JPH09317545A - Fuel injection timing controller for internal combustion engine - Google Patents

Fuel injection timing controller for internal combustion engine

Info

Publication number
JPH09317545A
JPH09317545A JP13156496A JP13156496A JPH09317545A JP H09317545 A JPH09317545 A JP H09317545A JP 13156496 A JP13156496 A JP 13156496A JP 13156496 A JP13156496 A JP 13156496A JP H09317545 A JPH09317545 A JP H09317545A
Authority
JP
Japan
Prior art keywords
injection timing
tcv
advance
value
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13156496A
Other languages
Japanese (ja)
Inventor
Hiroyuki Itoyama
浩之 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13156496A priority Critical patent/JPH09317545A/en
Publication of JPH09317545A publication Critical patent/JPH09317545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure a good response to transition and good stability in normal state by setting a constant used for the advance control of a base value for controlling an injection timing control valve from the output of operation state detecting means and by conducting an advance correction by this constant and by calculating a final control value of the injection timing control valve and by driving the valve based on the calculated results. SOLUTION: An engine speed Ne and a fuel injection amount Qsol are read (s31) and actual fuel injection timing is calculated and a base value D-tcvo of a timing valve (TCV) duty is calculated. The base vale D-tcvo of a timing valve (TCV) duty is compared with the previous value D-tcvo (s32) and, when the former is larger than the latter, an equivalent Ttcva of a TCV time constant when TCV duty is increased is selected from a table and is substituted into Ttcva (s34) and a prescribed value GKITA is substituted into an advance correction gain Gkit when the TCV duty is increased (s35) and, when the former is smaller than the latter, a TTCVR of a TCV operation time constant when TCV duty is decreased is substituted into Ttcv (s36) and a prescribed value GKITR is substituted into an advance correction gain Gkit when the TCV duty is decreased (s37). The duty value D-tcv to be output is calculated by an equation using the base vale D-tcvo of the TCV duty value, the advance correction gain and an equivalent correction time constant Gkit and Ttcv.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の、特に
ディーゼルエンジンの燃料噴射時期制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection timing control system for an internal combustion engine, especially for a diesel engine.

【0002】[0002]

【従来の技術】従来の燃料噴射時期制御方法としては、
例えば特開昭59−120735号公報のような技術が
ある。図16にこのフローを示すが、これは加速判定
時、タイミングコントロールバルブ(噴射時期制御バル
ブ)へ与えるduty値を急変させるものである。ま
ず、急加速か否かを判定し、もし急加速ならそれが最初
の判定か否かを判定し、最初ならアクセル変化速度及び
エンジン回転数からタイミングコントロールバルブdu
ty値を演算しその値にduty値を置き換えて処理を
終了する。一方、上記判定が否の場合は、アクセル開度
及びエンジン回転数から目標進角量を演算し、また一方
で実際の進角量を演算してその両者を比較し、同じ時に
はduty値を前回値で維持し、目標値の方が大きけれ
ばduty値を減少させ、小さければ増大して処理を終
了する。
2. Description of the Related Art As a conventional fuel injection timing control method,
For example, there is a technique as disclosed in Japanese Patent Laid-Open No. 59-120735. This flow is shown in FIG. 16, which is for suddenly changing the duty value given to the timing control valve (injection timing control valve) during acceleration determination. First, it is determined whether or not it is a rapid acceleration, and if it is a rapid acceleration, it is determined whether or not it is the first determination. If it is the first, the timing control valve du
The ty value is calculated, the duty value is replaced with that value, and the processing ends. On the other hand, if the above determination is negative, the target advance amount is calculated from the accelerator opening and the engine speed, and on the other hand, the actual advance amount is calculated and the two are compared. If the target value is larger than the target value, the duty value is decreased, and if the target value is smaller, the duty value is increased and the processing ends.

【0003】一方、進み補正を行なう上で、燃料温度で
その補正ゲイン等補正の仕方を変える技術は見られな
い。
On the other hand, in the advance correction, there is no technique for changing the correction method such as the correction gain depending on the fuel temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の燃料噴射時期制御方法にあっては、定常と過
渡でタイミングコントロールバルブのduty値が一定
で変わるのみであり、常に最適なduty値にすること
は困難であるという問題が解った。また、この大きさは
燃料温度でも変える必要があるため、さらに困難である
という問題が解った。
However, in the conventional fuel injection timing control method as described above, the duty value of the timing control valve is constant and changes between the steady state and the transient state, and the optimum duty value is always obtained. I found the problem that it was difficult to do. Further, it has been found that this size is more difficult because it needs to be changed depending on the fuel temperature.

【0005】本発明は、このような従来の問題点に着目
してなされたもので、タイミングコントロールバルブ
(TCV)へ出力するduty値をポンプの特性や状態
を見ながら進み補正を行ない、最終的にタイミングコン
トロールバルブへその値を出力することにより、上記問
題点を解決するものである。
The present invention has been made by paying attention to such a conventional problem. The duty value output to the timing control valve (TCV) is advanced and corrected while observing the characteristics and state of the pump, and finally the duty value is corrected. The above problem is solved by outputting the value to the timing control valve.

【0006】[0006]

【課題を解決するための手段】本発明は上述の課題を解
決するために、エンジン回転数、アクセル開度、燃温等
エンジン運転状態を検知する運転状態検知手段と、該運
転状態検知手段の出力から目標の噴射時期を設定する目
標噴射時期設定手段と、実際の噴射時期を検知する実噴
射時期検知手段と、実際の噴射時期の遅れ量を前記全て
の手段に基づいて演算する噴射時期遅れ量演算手段と、
該演算手段による演算結果に基づいて実際の噴射時期を
補正演算する噴射時期補正手段と、該補正手段による補
正信号の出力に基づいて出力する制御基本値を演算する
基本制御量演算手段と、前記運転状態検知手段の出力か
ら噴射時期制御バルブ制御基本値の進み制御に使用する
定数を設定する進み制御定数設定手段と、該進み制御定
数設定手段の出力から進み補正を行ない最終的な噴射時
期制御バルブ制御値を演算する手段と、該進み補正演算
結果に基づいてバルブを駆動するバルブ駆動手段と、か
らなる構成とする。
In order to solve the above-mentioned problems, the present invention provides an operating condition detecting means for detecting engine operating conditions such as engine speed, accelerator opening, fuel temperature, and the like. Target injection timing setting means for setting the target injection timing from the output, actual injection timing detection means for detecting the actual injection timing, and injection timing delay for calculating the delay amount of the actual injection timing based on all the above means. Quantity calculation means,
An injection timing correction means for correcting the actual injection timing based on the calculation result by the calculation means; a basic control amount calculation means for calculating a control basic value to be output based on the output of the correction signal by the correction means; Lead control constant setting means for setting a constant used for lead control of the injection timing control valve control basic value from the output of the operating state detection means, and final injection timing control by performing lead correction from the output of the lead control constant setting means. The valve control value is calculated, and the valve driving means is used to drive the valve based on the advance correction calculation result.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0008】図1は、本発明の実施の形態をブロック図
で示したものである。まず構成を説明すると、エンジン
回転数、アクセル開度、燃温等エンジン運転状態を検知
する運転状態検知手段1と、この運転状態検知手段1の
出力から目標の噴射時期を設定する目標噴射時期設定手
段2と、実際の噴射時期を検知する実噴射時期検知手段
3と、実際の噴射時期の検知遅れ量を運転状態検知手段
1の出力から演算する検知遅れ量演算手段4と、実噴射
時期検知手段3と検知遅れ量演算手段4の出力から実際
の噴射時期を演算する実噴射時期演算手段5と、目標噴
射時期設定手段2と実噴射時期演算手段5の出力からタ
イミングコントロールバルブに出力するduty値の基
本値を演算するTCVduty演算手段6と、運転状態
検知手段1の出力から進み補正に用いる定数を設定する
進みゲイン時定数設定手段7と、TCVduty演算手
段6の出力値に進みゲイン時定数設定手段7の出力値を
用いて進み補正を行なうTCV制御手段8と、TCV制
御手段8の出力からタイミングコントロールバルブを駆
動するTCV駆動手段9と、からなる構成としている。
FIG. 1 is a block diagram showing an embodiment of the present invention. First, the configuration will be described. Operating state detecting means 1 for detecting engine operating states such as engine speed, accelerator opening, fuel temperature, and target injection timing setting for setting a target injection timing from the output of the operating state detecting means 1. Means 2, actual injection timing detection means 3 for detecting the actual injection timing, detection delay amount calculation means 4 for calculating the actual detection timing detection delay amount from the output of the operating state detection means 1, and actual injection timing detection The actual injection timing calculating means 5 for calculating the actual injection timing from the outputs of the means 3 and the detection delay amount calculating means 4, the target injection timing setting means 2 and the output of the actual injection timing calculating means 5 are output to the timing control valve duty. TCVduty calculation means 6 for calculating the basic value of the value, advance gain time constant setting means 7 for setting a constant used for advance correction from the output of the operating state detection means 1, and TCV a TCV control means 8 for advancing to the output value of the duty calculation means 6 and performing advance correction using the output value of the gain time constant setting means 7, and a TCV drive means 9 for driving a timing control valve from the output of the TCV control means 8. It is composed of.

【0009】次に作用を説明する。Next, the operation will be described.

【0010】図2〜図13に本実施の形態のフローとそ
れに必要なテーブル、マップを示す。
2 to 13 show the flow of this embodiment and the tables and maps required for it.

【0011】本発明であるタイミングコントロールバル
ブdutyの進み補正演算については、図9〜図14を
用いて後に述べる。
The advance correction calculation of the timing control valve duty according to the present invention will be described later with reference to FIGS. 9 to 14.

【0012】まず、タイミングコントロールバルブに出
力するTCVdutyの演算について図2を用いて説明
する。
First, the calculation of TCVduty output to the timing control valve will be described with reference to FIG.

【0013】ステップS1(以下、単にS1というよう
に記述する)で目標の噴射時期Itsolを演算する。
S2で実際の噴射時期Itistを演算する。S3で通
常のPID制御のようにItsol,Itistの差分
からKp,Ki,Kdを用いてTCVduty値の基本
値D_tcv0を求める。S4で進み補正に用いる定数
Gkit,Ttcvを演算する。S5でD_tcv0に
進み補正を行ない(D_tcv)、処理を終了する。こ
の進み補正の方法及びS1,S2については後に説明す
る。
In step S1 (hereinafter, simply referred to as S1), a target injection timing Itsol is calculated.
The actual injection timing Itist is calculated in S2. In S3, the basic value D_tcv0 of the TCVduty value is obtained from the difference between Itsol and Itist using Kp, Ki, and Kd as in the normal PID control. In S4, constants Gkit and Ttcv used for advance correction are calculated. In S5, the process proceeds to D_tcv0 to perform correction (D_tcv), and the process ends. The method of advance correction and S1 and S2 will be described later.

【0014】図3は、目標噴射時期の演算フローであ
る。
FIG. 3 is a calculation flow of the target injection timing.

【0015】まず、S11でエンジン回転数Neや負荷
を表わす燃料噴射量Qsol、スタートスイッチ、水温
Tw等を読み込む。S12で現在スタートスイッチが入
っているか否かを判定し、入っていればS13、入って
いなければS15へ進む。13でTwから例えば図4の
ようなテーブルから始動時噴射時期補正値を検索してI
t_twsとする。S14では始動後の噴射時期補正値
It_twを零とする。S15ではTwから始動後の噴
射時期補正値を例えば図5のようなテーブルから検索し
てIt_twとし、S16で始動時の噴射時期補正値I
t_twsを零とする。S17でNe,Qsolから例
えば図6のようなマップから目標噴射時期It_ldを
検索する。S18でIt_ld,It_tws,It_
twを加算して目標の噴射時期Itsolとして処理を
終了する。
First, in S11, the engine speed Ne, the fuel injection amount Qsol representing the load, the start switch, the water temperature Tw, etc. are read. In S12, it is determined whether or not the start switch is currently on, and if so, the process proceeds to S13, and if not, the process proceeds to S15. In step 13, the starting injection timing correction value is retrieved from Tw from a table as shown in FIG.
Let t_tws. In S14, the injection timing correction value It_tw after starting is set to zero. In S15, the injection timing correction value after startup is searched from Tw, for example, in a table as shown in FIG. 5 to set It_tw, and in S16, the injection timing correction value I at startup is calculated.
Let t_tws be zero. In S17, the target injection timing It_ld is retrieved from Ne and Qsol from a map as shown in FIG. 6, for example. It_ld, It_tws, It_ in S18
tw is added and the target injection timing Itsol is set, and the processing ends.

【0016】図7は、実際の噴射時期を演算するフロー
である。
FIG. 7 is a flow chart for calculating the actual injection timing.

【0017】まず、S21でエンジン回転数Neや燃料
噴射量Qsol等の運転状態を読み込む。S22で例え
ば図8のようなマップから噴射時期検知遅れ量Itis
t_dを検索する。これは、実際の噴射時期に対し検出
する際のハード的な検知遅れを実験的に設定されるもの
である。S23で実際の噴射時期を検知するセンサから
の噴射時期Itist_dlyを読み込み、S24でI
tist_dlyとItist_dを加算して実際の噴
射時期Itistとし、処理を終了する。
First, in S21, operating states such as the engine speed Ne and the fuel injection amount Qsol are read. In S22, for example, the injection timing detection delay amount Itis is calculated from the map shown in FIG.
Search t_d. This is to experimentally set a hardware-based detection delay when detecting the actual injection timing. In S23, the injection timing Itist_dly from the sensor for detecting the actual injection timing is read, and in S24, Iist_dly is read.
The actual injection timing Itist is obtained by adding the list_dly and Itist_d, and the process ends.

【0018】図9は、進み補正定数を設定する第1の実
施の形態のフローである。まず、S31でエンジン回転
数Ne、燃料噴射量Qsol等を読み込む。S32でT
CVduty基本値D_tcv0と前回演算時のD_t
cv0を比較し、前者が大きければS33へ、後者が大
きければS36へ進む。S33ではエンジン回転数から
例えば図10に示すようなテーブルからTCVduty
増加時のTCV作動時定数相当値(時定数の逆数相当
値)Ttcvaを検索し、S34でTtcvに代入す
る。S35ではTCVduty増加時の進み補正ゲイン
Gkitに所定値GKITAを代入して処理を終了す
る。S36ではTCVduty減少時のTCV作動時定
数相当値(時定数の逆数相当値)TTCVRをTtcv
に代入する。S37ではTCVduty減少時の進み補
正ゲインGkitに所定値GKITRを代入して処理を
終了する。当処理はTCV増加時の時定数が大きく、減
少時は非常に小さい場合の設定方法である。従って図1
0の特性もそのような設定としている。
FIG. 9 is a flow chart of the first embodiment for setting the advance correction constant. First, in S31, the engine speed Ne, the fuel injection amount Qsol, etc. are read. S32 for T
CVduty basic value D_tcv0 and D_t in the previous calculation
cv0 is compared. If the former is larger, the process proceeds to S33, and if the latter is larger, the process proceeds to S36. In S33, the TCVduty is calculated from the engine speed based on the table shown in FIG. 10, for example.
The value corresponding to the TCV operation time constant at the time of increase (value corresponding to the reciprocal of the time constant) Ttcva is searched for and substituted in Ttcv in S34. In S35, the predetermined value GKITA is substituted for the advance correction gain Gkit when TCVduty increases, and the process ends. In S36, the TCV operation time constant equivalent value (reciprocal equivalent value of the time constant) TTCVR when TCVduty is decreased is set to Ttcv.
To. In S37, the predetermined value GKITR is substituted for the advance correction gain Gkit when TCVduty is reduced, and the process is ended. This process is a setting method in which the time constant is large when TCV increases and is very small when TCV decreases. Therefore, FIG.
The characteristic of 0 is also set as such.

【0019】図11は、進み補正定数を設定する第2の
実施の形態のフローである。
FIG. 11 is a flow chart of the second embodiment for setting the advance correction constant.

【0020】まず、S41でエンジン回転数Ne、燃料
噴射量Qsol等を読み込む。S42でTCVduty
基本値D_tcv0と前回演算時のD_tcv0を比較
し、前者が大きければS43へ、後者が大きければS4
6へ進む。S43ではエンジン回転数から例えば図10
に示すようなテーブルからTCVduty増加時のTC
V作動時定数相当値(時定数の逆数相当値)Ttcva
を検索し、S44でTtcvに代入する。S45ではT
CVduty増加時の進み補正ゲインGkitに所定値
GKITAを代入する。S46ではTCVduty減少
時のTCV作動時定数相当値(時定数の逆数相当値)T
TCVRをTtcvに代入する。S47ではTCVdu
ty減少時の進み補正ゲインGkitに所定値GKIT
Rを代入する。当処理はTCV増加時の時定数が大き
く、減少時は非常に小さい場合の設定方法である。従っ
て図10の特性もそのような設定としている。
First, in S41, the engine speed Ne, the fuel injection amount Qsol, etc. are read. TCVduty in S42
The basic value D_tcv0 is compared with D_tcv0 at the time of the previous calculation, and if the former is larger, go to S43, and if the latter is larger, S4.
Go to 6. In step S43, the engine speed is calculated as shown in FIG.
TC when the TCVduty increases from the table shown in
V operation time constant equivalent value (reciprocal time constant equivalent value) Ttcva
Is searched and substituted in Ttcv in S44. T in S45
A predetermined value GKITA is substituted for the advance correction gain Gkit when the CVduty increases. At S46, the TCV operation time constant equivalent value when TCVduty decreases (equivalent to the reciprocal of the time constant) T
Substitute TCVR into Ttcv. In S47, TCVdu
A predetermined value GKIT for the advance correction gain Gkit when ty decreases
Substitute R. This process is a setting method in which the time constant is large when TCV increases and is very small when TCV decreases. Therefore, the characteristics shown in FIG. 10 are also set as such.

【0021】S48では現在アイドル状態か否かを判定
し、アイドル状態ならS51へ進む。アイドル状態でな
ければS49へ進み、エンジン回転数Neと所定回前の
エンジン回転数Neとの差をとり、所定値DNETRよ
り大きければそのまま処理を終了する。小さければS5
0へ進み、燃料噴射量Qsolと所定回前の燃料噴射量
Qsolとの差をとり、所定値DQFTRより大きけれ
ばそのまま処理を終了する。小さければS51へ進み、
アクセル開度Dclと所定回前のアクセル開度Dclと
の差をとり、所定値DDCTRより大きければ処理を終
了し、小さければS52へ進んで、進み補正ゲインGk
itを1(進み補正無し)として処理を終了する。当処
理に於て、S48からS52までは、アイドル時または
定常運転時は進み補正を行なわないような定数設定を行
なっている。
In S48, it is determined whether or not it is currently in the idle state. If it is in the idle state, the process proceeds to S51. If it is not in the idle state, the process proceeds to S49, the difference between the engine speed Ne and the engine speed Ne before the predetermined number of times is calculated, and if it is larger than the predetermined value DNETR, the process is ended as it is. S5 if small
The process proceeds to 0 and the difference between the fuel injection amount Qsol and the fuel injection amount Qsol before the predetermined number of times is calculated. If it is smaller, proceed to S51,
The difference between the accelerator opening degree Dcl and the accelerator opening degree Dcl before the predetermined number of times is calculated, and if it is larger than the predetermined value DDCTR, the process is ended, and if it is smaller, the routine proceeds to S52, where the advance correction gain Gk
The process is ended by setting it to 1 (no advance correction). In this process, from S48 to S52, constant setting is performed so that advance correction is not performed during idling or during steady operation.

【0022】図12は、進み補正定数を設定する第3の
実施の形態のフローである。
FIG. 12 is a flow chart of the third embodiment for setting the advance correction constant.

【0023】まず、S61でエンジン回転数Ne、燃料
噴射量Qsol等を読み込む。S62で燃料温度Tfよ
り例えば図13のような進み補正時定数相当値燃温補正
係数テーブルから補正係数Ktcvtfを演算する。S
63で燃料温度から例えば図14のような進み補正ゲイ
ン燃温補正係数テーブルから補正係数Kgkittfを
演算する。S64でTCVduty基本値D_tcv0
と前回演算時のD_tcv0を比較し、前者が大きけれ
ばS65へ、後者が大きければS68へ進む。S65で
はエンジン回転数から例えば図10に示すようなテーブ
ルからTCVduty増加時のTCV作動時定数相当値
(時定数の逆数相当値)Ttcvaを検索し、S66で
補正係数Ktcvtfを乗じてTtcvに代入する。S
67ではTCVduty増加時の進み補正ゲインGki
tに所定値GKITAと補正係数Kgkittfを乗じ
て代入し、処理を終了する。S68ではTCVduty
減少時のTCV作動時定数相当値(時定数の逆数相当
値)TTCVRに補正係数Ktcvtfを乗じてTtc
vに代入する。S69ではTCVduty減少時の進み
補正ゲインGkitに所定値GKITRと補正係数Kg
kittfを乗じて代入し、処理を終了する。当処理は
TCV増加時の時定数が大きく、減少時は非常に小さい
場合の設定方法である。従って図10の特性もそのよう
な設定としている。また、図13、図14は、燃料温度
が低いときにはTCVの作動時定数が大きいため進み補
正ゲイン及び時定数相当値も補正を大きくするような設
定としている。
First, in S61, the engine speed Ne, the fuel injection amount Qsol, etc. are read. In S62, the correction coefficient Ktcvtf is calculated from the fuel temperature Tf from the advance correction time constant equivalent value fuel temperature correction coefficient table as shown in FIG. 13, for example. S
At 63, the correction coefficient Kgkittf is calculated from the fuel temperature from the advance correction gain fuel temperature correction coefficient table as shown in FIG. 14, for example. TCVduty basic value D_tcv0 in S64
And D_tcv0 at the time of the previous calculation are compared. If the former is larger, the process proceeds to S65, and if the latter is larger, the process proceeds to S68. In step S65, the TCV operation time constant equivalent value (equivalent to the reciprocal of the time constant) Ttcva when the TCVduty increases is retrieved from the engine speed, for example, from a table as shown in FIG. . S
In 67, the advance correction gain Gki when TCVduty increases
t is multiplied by the predetermined value GKITA and the correction coefficient Kgkitttf and substituted, and the processing is ended. In S68, TCVduty
TCV operation time constant equivalent value at the time of decrease (value equivalent to the reciprocal of the time constant) TTCVR is multiplied by a correction coefficient Ktcvtf to obtain Ttc.
Substitute in v. At S69, the advance correction gain Gkit when TCVduty is reduced is set to a predetermined value GKITR and the correction coefficient Kg.
Multiply and substitute by kittf, and the process ends. This process is a setting method in which the time constant is large when TCV increases and is very small when TCV decreases. Therefore, the characteristics shown in FIG. 10 are also set as such. Further, in FIGS. 13 and 14, since the TCV operation time constant is large when the fuel temperature is low, the advance correction gain and the time constant equivalent value are set to be large.

【0024】図15は、タイミングコントロールバルブ
の進み補正演算の方法を示したフローである。
FIG. 15 is a flow chart showing a method of advance correction calculation of the timing control valve.

【0025】まず、S71でタイミングコントロールバ
ルブduty値の基本値D_tcv0、進み補正ゲイン
Gkit、進み補正時定数相当値Ttcvを読み込む。
S72で図示するような式で進み補正処理後の最終的に
タイミングコントロールバルブへ出力するduty値D
_tcvを演算する。S73で中間変数Rtcvを図示
するような式で演算して、処理を終了する。
First, in S71, the basic value D_tcv0 of the timing control valve duty value, the advance correction gain Gkit, and the advance correction time constant equivalent value Ttcv are read.
The duty value D that is finally output to the timing control valve after the advance correction processing is performed by the equation shown in S72.
Calculate _tcv. In step S73, the intermediate variable Rtcv is calculated by the equation shown in the figure, and the process ends.

【0026】[0026]

【発明の効果】以上説明してきたように、本発明によれ
ば、ポンプの特性に従って噴射時期を制御するタイミン
グコントロールバルブduty値に補正を加えることに
より、過渡の追従性、及び定常時の安定性が確保され、
常に適切な噴射時期を達成することが出来る。定常の安
定性は定常運転のエミッション低減、過渡の追従性も過
渡時のエミッション低減に大きな効果が生まれる。さら
に、その補正(進み補正方法)を燃料温度でゲイン、時
定数を変えることにより冷機時及び暖機時の最適な噴射
時期制御が可能となる。また、一般的に始動時はTCV
を大きくする必要があるが、当発明の補正を行なうこと
により、始動時の特別な処理を必要とせず、ロジックの
簡易化も達成できる。
As described above, according to the present invention, transient followability and steady-state stability are corrected by correcting the timing control valve duty value that controls the injection timing according to the characteristics of the pump. Is secured,
It is possible to always achieve an appropriate injection timing. Steady-state stability has a great effect on emission reduction during steady-state operation, and transient follow-up performance also has a great effect on emission reduction during transition. Further, by changing the gain and time constant of the correction (advance correction method) depending on the fuel temperature, it becomes possible to perform optimum injection timing control during cold engine warm-up and warm-up engine warm-up. Also, in general, TCV
However, by performing the correction of the present invention, special processing at the time of starting is not required, and simplification of the logic can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明におけるタイミングコントロールバルブ
duty演算フローを示す図である。
FIG. 2 is a diagram showing a timing control valve duty calculation flow in the present invention.

【図3】本発明における目標噴射時期演算フローを示す
図である。
FIG. 3 is a diagram showing a target injection timing calculation flow in the present invention.

【図4】本発明における始動時噴射時期補正量テーブル
例を示す図である。
FIG. 4 is a diagram showing an example of a startup injection timing correction amount table in the present invention.

【図5】本発明における噴射時期水温補正テーブル例を
示す図である。
FIG. 5 is a diagram showing an example of an injection timing water temperature correction table in the present invention.

【図6】本発明における目標噴射時期マップ例を示す図
である。
FIG. 6 is a diagram showing an example of a target injection timing map in the present invention.

【図7】本発明における実噴射時期演算フローを示す図
である。
FIG. 7 is a diagram showing an actual injection timing calculation flow in the present invention.

【図8】本発明における噴射時期検知遅れマップ例を示
す図である。
FIG. 8 is a diagram showing an example of an injection timing detection delay map in the present invention.

【図9】本発明における進み補正定数演算フローを示す
図である。
FIG. 9 is a diagram showing a flow of advance correction constant calculation in the present invention.

【図10】本発明におけるTCV進み補正時定数相当値
テーブル例を示す図である。
FIG. 10 is a diagram showing an example of a TCV advance correction time constant equivalent value table in the present invention.

【図11】本発明における進み補正定数演算フローを示
す図である。
FIG. 11 is a diagram showing a flow of advance correction constant calculation in the present invention.

【図12】本発明における進み補正定数演算フローを示
す図である。
FIG. 12 is a diagram showing an advance correction constant calculation flow in the present invention.

【図13】本発明における進み補正時定数相当値燃料温
度補正係数テーブル例を示す図である。
FIG. 13 is a diagram showing an example of a fuel temperature correction coefficient table corresponding to a lead correction time constant in the present invention.

【図14】本発明における進み補正ゲイン燃料温度補正
係数テーブル例を示す図である。
FIG. 14 is a diagram showing an example of a lead correction gain fuel temperature correction coefficient table in the present invention.

【図15】本発明におけるTCV進み補正処理フローを
示す図である。
FIG. 15 is a diagram showing a TCV advance correction processing flow in the present invention.

【図16】従来技術を示した説明図である。FIG. 16 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 運転状態検知手段 2 目標噴射時期設定手段 3 実噴射時期検知手段 4 検知遅れ量演算手段 5 実噴射時期演算手段 6 TCVduty演算手段 7 進みゲイン時定数設定手段 8 TCV制御手段 9 TCV駆動手段 DESCRIPTION OF SYMBOLS 1 Operating state detection means 2 Target injection timing setting means 3 Actual injection timing detection means 4 Detection delay amount calculation means 5 Actual injection timing calculation means 6 TCVduty calculation means 7 Advance gain time constant setting means 8 TCV control means 9 TCV drive means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 358 F02D 45/00 358F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F02D 45/00 358 F02D 45/00 358F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エンジン回転数、アクセル開度、燃温等
エンジン運転状態を検知する運転状態検知手段と、 該運転状態検知手段の出力から目標の噴射時期を設定す
る目標噴射時期設定手段と、 実際の噴射時期を検知する実噴射時期検知手段と、 実際の噴射時期の遅れ量を前記全ての手段に基づいて演
算する噴射時期遅れ量演算手段と、 該演算手段による演算結果に基づいて実際の噴射時期を
補正演算する噴射時期補正手段と、 該補正手段による補正信号の出力に基づいて出力する制
御基本値を演算する基本制御量演算手段と、 前記運転状態検知手段の出力から噴射時期制御バルブ制
御基本値の進み制御に使用する定数を設定する進み制御
定数設定手段と、 該進み制御定数設定手段の出力から進み補正を行ない最
終的な噴射時期制御バルブ制御値を演算する手段と、 該進み補正演算結果に基づいてバルブを駆動するバルブ
駆動手段と、からなることを特徴とする内燃機関の燃料
噴射時期制御装置。
1. An operating state detecting means for detecting an engine operating state such as an engine speed, an accelerator opening degree, a fuel temperature, and a target injection timing setting means for setting a target injection timing from an output of the operating state detecting means. An actual injection timing detection means for detecting the actual injection timing, an injection timing delay amount calculation means for calculating the actual injection timing delay amount based on all the above means, and an actual injection timing delay amount calculation means for calculating the actual injection timing delay amount based on the calculation results by the calculation means. An injection timing correction means for correcting the injection timing, a basic control amount calculation means for calculating a control basic value output based on the output of a correction signal by the correction means, and an injection timing control valve based on the output of the operating state detection means. Lead control constant setting means for setting a constant used for lead control of the control basic value, and a final injection timing control valve for performing lead correction from the output of the lead control constant setting means. Means for calculating a control value, 該進 viewed correction operation and valve driving means for driving the valve based on the result, the fuel injection timing control apparatus for an internal combustion engine, characterized in that it consists.
【請求項2】 進み制御定数設定手段に於て、アイドル
時には進み補正を禁止するまたは進み補正ゲインを小さ
くするような定数に設定することを特徴とする請求項1
に記載の内燃機関の燃料噴射時期制御装置。
2. The advance control constant setting means sets a constant such that advance correction is prohibited or advance correction gain is reduced at idle.
13. A fuel injection timing control device for an internal combustion engine according to claim 10.
【請求項3】 進み制御定数設定手段に於て、定常運転
時には進み補正を禁止、または進み補正ゲインを小さく
するような定数に設定することを特徴とする請求項1に
記載の内燃機関の燃料噴射時期制御装置。
3. The fuel for an internal combustion engine according to claim 1, wherein the advance control constant setting means sets a constant that inhibits advance correction or reduces the advance correction gain during steady operation. Injection timing control device.
【請求項4】 進み制御定数設定手段に於て、進み補正
定数を燃料温度により補正することを特徴とする請求項
1に記載の内燃機関の燃料噴射時期制御装置。
4. The fuel injection timing control device for an internal combustion engine according to claim 1, wherein the advance control constant setting means corrects the advance correction constant based on the fuel temperature.
【請求項5】 進み制御定数設定手段に於て、燃料温度
が低いほど進み補正ゲイン、及びまたは時定数を大きく
するように設定することを特徴とする請求項4に記載の
内燃機関の燃料噴射時期制御装置。
5. The fuel injection for an internal combustion engine according to claim 4, wherein the advance control constant setting means sets the advance correction gain and / or the time constant to be larger as the fuel temperature is lower. Timing control device.
JP13156496A 1996-05-27 1996-05-27 Fuel injection timing controller for internal combustion engine Pending JPH09317545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13156496A JPH09317545A (en) 1996-05-27 1996-05-27 Fuel injection timing controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13156496A JPH09317545A (en) 1996-05-27 1996-05-27 Fuel injection timing controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH09317545A true JPH09317545A (en) 1997-12-09

Family

ID=15061021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13156496A Pending JPH09317545A (en) 1996-05-27 1996-05-27 Fuel injection timing controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH09317545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236847A (en) * 1998-02-23 1999-08-31 Isuzu Motors Ltd Fuel injection device for engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236847A (en) * 1998-02-23 1999-08-31 Isuzu Motors Ltd Fuel injection device for engine

Similar Documents

Publication Publication Date Title
JPH03271544A (en) Control device of internal combustion engine
JPS6359019B2 (en)
JPH1068347A (en) Control device for cylinder fuel injection spark ignition type internal combustion engine
JP2000097073A (en) Control device of engine
JPS58192947A (en) Controlling method of internal-combustion engine
EP0924420B1 (en) Torque controller for internal combustion engine
JPH0551776B2 (en)
JPH09317545A (en) Fuel injection timing controller for internal combustion engine
JPH0119057B2 (en)
JPS61167134A (en) Controller for air-fuel ratio of engine
JP3063186B2 (en) Engine idling speed control system
JP2930256B2 (en) Engine throttle valve controller
JP2004124899A (en) Engine control equipment
JP4150097B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0353001Y2 (en)
JP2515493B2 (en) Internal combustion engine speed control method
JPH07310568A (en) Control device for engine
JP3453815B2 (en) Air-fuel ratio learning control device for internal combustion engine
JPH1068338A (en) Control device for cylinder fuel injection engine
JP2000027683A (en) Method for controlling inake-air volume in internal combustion engine
JP3075060B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0243900B2 (en) NAINENKIKANNOGAKUSHUSEIGYOSOCHI
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
JPS62271945A (en) Electronic control type fuel injection device for internal combustion engine
JPH1047149A (en) Fuel injection timing control device for internal combustion engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302

A521 Written amendment

Effective date: 20040426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040430

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050610