JPH09316678A - Method for recovering metal from spent nickel-cadmium secondary battery - Google Patents

Method for recovering metal from spent nickel-cadmium secondary battery

Info

Publication number
JPH09316678A
JPH09316678A JP13459596A JP13459596A JPH09316678A JP H09316678 A JPH09316678 A JP H09316678A JP 13459596 A JP13459596 A JP 13459596A JP 13459596 A JP13459596 A JP 13459596A JP H09316678 A JPH09316678 A JP H09316678A
Authority
JP
Japan
Prior art keywords
nickel
electrolytic solution
secondary battery
cobalt
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13459596A
Other languages
Japanese (ja)
Other versions
JP3111348B2 (en
Inventor
Norisada Arisawa
範貞 有澤
Akira Tsutsui
昭 筒井
Mutsuya Sato
睦弥 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Zinc Co Ltd
Toho Aen KK
Original Assignee
Toho Zinc Co Ltd
Toho Aen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Zinc Co Ltd, Toho Aen KK filed Critical Toho Zinc Co Ltd
Priority to JP13459596A priority Critical patent/JP3111348B2/en
Publication of JPH09316678A publication Critical patent/JPH09316678A/en
Application granted granted Critical
Publication of JP3111348B2 publication Critical patent/JP3111348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently recovering nickel and cobalt contained in the electrode plate of a spent nickel-cadmium secondary battery along with iron with a small number of stages. SOLUTION: A spent nickel-cadmium secondary battery is roasted, melted and cast, and the obtained metallic material is used as an anode and electrolyzed in an acidic electrolyte. A hydrochloric acid-acidified electrolyte, a sulfuric acid-acidified electrolyte or an electrolyte consisting of the mixture of hydrochloric acid and sulfuric acid is used as the acidic electrolyte. The electroyte contg. 0.3-1.0mol/L cobalt ion and controlled to pH 1.0-4.0 is used, electrolysis is conducted at 40-70 deg.C and 0.2-4.0A/dm<2> cathode current density to deposit a high-purity iron-nickel-cobalt alloy on the cathode, and the alloy is recovered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、廃ニッケル−カド
ミウム二次電池中に含まれる鉄、ニッケル及びコバルト
を電解処理によって回収する方法に関する。
TECHNICAL FIELD The present invention relates to a method for recovering iron, nickel and cobalt contained in a waste nickel-cadmium secondary battery by electrolytic treatment.

【0002】[0002]

【従来の技術】アルカリ電池として代表的な密閉型ニッ
ケル−カドミウム二次電池は、有孔鋼板を基板としてオ
キシ水酸化ニッケルを薄層態に付着させた正極とカドミ
ウム粉を薄層態に付着させた負極とを、電解液として水
酸化カリウムを含浸させた合成繊維の不織布を挟んで円
筒ロール型に巻いてあり、放電により正極は水酸化ニッ
ケルに、負極は水酸化カドミウムに転化する。この電池
は充電の際、過充電でオキシ水酸化ニッケルの性状が変
化し、膨張劣化することがあり、この防止のため、正極
には水酸化コバルトまたは金属コバルトを含有させてい
る。
2. Description of the Related Art A typical sealed alkaline nickel-cadmium secondary battery as an alkaline battery is one in which a positive electrode having nickel oxyhydroxide deposited in a thin layer and a cadmium powder deposited in a thin layer on a perforated steel plate as a substrate. The negative electrode is wound in a cylindrical roll type with a nonwoven fabric made of synthetic fiber impregnated with potassium hydroxide as an electrolytic solution sandwiched therebetween, and the positive electrode is converted to nickel hydroxide and the negative electrode is converted to cadmium hydroxide by discharge. When this battery is charged, the properties of nickel oxyhydroxide may change due to overcharging, resulting in expansion and deterioration. To prevent this, the positive electrode contains cobalt hydroxide or metallic cobalt.

【0003】従って、この廃ニッケル−カドミウム二次
電池には高価なコバルトやニッケルが含有されている。
これまで、この有価金属の回収処理法としては、この電
池を焙焼して、カドミウムや有機物類を分離除去し、残
部の鉄−ニッケル−コバルトを溶融して鋳塊とし、特殊
鋼等の合金元素添加材として利用するか、あるいはさら
に乾式精錬炉に投入してその合金成分を精製あるいは調
整する等の手段が考慮されている。
Therefore, this waste nickel-cadmium secondary battery contains expensive cobalt and nickel.
Up to now, this valuable metal has been collected and treated by roasting the battery to separate and remove cadmium and organic substances, and the remaining iron-nickel-cobalt is melted to form an ingot, which is an alloy such as special steel. Means such as utilizing as an element addition material, or further charging into a dry refining furnace to refine or adjust the alloy components thereof are considered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この鋳
塊における鉄−ニッケル−コバルト合金は不純物が多
く、また、成分にばらつきがあり、例えば、特殊鋼や特
殊合金等の原料としてはそのままでは殆ど利用できず、
乾式精錬炉による再精錬もまた複雑な処理になる等適切
な処理方法がなく、多くはそのままスクラップ材として
放置されている状況にある。
However, the iron-nickel-cobalt alloy in this ingot has a large amount of impurities, and the composition thereof varies. For example, it is almost used as it is as a raw material for special steels and special alloys. I can't
Re-refining with a dry smelting furnace is also a complicated process and there is no appropriate treatment method, and most of them are left as scrap materials.

【0005】本発明は、このような状況に鑑み、廃ニッ
ケル−カドミウム二次電池の電極に利用されている有用
なニッケルとコバルトを鉄と共に少ない工程で効率的に
且つ純度の高い状態で回収できる方法の提供を目的とす
るものである。
In view of the above situation, the present invention can efficiently recover nickel and cobalt, which are used in the electrodes of waste nickel-cadmium secondary batteries, together with iron in a highly purified state in a small number of steps. It is intended to provide a method.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、廃ニッケル−カドミウム二次電池を焙焼
し、溶融して鋳塊として得られる金属材を陽極とし、酸
性電解液を用いて電解処理し、陰極上に鉄−ニッケル−
コバルト合金を析出させて回収するところの廃ニッケル
−カドミウム二次電池からの金属回収法を、前記酸性電
解液は、1リットル当たり、0.3〜1.0モルの鉄イ
オンと0.15〜1.0モルのニッケルイオンと0.0
5〜0.5モルのコバルトイオンを含み、且つ、pH値
が1.0〜4.0であって、該酸性電解液の温度が40
〜70℃で、陰極電流密度が0.2〜4.0A/dm2
の条件で電解処理するところの廃ニッケル−カドミウム
二次電池からの金属回収法を、また、前記酸性電解液が
塩酸酸性電解液であるところの廃ニッケル−カドミウム
二次電池からの金属回収法を、あるいは、前記酸性電解
液が硫酸酸性電解液であるところの廃ニッケル−カドミ
ウム二次電池からの金属回収法を、あるいは、前記酸性
電解液が塩酸と硫酸による混酸酸性電解液であるところ
の廃ニッケル−カドミウム二次電池からの金属回収法を
提案するものである。
In order to achieve the above-mentioned object, the present invention is directed to the use of a metal material obtained by roasting and melting a waste nickel-cadmium secondary battery as an ingot and using an acidic electrolyte. Electrolytically using, iron-nickel-on the cathode
A method for recovering a metal from a waste nickel-cadmium secondary battery in which a cobalt alloy is deposited and recovered, wherein the acidic electrolytic solution contains 0.3 to 1.0 mol of iron ions and 0.15 to 0.15 mol of iron ions per liter. 1.0 mol nickel ion and 0.0
It contains 5 to 0.5 mol of cobalt ions, has a pH value of 1.0 to 4.0, and has a temperature of 40.
The cathode current density is 0.2 to 4.0 A / dm 2 at ˜70 ° C.
The method for recovering metal from a waste nickel-cadmium secondary battery in which electrolytic treatment is carried out under the conditions of, and the method for recovering metal from a waste nickel-cadmium secondary battery in which the acidic electrolyte is a hydrochloric acid acidic electrolyte. Alternatively, a method of recovering metal from a waste nickel-cadmium secondary battery when the acidic electrolyte is a sulfuric acid acidic electrolyte, or a waste when the acidic electrolyte is a mixed acid acidic electrolyte of hydrochloric acid and sulfuric acid It proposes a metal recovery method from a nickel-cadmium secondary battery.

【0007】[0007]

【発明の実施の形態】廃ニッケル−カドミウム二次電池
を焙焼してカドミウムや有機物類を分離除去した後、溶
融して鋳塊とすることにより、鉄とニッケルとコバルト
を濃縮的に合金状態で含有する金属材が得られる。陽極
としてこの溶融・鋳造による板状金属材を用い、電解液
として酸性液を用いることにより、電解処理において、
陽極における鉄とニッケルとコバルトの溶出がよく、不
純物を陽極スライムまたは電解液中に残存させた状態
で、鉄とニッケルとコバルトをさらに濃縮した高純度の
合金として陰極上に析出させることができる。この合金
を陰極から剥離して高純度合金材として、または、剥離
せず陰極と共に一体の合金材として回収することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A waste nickel-cadmium secondary battery is roasted to separate and remove cadmium and organic substances, and then melted to form an ingot, whereby iron, nickel and cobalt are concentrated in an alloy state. The metal material contained in is obtained. By using this plate-shaped metal material by melting and casting as the anode and using the acidic solution as the electrolytic solution, in the electrolytic treatment,
Iron, nickel and cobalt are well eluted at the anode, and in a state where impurities remain in the anode slime or the electrolytic solution, iron, nickel and cobalt can be deposited on the cathode as a high-purity alloy further concentrated. This alloy can be recovered from the cathode as a high-purity alloy material, or can be recovered as an integrated alloy material together with the cathode without separation.

【0008】1リットル当たり、0.3〜1.0モルの
鉄イオンと0.15〜1.0モルのニッケルイオンと
0.05〜0.5モルのコバルトイオンを含み、且つ、
pH値が1.0〜4.0の酸性電解液は、例えば、塩酸
酸性電解液の場合に塩化鉄と塩化ニッケルと塩化コバル
ト等の塩と塩酸溶液を用いる等の手段によって容易に調
製できる。さらに、電解液の温度を40〜70℃とし、
陰極電流密度を0.2〜4.0A/dm2 とすることに
より、陰極上に前記の高純度合金を析出させることがで
きる。陰極は酸性電解液に容易に溶出しない金属体であ
ればよい。
[0008] Each liter contains 0.3 to 1.0 mol of iron ions, 0.15 to 1.0 mol of nickel ions and 0.05 to 0.5 mol of cobalt ions, and
The acidic electrolytic solution having a pH value of 1.0 to 4.0 can be easily prepared, for example, in the case of a hydrochloric acid acidic electrolytic solution by using a salt such as iron chloride, nickel chloride and cobalt chloride, and a hydrochloric acid solution. Furthermore, the temperature of the electrolytic solution is set to 40 to 70 ° C.,
By setting the cathode current density to 0.2 to 4.0 A / dm 2 , the above high-purity alloy can be deposited on the cathode. The cathode may be a metal body that does not easily elute in the acidic electrolyte.

【0009】酸性電解液中に適量の鉄イオンとニッケル
イオンとコバルトイオンを存在させておくことにより、
陽極における鉄とニッケルとコバルトの溶出と電解液相
におけるイオンの移動が効率的に行われる。この場合、
1リットル当たり、鉄イオンが0.3モル未満、ニッケ
ルイオンが0.15モル未満、コバルトイオンが0.0
5モル未満であると、陰極における析出効率が低下す
る。また、1リットル当たり、鉄イオンが1.0モルを
越え、ニッケルイオンが1.0モルを越え、コバルトイ
オンが0.5モルを越えて、合計イオン量が2.5モル
以上になると電着不良となるので、良い製品が得られな
い。pH値が1.0未満であると、陰極への電着が不均
一になると共に電着物の不純物が多くなる。また、4.
0を越えると、陽極の溶出が悪く、電着に時間を要する
ようになる。
By allowing an appropriate amount of iron ions, nickel ions and cobalt ions to exist in the acidic electrolyte,
The elution of iron, nickel and cobalt at the anode and the movement of ions in the electrolyte phase are efficiently performed. in this case,
Iron ion is less than 0.3 mol, nickel ion is less than 0.15 mol, and cobalt ion is 0.0 per 1 liter.
If it is less than 5 mol, the deposition efficiency at the cathode will be reduced. Further, when the amount of iron ion exceeds 1.0 mol, the amount of nickel ion exceeds 1.0 mol, the amount of cobalt ion exceeds 0.5 mol, and the total amount of ions is 2.5 mol or more, the electrodeposition is performed. As it becomes defective, we cannot obtain a good product. When the pH value is less than 1.0, the electrodeposition on the cathode becomes non-uniform and the impurities in the electrodeposit increase. Also, 4.
When it exceeds 0, the elution of the anode is poor and it takes a long time for electrodeposition.

【0010】電解液の温度が40℃を下回ると陽極の溶
出が遅くなり、陰極における析出効率が悪くなる。70
℃を上回ると温度の維持にコストがかかり、経済的に好
ましくない。陰極電流密度が0.2A/dm2 未満であ
ると、陰極において水素ガスの発生が多くなり電流効率
が低下し、4.0A/dm2 を越えると、陰極での電着
性が不均一になり電流効率が悪くなる。
When the temperature of the electrolytic solution is lower than 40 ° C., the elution of the anode is delayed and the deposition efficiency at the cathode is deteriorated. 70
When the temperature exceeds ℃, it is costly to maintain the temperature, which is not economically preferable. When the cathode current density is less than 0.2 A / dm 2 , hydrogen gas is generated in the cathode so much that the current efficiency is lowered, and when it exceeds 4.0 A / dm 2 , the electrodeposition property at the cathode becomes uneven. Therefore, the current efficiency becomes poor.

【0011】電解液として酸性液を用いることにより陽
極における鉄とニッケルとコバルトの溶出が良好に行わ
れるが、特に、塩酸酸性電解液の場合は、一様に不純物
の混入が少なく、高純度合金が得られ易い。硫酸または
硫酸と塩酸との混酸による電解液を用いる場合、液管理
が比較的容易で、電解液としての経済性はよくなるが、
硫酸イオンの還元によるとみられる硫黄(S)が陰極に
析出するので、得られる鉄−ニッケル−コバルト合金は
不純物としての硫黄(S)が若干高くなる。
Iron, nickel and cobalt are satisfactorily eluted from the anode by using an acidic solution as an electrolytic solution. Particularly, in the case of a hydrochloric acid acidic electrolytic solution, impurities are uniformly mixed in a high purity alloy. Is easy to obtain. When using an electrolytic solution of sulfuric acid or a mixed acid of sulfuric acid and hydrochloric acid, the liquid management is relatively easy and the economical efficiency as an electrolytic solution is improved,
Sulfur (S), which is thought to be due to the reduction of sulfate ions, is deposited on the cathode, so that the obtained iron-nickel-cobalt alloy has a slightly higher amount of sulfur (S) as an impurity.

【0012】[0012]

【実施例】実施例1 廃ニッッケル−カドミウム二次電池を還元雰囲気におい
て約950℃の温度で焙焼し、カドミウムを蒸気体で分
離回収し、また有機物を焼却した後、残存物を溶融し、
鋳塊として、表1に鋳塊Aとして示した板状金属材を得
た。この板状金属材を陽極とし、略同様形状寸法のステ
ンレス鋼板を陰極とした。なお、電解槽には調整槽を付
属させ、組成とpHと液温度の調整を行い、電解液を循
環させるようにした。陽極にはカンバス製の袋を被せて
隔膜とした。
Example 1 A waste nickel-cadmium secondary battery was roasted in a reducing atmosphere at a temperature of about 950 ° C., cadmium was separated and recovered with a vapor, and organic matter was incinerated, and then the residue was melted,
As the ingot, the plate-shaped metal material shown as ingot A in Table 1 was obtained. This plate-shaped metal material was used as an anode, and a stainless steel plate having substantially the same shape and size was used as a cathode. An adjusting bath was attached to the electrolytic bath, and the composition, pH and liquid temperature were adjusted, and the electrolytic liquid was circulated. The anode was covered with a canvas bag to form a diaphragm.

【0013】[0013]

【表1】 [Table 1]

【0014】電解液として、塩酸とその鉄塩とニッケル
塩とコバルト塩による塩酸酸性液を使用し、鉄イオンが
0.5〜0.8モルとニッケルイオンが0.2〜0.5
モルとコバルトイオンが0.1〜0.25モルであっ
て、pH値が1.5〜3.5の範囲内に保持されるよう
に調整した。なお、電解液には、pH緩衝剤としてほう
酸を1モル添加してある。電解液の温度を50〜60℃
に保持し、陰極電流密度を0.3〜3.0A/dm2
して、7日間、電解処理した。
As the electrolytic solution, hydrochloric acid, an iron salt thereof, a nickel acid salt and a cobalt salt acid solution of hydrochloric acid are used, and the iron ion is 0.5 to 0.8 mol and the nickel ion is 0.2 to 0.5.
The mol and cobalt ions were 0.1 to 0.25 mol, and the pH value was adjusted to be maintained within the range of 1.5 to 3.5. In addition, 1 mol of boric acid was added to the electrolytic solution as a pH buffering agent. The temperature of the electrolyte is 50-60 ° C.
And the cathode current density was set to 0.3 to 3.0 A / dm 2 , and electrolysis was performed for 7 days.

【0015】電流効率は86〜92%で、電着状況は良
好で、陰極上に析出した電着物を剥離して、分析した結
果を表2に電着物aとして示したが、不純物の少ない、
高純度の鉄−ニッケル−コバルト合金を得ることができ
た。
The current efficiency was 86 to 92%, the electrodeposition was good, the electrodeposit deposited on the cathode was peeled off, and the analysis result is shown in Table 2 as electrodeposit a.
A high-purity iron-nickel-cobalt alloy could be obtained.

【0016】[0016]

【表2】 [Table 2]

【0017】電解液として、硫酸とその鉄塩とニッケル
塩とコバルト塩を用いた硫酸酸性液を調製したものを使
用し、前記と同一の陽極を使用し、その他の条件もすべ
て前記と同一として、電解処理した。電着後の電着物を
陰極から剥離して分析した結果を表2に電着物bとして
示した。電着状況は、不均一で、あまり良好ではない
が、電流効率は86〜92%と良好で、電着物として
は、不純物として若干硫黄(S)が高い以外は問題のな
い高純度の鉄−ニッケル−コバルト合金が得られ、廃ニ
ッケル−カドミウム二次電池からのニッケルとコバルト
の回収目的は十分に達成できた。
As the electrolytic solution, a sulfuric acid acidic solution prepared by using sulfuric acid, its iron salt, nickel salt and cobalt salt was used, the same anode as above was used, and all other conditions were the same as above. , Electrolytically treated. The electrodeposited material after electrodeposition was peeled from the cathode and analyzed, and the results are shown in Table 2 as electrodeposited material b. The electrodeposition condition is non-uniform and not very good, but the current efficiency is as good as 86 to 92%, and as the electrodeposit, there is no problem with high-purity iron-except that sulfur (S) is slightly high as an impurity. A nickel-cobalt alloy was obtained, and the purpose of recovering nickel and cobalt from a waste nickel-cadmium secondary battery was sufficiently achieved.

【0018】また、電解液として、塩酸イオンと硫酸イ
オンを1対1のモル比で混合した混合酸による酸性液を
用いた、鉄とニッケルとコバルトはそれぞれの塩で供給
し、前記と同一の陽極を使用し、その他の条件もすべて
前記と同一として、電解処理した。電着物を陰極から剥
離して分析した結果を表2に電着物cとして併記した。
電流効率は86〜92%と良好で、電着状況も良好であ
った。電着物としては、硫酸イオンの還元によるものと
思われるが硫黄(S)が若干高い。その他の不純物は少
なく純度の高い鉄−ニッケル−コバルト合金が得られ
た。
Further, as the electrolytic solution, an acidic solution of mixed acid in which hydrochloric acid ion and sulfuric acid ion are mixed at a molar ratio of 1: 1 is used. Iron, nickel and cobalt are supplied by respective salts, and the same as above. Electrolysis was carried out using the anode and the other conditions being the same as above. The result of peeling off the electrodeposit from the cathode and analyzing it is also shown in Table 2 as electrodeposit c.
The current efficiency was as good as 86 to 92%, and the electrodeposition condition was also good. It is considered that the electrodeposit is due to the reduction of sulfate ion, but sulfur (S) is slightly high. A highly pure iron-nickel-cobalt alloy containing few other impurities was obtained.

【0019】実施例2 廃ニッケル−カドミウム二次電池を、約900℃の温度
で焙焼してカドミウムと有機物を分離した後、溶融し、
鋳塊として、表1に鋳塊Bとして併記した板状金属材を
得、この板状金属材を陽極とし、塩酸酸性電解液と硫酸
酸性電解液と塩酸硫酸の混酸酸性電解液による電解処理
を行った。そして、実施例1の場合と同様に、陰極とし
て、同一形状寸法のステンレス鋼を用い、また、電解液
調整槽を設けて電解液の成分と液温度とpHとを調整し
て電解槽に循環させる構成等についても同一とした。
Example 2 A waste nickel-cadmium secondary battery was roasted at a temperature of about 900 ° C. to separate cadmium and organic matter and then melted,
As the ingot, a plate-shaped metal material described in Table 1 as ingot B was obtained, and the plate-shaped metal material was used as an anode, and electrolytic treatment was performed with a mixed acid acidic electrolyte solution of hydrochloric acid acidic electrolytic solution, sulfuric acid acidic electrolytic solution, and hydrochloric acid-sulfuric acid. went. Then, as in the case of Example 1, stainless steel having the same shape and size was used as the cathode, and an electrolytic solution adjusting tank was provided to adjust the components of the electrolytic solution, the solution temperature and the pH, and circulate the solution in the electrolytic tank. The same applies to the configuration and the like.

【0020】電解液として、先ず塩酸とその鉄塩とニッ
ケル塩とコバルト塩を用いて、塩酸酸性電解液を調製し
た。即ち、鉄イオンを0.40〜0.70モル、ニッケ
ルイオンを0.30〜0.65モル、コバルトイオンを
0.10〜0.30モル含み、pH緩衝剤としてほう酸
を1モル含み、pH値が1.5〜3.5になるように、
調製して循環させた。電解液の温度は50〜60℃で陰
極電流密度を0.5〜3.5A/dm2 として7日間電
解処理した。
As the electrolytic solution, first, hydrochloric acid, its iron salt, nickel salt and cobalt salt were used to prepare a hydrochloric acid acidic electrolytic solution. That is, 0.40 to 0.70 mol of iron ions, 0.30 to 0.65 mol of nickel ions, 0.10 to 0.30 mol of cobalt ions, 1 mol of boric acid as a pH buffer, and pH So that the value is between 1.5 and 3.5,
Prepared and circulated. The temperature of the electrolytic solution was 50 to 60 ° C., and the cathode current density was 0.5 to 3.5 A / dm 2 , and the electrolytic treatment was carried out for 7 days.

【0021】電流効率は86〜92%で、電着状況は良
好であった。陰極から剥離させた電着物の品位を表3に
電着物dとして示した。不純物も少ない高純度鉄−ニッ
ケル−コバルト合金が得られた。
The current efficiency was 86 to 92%, and the electrodeposition condition was good. The quality of the electrodeposit separated from the cathode is shown in Table 3 as electrodeposit d. A high-purity iron-nickel-cobalt alloy containing few impurities was obtained.

【0022】[0022]

【表3】 [Table 3]

【0023】次に、電解液として、硫酸とその塩によ
り、前記塩酸酸性電解液と同様のモル濃度の鉄とニッケ
ルとコバルト及びほう酸を含み、且つ、同様のpH値の
硫酸酸性電解液を調製した。また、その他の条件も同様
として7日間の電解処理を行った。陰極から電着物を剥
離して分析した結果を表3に電着物eとして併記した。
電流効率は同じく86〜92%であったが、電着性に不
均一がみられ、電着はあまり良好ではなかった。しか
し、品位としては、硫黄(S)が若干高い以外は不純物
の少ない高純度鉄−ニッケル−コバルト合金が得られ
た。
Next, sulfuric acid and its salt are used as an electrolytic solution to prepare a sulfuric acid acidic electrolytic solution containing iron, nickel, cobalt and boric acid in the same molar concentration as the hydrochloric acid acidic electrolytic solution and having the same pH value. did. The other conditions were the same, and electrolytic treatment was performed for 7 days. The result of analysis by peeling the electrodeposit from the cathode is shown in Table 3 as electrodeposit e.
The current efficiency was also 86 to 92%, but the electrodeposition property was not uniform and the electrodeposition was not very good. However, as for the quality, a high-purity iron-nickel-cobalt alloy containing a small amount of impurities except that the content of sulfur (S) was slightly high was obtained.

【0024】電解液として塩酸と硫酸が1対1のモル比
の混酸による混合酸酸性電解液を調製した。即ち、混酸
とそれぞれの塩により、上記の塩酸酸性電解液等と同様
モル濃度の鉄イオンとニッケルイオンとコバルトイオン
とほう酸を含み、且つ、同様のpH値範囲に保持するよ
うにした。その他の電解条件も同一として、7日間の電
解処理を行った。電解処理後、陰極から剥離した電着物
を分析し、その品位を表3に電着物fとして併記した。
電流密度は86〜92%で、硫黄(S)が若干高い以外
は、不純物の少ない高純度の鉄−ニッケル−コバルト合
金が得られた。
As the electrolytic solution, a mixed acid acidic electrolytic solution was prepared using a mixed acid of hydrochloric acid and sulfuric acid in a molar ratio of 1: 1. That is, the mixed acid and each salt were made to contain iron ions, nickel ions, cobalt ions and boric acid in the same molar concentrations as in the above hydrochloric acid acidic electrolytic solution and to maintain the same pH value range. The other electrolysis conditions were the same, and electrolysis was performed for 7 days. After the electrolytic treatment, the electrodeposit separated from the cathode was analyzed, and the quality thereof is also shown in Table 3 as electrodeposit f.
The current density was 86 to 92%, and a high-purity iron-nickel-cobalt alloy containing few impurities was obtained except that sulfur (S) was slightly high.

【0025】回収された鉄−ニッケル−コバルト合金
は、純度が高く、これを合金鉄(フェロアロイ)とし
て、例えば、特殊鋼用添加材として直接製造炉に投入す
ることもでき、また、各種用途のために合金炉において
成分調整することも容易に行えるものである。
The recovered iron-nickel-cobalt alloy has a high purity, and it can be directly charged into a manufacturing furnace as an alloy iron (ferroalloy), for example, as an additive material for special steel, and can be used for various purposes. Therefore, the composition can be easily adjusted in the alloy furnace.

【0026】[0026]

【発明の効果】本発明によれば、廃ニッケル−カドミウ
ム二次電池に含有されている有用なニッケルとコバルト
を鉄と共に少ない工程で、効率的に純度の高い鉄との合
金体で回収することができるという効果を奏する。鉄イ
オンとニッケルイオンとコバルトイオンを適切なモル濃
度で含み、酸性液で所定のpH値を維持し、液温と陰極
電流密度条件に適切な範囲に管理することにより、特に
効率的に高純度の鉄−ニッケル−コバルト合金体が得ら
れる。さらに、電解液として、塩酸酸性電解液を用いる
ことにより、不純物の少ない高純度の鉄−ニッケル−コ
バルト合金体を得ることができる。硫酸酸性電解液を用
いることにより液が安価で取扱いが容易になるので、特
に不純物としての硫黄の存在が問題にならない場合に利
用できる。塩酸と硫酸との混酸酸性電解液を用いる場
合、塩酸酸性電解液と硫酸酸性電解液との中間としての
利点を有し、適宜選択的に利用することができる。
According to the present invention, useful nickel and cobalt contained in a spent nickel-cadmium secondary battery can be efficiently recovered in an alloy body with high purity iron in a small number of steps together with iron. There is an effect that can be. It contains iron ions, nickel ions, and cobalt ions in an appropriate molar concentration, maintains a predetermined pH value with an acidic solution, and manages it within an appropriate range for the solution temperature and the cathode current density conditions, resulting in particularly high purity. The iron-nickel-cobalt alloy body of is obtained. Furthermore, by using a hydrochloric acid acidic electrolytic solution as the electrolytic solution, a high-purity iron-nickel-cobalt alloy body containing few impurities can be obtained. By using a sulfuric acid acidic electrolyte, the liquid is inexpensive and easy to handle, and therefore it can be used especially when the presence of sulfur as an impurity does not pose a problem. When a mixed acid acidic electrolytic solution of hydrochloric acid and sulfuric acid is used, it has an advantage as an intermediate between the hydrochloric acid acidic electrolytic solution and the sulfuric acid acidic electrolytic solution, and can be selectively used as appropriate.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】廃ニッケル−カドミウム二次電池を焙焼
し、溶融して得られる金属材を陽極とし、酸性電解液を
用いて電解処理し、陰極上に鉄−ニッケル−コバルト合
金を析出させて回収することを特徴とする廃ニッケル−
カドミウム二次電池からの金属回収法。
1. A metal material obtained by roasting and melting a waste nickel-cadmium secondary battery is used as an anode and subjected to electrolytic treatment using an acidic electrolytic solution to deposit an iron-nickel-cobalt alloy on the cathode. Waste nickel characterized by being recovered by
Metal recovery method from cadmium secondary battery.
【請求項2】前記酸性電解液は、1リットル当たり、
0.3〜1.0モルの鉄イオンと0.15〜1.0モル
のニッケルイオンと0.05〜0.5モルのコバルトイ
オンを含み、且つ、pH値が 1.0〜4.0であっ
て、該酸性電解液の温度が40〜70℃で、陰極電流密
度が0.2〜4.0A/dm2 の条件で電解処理するこ
とを特徴とする請求項1記載の廃ニッケル−カドミウム
二次電池からの金属回収法。
2. The acid electrolyte per liter,
It contains 0.3 to 1.0 mol of iron ions, 0.15 to 1.0 mol of nickel ions, and 0.05 to 0.5 mol of cobalt ions, and has a pH value of 1.0 to 4.0. 2. The waste nickel according to claim 1, wherein the acidic electrolytic solution is subjected to electrolytic treatment under the conditions of a temperature of 40 to 70 ° C. and a cathode current density of 0.2 to 4.0 A / dm 2. Metal recovery method from cadmium secondary battery.
【請求項3】前記酸性電解液は塩酸酸性電解液であるこ
とを特徴とする請求項1又は2記載の廃ニッケル−カド
ミウム二次電池からの金属回収法。
3. The method for recovering metal from a waste nickel-cadmium secondary battery according to claim 1, wherein the acidic electrolytic solution is a hydrochloric acid acidic electrolytic solution.
【請求項4】前記酸性電解液は硫酸酸性電解液であるこ
とを特徴とする請求項1又は2記載の廃ニッケル−カド
ミウム二次電池からの金属回収法。
4. The method for recovering a metal from a waste nickel-cadmium secondary battery according to claim 1, wherein the acidic electrolytic solution is a sulfuric acid acidic electrolytic solution.
【請求項5】前記酸性電解液は塩酸と硫酸による混酸酸
性電解液であることを特徴とする請求項1又は2記載の
廃ニッケル−カドミウム二次電池からの金属回収法。
5. The method for recovering metal from a waste nickel-cadmium secondary battery according to claim 1, wherein the acidic electrolytic solution is a mixed acid acidic electrolytic solution containing hydrochloric acid and sulfuric acid.
JP13459596A 1996-05-29 1996-05-29 Metal recovery from waste nickel-cadmium secondary battery Expired - Fee Related JP3111348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13459596A JP3111348B2 (en) 1996-05-29 1996-05-29 Metal recovery from waste nickel-cadmium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13459596A JP3111348B2 (en) 1996-05-29 1996-05-29 Metal recovery from waste nickel-cadmium secondary battery

Publications (2)

Publication Number Publication Date
JPH09316678A true JPH09316678A (en) 1997-12-09
JP3111348B2 JP3111348B2 (en) 2000-11-20

Family

ID=15132068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13459596A Expired - Fee Related JP3111348B2 (en) 1996-05-29 1996-05-29 Metal recovery from waste nickel-cadmium secondary battery

Country Status (1)

Country Link
JP (1) JP3111348B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111693A1 (en) * 2011-02-18 2012-08-23 住友金属鉱山株式会社 Valuable metal recovery method
JP2012172175A (en) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd Valuable metal recovery method
WO2012140951A1 (en) * 2011-04-15 2012-10-18 住友金属鉱山株式会社 Method for recovering valuable metals
JP2012224877A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
CN103103354A (en) * 2011-11-13 2013-05-15 深圳市环境友好金属材料工程技术研究开发中心 Production method for circularly recovering ultrafine nickel powder from shadow mask of discarded CRT (Cathode Ray Tube) screen
US10294546B2 (en) 2011-11-28 2019-05-21 Sumitomo Metal Mining Co., Ltd. Method for recovering valuable metal
CN114204152A (en) * 2021-12-16 2022-03-18 恩施市致纯电子材料有限公司 Recovery process of waste ternary lithium ion battery anode material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111693A1 (en) * 2011-02-18 2012-08-23 住友金属鉱山株式会社 Valuable metal recovery method
JP2012172175A (en) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd Valuable metal recovery method
US9212406B2 (en) 2011-02-18 2015-12-15 Sumitomo Metal Mining Co., Ltd. Valuable metal recovery method
WO2012140951A1 (en) * 2011-04-15 2012-10-18 住友金属鉱山株式会社 Method for recovering valuable metals
JP2012224877A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
JP2012224876A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal
US9203126B2 (en) 2011-04-15 2015-12-01 Sumitomo Metal Mining Co., Ltd. Method for recovering valuable metals
CN103103354A (en) * 2011-11-13 2013-05-15 深圳市环境友好金属材料工程技术研究开发中心 Production method for circularly recovering ultrafine nickel powder from shadow mask of discarded CRT (Cathode Ray Tube) screen
CN103103354B (en) * 2011-11-13 2014-08-27 深圳市环境友好金属材料工程技术研究开发中心 Production method for circularly recovering ultrafine nickel powder from shadow mask of discarded CRT (Cathode Ray Tube) screen
US10294546B2 (en) 2011-11-28 2019-05-21 Sumitomo Metal Mining Co., Ltd. Method for recovering valuable metal
CN114204152A (en) * 2021-12-16 2022-03-18 恩施市致纯电子材料有限公司 Recovery process of waste ternary lithium ion battery anode material

Also Published As

Publication number Publication date
JP3111348B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
US4533442A (en) Lithium metal/alloy recovery from multi-component molten salt
CN108456787A (en) A kind of method that crude nickle sulphate refines valuable element synthetical recovery
CN101974765A (en) Comprehensive method for separating stibium from materials containing stibium, tin and lead
NO772810L (en) PROCEDURES FOR RECYCLING ZINC AND MANGANDICOXIDE
US1911604A (en) Electrolytic process for the recovery of lead from waste materials
CN109680301A (en) A kind of electrolytic zinc anode plate and preparation method thereof
Moskalyk et al. Anode effects in electrowinning
JP3111348B2 (en) Metal recovery from waste nickel-cadmium secondary battery
Das et al. Electrowinning of cobalt I. Winning from pure cobalt sulphate bath
AU662060B2 (en) Process for the direct electrochemical refining of copper scrap
US2320773A (en) Electrodeposition of manganese
CN101054686A (en) Process for purifying zinc from casting zinc residue
US2742415A (en) Electrodeposition of arsenic from acid electrolytes
AU663798B2 (en) Process for continuous electrochemical lead refining
US2839461A (en) Electrolytic recovery of nickel
US3755112A (en) Electrowinning of copper
JPS6350411B2 (en)
CA1075195A (en) Arsenic removal from electrolytes
US2966407A (en) Electrolytic recovery of nickel
FI59124C (en) ELEKTROLYTISK PROSESS FOER ELEKTROLYTISK UTFAELLNING AV METALLER
JP3504813B2 (en) Method for recovering valuable metals from nickel-metal hydride secondary batteries
Mantell Electrodeposition of powders for powder metallurgy
JP3151195B2 (en) Cobalt purification method
JPH09176887A (en) Electrorefining method of copper
US2225904A (en) Lead oxide and electrolytic process of forming the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees