4で加圧して成形
することができる。なお、図1では上パンチ3と下パン
チ4の二つを備えたが、一方は固定して他方のパンチの
みで加圧することもできる。
As shown in FIG. 1, the schematic structure of an apparatus for molding a mixture for a dry battery comprises a die 1 provided inside a metal cylindrical body 2, an upper punch 3 and a lower punch 4.
Then, the space inside the die 1 can be filled with a raw material forming a mixture for a dry battery, and pressed by the upper punch 3 and the lower punch 4 to be molded. Although the upper punch 3 and the lower punch 4 are provided in FIG. 1, it is possible to fix one and press only the other punch.

【0012】そして、本発明では、上記ダイス1、上パ
ンチ3、下パンチ4等の合剤と接する部材を乾電池製造
用型部材と呼び、これらの型部材のいずれか一種におけ
る少なくとも合剤と接する部位を、曲げ強度が80kg
/mm2 以上の窒化珪素質セラミックスで形成したもの
である。
In the present invention, the members that come into contact with the mixture such as the die 1, the upper punch 3 and the lower punch 4 are referred to as mold members for producing a dry battery, and are in contact with at least the mixture in any one of these mold members. The bending strength of the part is 80 kg
/ Mm 2 or more of silicon nitride ceramics.

【0013】即ち、窒化珪素質セラミックスは耐摩耗性
に優れる材質であるが、従来は強度が低かったために、
乾電池製造用型部材を形成すると破損しやすいものであ
った。そこで、種々検討を行った結果、後述するような
結晶構造を有する窒化珪素質セラミックスであれば、曲
げ強度が80kg/mm2 以上と極めて高強度とするこ
とができ、この窒化珪素質セラミックスを用いれば、乾
電池製造用型部材として好適に使用できることを見出し
たのである。
That is, although silicon nitride ceramics is a material having excellent wear resistance, it has conventionally been low in strength,
When the mold member for producing a dry battery was formed, it was easily damaged. Therefore, as a result of various studies, a silicon nitride-based ceramic having a crystal structure as described later can have a very high bending strength of 80 kg / mm 2 or more. Therefore, they have found that it can be suitably used as a mold member for producing a dry battery.

【0014】例えば、上記窒化珪素質セラミックスのダ
イス1を金属製の筒体2に取り付ける場合は焼嵌めによ
って固定するが、焼嵌め後の熱膨張差に基づく応力が加
わってもダイス1が高強度であるため、破損することを
防止できる。また、ダイス1や上パンチ3、下パンチ4
は使用時に衝撃が加わるが、上記の高強度窒化珪素質セ
ラミックスで形成すれば破損を防止できるのである。
For example, when the silicon nitride ceramic die 1 is attached to the metal cylinder 2, the die 1 is fixed by shrink fitting, but the die 1 has high strength even if stress due to the difference in thermal expansion after shrink fitting is applied. Therefore, damage can be prevented. Also, die 1, upper punch 3, lower punch 4
Although a shock is applied during use, damage can be prevented if it is made of the above-mentioned high-strength silicon nitride ceramics.

【0015】しかも、窒化珪素質セラミックスはアルカ
リ成分に対する耐食性が高いことから、特に近年広く使
用されているアルカリ電池用の合剤の成形に使用して
も、長期間良好に使用できる。
In addition, since silicon nitride ceramics have high corrosion resistance against alkaline components, they can be used satisfactorily for a long time even when used for forming a mixture for an alkaline battery which has been widely used in recent years.

【0016】なお、本発明における曲げ強度とは、JI
SR1601に規定する3点曲げ強さのことであり、乾
電池製造用型部材からJIS試験片を切り出し、これを
用いて3点曲げ試験法により測定することができる。
The bending strength in the present invention means JI
It is the three-point bending strength specified in SR1601, and can be measured by a three-point bending test method by cutting out a JIS test piece from a mold member for manufacturing a dry battery.

【0017】また、この乾電池製造用型部材を成す窒化
珪素質セラミックスは、平均結晶粒子径が0.1〜10
μmであり、アスペクト比3以上の窒化珪素粒子を75
%以上含むものである。
The silicon nitride ceramics forming the mold member for producing a dry battery has an average crystal grain size of 0.1 to 10.
75 μm and silicon nitride particles with an aspect ratio of 3 or more are 75
% Or more.

【0018】ここで、平均結晶粒子径を上記範囲とした
のは、10μmを超えると破壊靱性及び曲げ強度が大幅
に低下し、一方0.1μm未満とすることは製造上極め
て困難であるためである。
Here, the reason why the average crystal grain size is set within the above range is that the fracture toughness and the bending strength are significantly reduced when the average grain size exceeds 10 μm, while it is extremely difficult to produce the average grain size of less than 0.1 μm in manufacturing. is there.

【0019】また、アスペクト比とは結晶粒子の長径/
短径の比のことであり、本発明ではアスペクト比が3以
上であるような針状の窒化珪素粒子を多く含ませること
によって、窒化珪素質セラミックスの強度、靱性を向上
させたのである。そして、アスペクト比3以上の窒化珪
素粒子の占める割合を75%以上としたのは、75%未
満では強度を80kg/mm2 以上とできず、乾電池用
型部材として用いた場合に破損しやすいためである。
The aspect ratio means the major axis of crystal grains /
This is the ratio of the minor axis, and in the present invention, the strength and toughness of the silicon nitride ceramics are improved by including many needle-shaped silicon nitride particles having an aspect ratio of 3 or more. The ratio of silicon nitride particles having an aspect ratio of 3 or more is set to 75% or more because the strength cannot be set to 80 kg / mm 2 or more at less than 75% and is easily broken when used as a mold member for a dry battery. Is.

【0020】なお、上記平均結晶粒子径及びアスペクト
比並びにその含有量については、窒化珪素質セラミック
スの破断面をSEM(走査型電子顕微鏡)により300
0倍に拡大してSEM写真を撮影し、このSEM写真を
画像解析装置(ルーゼックス)で解析することにより求
める。また、本発明におけるアスペクト比は、上記破断
面における結晶粒子の断面により、長径と短径を決定
し、その長径/短径の比をアスペクト比とした。
Regarding the average crystal grain size and aspect ratio and the content thereof, the fracture surface of the silicon nitride ceramics was measured by SEM (scanning electron microscope).
It is determined by taking a SEM photograph by enlarging it to 0 times and analyzing the SEM photograph with an image analyzer (Luzex). As for the aspect ratio in the present invention, the major axis and the minor axis are determined by the cross section of the crystal grain in the fracture surface, and the ratio of the major axis / minor axis is defined as the aspect ratio.

【0021】上記特性を有する窒化珪素質セラミックス
の組成は、90〜96重量%のSi3 4 を主成分と
し、焼結助剤としてY2 3 、Yb2 3 等の希土類元
素酸化物を2〜5重量%含有し、さらにAl2 3 を2
〜5重量%含有するものを用いる。
The composition of the silicon nitride ceramics having the above-mentioned characteristics is 90 to 96% by weight of Si 3 N 4 as a main component, and rare earth element oxides such as Y 2 O 3 and Yb 2 O 3 are used as sintering aids. 2 to 5% by weight of Al 2 O 3
What contains ~ 5 weight% is used.

【0022】このような窒化珪素質セラミックス製の乾
電池製造用型部材を製造する場合は、上記組成範囲の原
料を調合し、さらにバインダーと溶媒を添加して回転ミ
ルにて混合粉砕した後、スプレードライヤーにて造粒す
る。この造粒体を金型に充填し、冷間静水圧加圧法によ
り円筒状に成形する。得られた成形体を真空脱脂し、1
750〜1850℃の焼成温度で焼成し、得られた焼結
体に研磨加工を施すことによって、乾電池製造用型を得
ることができる。そして、上記焼成時の条件を調整する
ことによって、上述したような結晶構造の窒化珪素質セ
ラミックスを得ることができる。
In the case of manufacturing such a mold member for manufacturing a dry battery made of silicon nitride ceramics, raw materials having the above composition range are blended, a binder and a solvent are further added, and the mixture is ground by a rotary mill and then sprayed. Granulate with a dryer. The granules are filled in a mold and formed into a cylindrical shape by the cold isostatic pressing method. Vacuum degreasing the obtained compact, 1
A mold for producing a dry battery can be obtained by firing at a firing temperature of 750 to 1850 ° C. and polishing the obtained sintered body. Then, the silicon nitride ceramics having the above-described crystal structure can be obtained by adjusting the conditions during the firing.

【0023】このようにして得られた乾電池製造用型を
成す窒化珪素質セラミックスは、主相がβ−Si3 4
からなり、平均結晶粒子径が0.1〜10μmで、かつ
アスペクト比3以上の窒化珪素粒子を75%以上含むと
ともに、密度3.1〜3.3g/cm3 、圧痕法による
破壊靱性(K1C)6.5MPam1/2 以上、曲げ強度8
0kg/mm2 以上とすることができた。
The silicon nitride-based ceramics thus obtained, which constitutes the mold for producing a dry battery, has a main phase of β-Si 3 N 4
And having an average crystal grain diameter of 0.1 to 10 μm and containing 75% or more of silicon nitride particles having an aspect ratio of 3 or more, a density of 3.1 to 3.3 g / cm 3 , and a fracture toughness (K 1C ) 6.5 MPam 1/2 or more, bending strength 8
It could be set to 0 kg / mm 2 or more.

【0024】[0024]

【実施例】実験例1 まず、本発明の窒化珪素質セラミックスとして、Si3
4 91重量%と残部がY2 3 、Al2 3 からな
り、平均結晶粒子径が6μm、アスペクト比3以上の窒
化珪素粒子を80%含む窒化珪素質セラミックスにより
テストピースを作製した。一方、比較例として3モル%
のY2 3 を含む部分安定化ジルコニアセラミックスで
テストピースを作製し、それぞれのテストピースを表1
に示す各水溶液中に浸漬したときの重量減少量を測定し
て耐食性試験を行った。
Experimental Example 1 First, Si 3 was used as the silicon nitride ceramics of the present invention.
A test piece was prepared from silicon nitride ceramics containing 91% by weight of N 4 and the balance of Y 2 O 3 and Al 2 O 3 , 80% of silicon nitride particles having an average crystal grain size of 6 μm and an aspect ratio of 3 or more. On the other hand, as a comparative example, 3 mol%
Test pieces were made from partially stabilized zirconia ceramics containing Y 2 O 3 of
The corrosion resistance test was performed by measuring the weight reduction amount when immersed in each aqueous solution shown in.

【0025】結果は表1に示す通りである。この結果よ
り、特にアルカリ性の水溶液(NaOH)中では、ジル
コニア系セラミックスよりも本発明の窒化珪素質セラミ
ックスの方が格段に重量減少が少ないことがわかる。
The results are shown in Table 1. From these results, it can be seen that the weight reduction of the silicon nitride ceramics of the present invention is much smaller than that of the zirconia ceramics, especially in an alkaline aqueous solution (NaOH).

【0026】したがって、アルカリ電池用の合剤を成形
する場合は、ジルコニア系セラミックスに比べて、本発
明の窒化珪素質セラミックスを用いた型部材の方が耐久
性に優れることがわかる。
Therefore, when molding a mixture for an alkaline battery, it is understood that the mold member using the silicon nitride ceramics of the present invention is more durable than the zirconia ceramics.

【0027】[0027]

【表1】 [Table 1]

【0028】実験例2 次に、上記本発明の窒化珪素質セラミックスと、比較例
として上記ジルコニアセラミックス及びサイアロン系セ
ラミックスを用いて、図1に示すダイス1を作製し使用
試験を行った。
Experimental Example 2 Next, using the silicon nitride ceramics of the present invention and the zirconia ceramics and sialon-based ceramics as comparative examples, a die 1 shown in FIG. 1 was produced and a usage test was conducted.

【0029】各々10個ずつ作製し、それぞれ金属製の
筒体2に焼嵌めで取り付け、ロータリープレス機を用い
てアルカリ電池用の合剤の成形に用い、10000回の
成形を行った時に、途中でダイス1が破損したものの数
を比較した。
Ten pieces each were produced, and each piece was attached to a metal cylinder 2 by shrink fitting, and was used to form a mixture for an alkaline battery using a rotary press machine. When molding was performed 10,000 times, halfway Then, the numbers of the dies 1 damaged were compared.

【0030】結果を表2に示す。この結果より、ジルコ
ニア系セラミックスは、実験例1に示すようにアルカリ
成分に対する耐食性が低いために、腐食による摩耗が進
行し、2個のサンプルが破損した。またサイアロン系セ
ラミックスは、強度、靱性が低いため、焼嵌め時の応力
や使用時の衝撃で2個のサンプルが破損した。
The results are shown in Table 2. From these results, as shown in Experimental Example 1, the zirconia-based ceramics had low corrosion resistance to alkaline components, and therefore wear due to corrosion progressed and two samples were damaged. Further, since the sialon ceramics have low strength and toughness, two samples were damaged by the stress during shrink fitting and the impact during use.

【0031】これらに対し、本発明の窒化珪素質セラミ
ックスを用いたものは、アルカリ成分に対する耐食性に
優れ、しかも強度、靱性が高いことから、全く破損が生
じなかった。
On the other hand, since the one using the silicon nitride ceramics of the present invention has excellent corrosion resistance against alkali components, and has high strength and toughness, no damage occurs.

【0032】[0032]

【表2】 [Table 2]

【0033】実験例3 次に、その他の各種セラミックスと、本発明の窒化珪素
質セラミックスについて、平均結晶粒子径、アスペクト
比3以上の結晶粒子の含有率、破壊靱性、曲げ強度を測
定した。なお、窒化珪素質セラミックスについては、原
料粒径や焼成条件を変化させて窒化珪素A,B,Cの3
種類を作製した。
Experimental Example 3 Next, with respect to various other ceramics and the silicon nitride ceramics of the present invention, the average crystal grain diameter, the content of crystal grains having an aspect ratio of 3 or more, fracture toughness, and bending strength were measured. For silicon nitride ceramics, silicon nitrides A, B, and C can be prepared by changing the raw material particle size and firing conditions.
Created types.

【0034】結果を表3に示すように、窒化珪素質セラ
ミックスは他のセラミックスに比べて破壊靱性と強度が
高いことがわかる。中でも、アスペクト比3以上の結晶
粒子の含有率を75%以上とした窒化珪素Aは、曲げ強
度80kg/mm2 以上、破壊靱性(K1C)6.5MP
am1/2 以上とできることがわかる。
As shown in Table 3, the silicon nitride ceramics have higher fracture toughness and strength than other ceramics. Above all, silicon nitride A having a content of crystal grains with an aspect ratio of 3 or more of 75% or more has a bending strength of 80 kg / mm 2 or more and a fracture toughness (K 1C ) of 6.5MP.
It can be seen that it can be set to am 1/2 or more.

【0035】また、表3中の窒化珪素A,Bについて、
その他の特性を比較したところ、表4に示すように、強
度以外の特性はほぼ同じであった。
For silicon nitrides A and B in Table 3,
When the other characteristics were compared, as shown in Table 4, the characteristics other than the strength were almost the same.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】以上のように本発明によれば、乾電池成
形用型部材を強度が80kg/mm2以上の窒化珪素質
セラミックス、または平均結晶粒子径が0.1μmで、
かつアスペクト比3以上の窒化珪素粒子を75%以上含
む窒化珪素質セラミックスで形成したことによって、製
造時あるいは使用時の破損を防止するとともに、特にア
ルカリ成分への耐食性に優れることから、アルカリ電池
用の合剤の成形に用いた場合に、長期間良好に使用する
ことが可能となる。
As described above, according to the present invention, a dry battery molding die member is made of silicon nitride ceramics having a strength of 80 kg / mm 2 or more, or an average crystal grain diameter of 0.1 μm.
In addition, since it is formed of silicon nitride ceramics containing 75% or more of silicon nitride particles having an aspect ratio of 3 or more, damage during production or use is prevented, and particularly corrosion resistance to alkaline components is excellent. When it is used to mold the mixture, it can be used satisfactorily for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の乾電池成形用型部材を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a dry battery molding die member of the present invention.

【符号の説明】[Explanation of symbols]

1:ダイス 2:筒体 3:上パンチ 4:下パンチ 1: Dice 2: Cylindrical body 3: Upper punch 4: Lower punch

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】乾電池の合剤を成形するためのダイス、上
下パンチ等の型部材であって、少なくとも合剤と接する
部分を、曲げ強度80kg/mm2 以上の窒化珪素質セ
ラミックスで形成したことを特徴とする乾電池製造用型
部材。
1. A die member for molding a mixture for a dry battery, a die member such as upper and lower punches, wherein at least a portion in contact with the mixture is formed of silicon nitride ceramics having a bending strength of 80 kg / mm 2 or more. A mold member for manufacturing a dry battery, comprising:
【請求項2】乾電池の合剤を成形するためのダイス、上
下パンチ等の型部材であって、少なくとも合剤と接する
部分を、平均結晶粒子径が0.1〜10μmで、かつア
スペクト比3以上の窒化珪素粒子を75%以上含む窒化
珪素質セラミックスで形成したことを特徴とする乾電池
製造用型部材。
2. A die member for molding a mixture for a dry battery, a die member such as upper and lower punches, wherein at least a portion in contact with the mixture has an average crystal grain diameter of 0.1 to 10 μm and an aspect ratio of 3. A mold member for manufacturing a dry battery, comprising a silicon nitride ceramic containing 75% or more of the above silicon nitride particles.
JP13902196A 1996-05-31 1996-05-31 Dry battery manufacturing die member Pending JPH09320573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13902196A JPH09320573A (en) 1996-05-31 1996-05-31 Dry battery manufacturing die member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13902196A JPH09320573A (en) 1996-05-31 1996-05-31 Dry battery manufacturing die member

Publications (1)

Publication Number Publication Date
JPH09320573A true JPH09320573A (en) 1997-12-12

Family

ID=15235634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13902196A Pending JPH09320573A (en) 1996-05-31 1996-05-31 Dry battery manufacturing die member

Country Status (1)

Country Link
JP (1) JPH09320573A (en)

Similar Documents

Publication Publication Date Title
EP0429665B1 (en) Method of producing sintered ceramic materials
EP0780351A1 (en) Aluminum nitride sinter and process for the production thereof
EP1279650B1 (en) Sintered alumina ceramic, method for producing the same, and cutting tool
EP0659708B1 (en) Alumina based ceramic material and method of manufacturing the same
EP0626359B1 (en) Aluminum nitride sintered body and method for manufacturing the same
CN1247488C (en) Porous Si3N4 and producing method thereof
EP3560904B1 (en) Oriented aln sintered body, and production method therefor
JPH09320573A (en) Dry battery manufacturing die member
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JPH08169755A (en) Polycrystalline ceramic product and its production
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
JPH07172921A (en) Aluminum nitride sintered material and its production
JP3793644B2 (en) Multi-layer sleeve and die casting machine
CN101511748A (en) Aluminum oxide-based composite sintered material and cutting insert
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JP4394784B2 (en) Silicon carbide sintered body
JP2723170B2 (en) Superplastic silicon nitride sintered body
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP3793645B2 (en) SLEEVE, MANUFACTURING METHOD THEREOF, AND DIE CASTING MACHINE
JPH0688832B2 (en) Polycrystalline ceramic product and manufacturing method thereof
JP3439914B2 (en) Injection molding machine
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder