JPH09316471A - Production of coal fuel molding - Google Patents

Production of coal fuel molding

Info

Publication number
JPH09316471A
JPH09316471A JP15334796A JP15334796A JPH09316471A JP H09316471 A JPH09316471 A JP H09316471A JP 15334796 A JP15334796 A JP 15334796A JP 15334796 A JP15334796 A JP 15334796A JP H09316471 A JPH09316471 A JP H09316471A
Authority
JP
Japan
Prior art keywords
coal
molding
molded body
reformed
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15334796A
Other languages
Japanese (ja)
Other versions
JP3774263B2 (en
Inventor
Manabu Shimamura
学 島村
Nobuhiro Iwakura
暢宏 岩倉
Masao Tsurui
雅夫 鶴井
Kazuhiro Shibata
和博 柴田
Hitoshi Ogawa
仁 小川
Masayuki Yui
雅之 油井
Shinji Takano
伸司 高野
Hideaki Okada
英明 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON COM KK
JGC Corp
Original Assignee
NIPPON COM KK
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON COM KK, JGC Corp filed Critical NIPPON COM KK
Priority to JP15334796A priority Critical patent/JP3774263B2/en
Publication of JPH09316471A publication Critical patent/JPH09316471A/en
Application granted granted Critical
Publication of JP3774263B2 publication Critical patent/JP3774263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing coal fuel molding capable of lowering characteristic water content and suppressing collapse of shape and spontaneous ignition. SOLUTION: Low-grade coal is ground into <=1000×m particle diameter by a wet type grinder 14 to afford ground coal, and water in slurry containing the ground coal is heated through a preheater 21 and a heater 22 to over-heated water of >=270 deg.C and the slurry is subjected to hot water treatment at the same temperature for >=5min to convert the ground coat into modified coal. Then, the modified coal is separated by a dehydrator 31 and dried by a drier 32 and compressed under 2 ton/cm<2> pressure by a molding machine 42 to afford a coal fuel molding. Since pores of raw coal are made to collapse and characteristic water content as well as hygroscopic property are lowered by modification, a molding obtained from the modified coal has characteristic low water content and hardly causes collapse of shape and since the specific surface area of the molding is small, the molding hardly causes spontaneous ignition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石炭燃料成型体の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a coal fuel molded body.

【0002】[0002]

【従来の技術】石炭採掘場において採掘される、例えば
褐炭、亜瀝青炭、亜炭等の低品位炭は、内部に多数の細
孔を有すると共に、表面に吸湿性のカルボキシル基や水
酸基を有しているため、間隙水を含めて含水量が25〜
65重量%と多く、発熱量が小さいため燃料としては不
利である。さらに引火温度が低いと共に、細孔により比
表面積が大きいため、風化や輸送中の形状変化等により
自然発火しやすく、輸送や貯蔵が困難である。このため
従来より輸送時のハンドリング性を向上させる方法(特
開昭56−2394号)や、自然発火性を抑える方法
(特開平2−298586号)が提案されている。
2. Description of the Related Art Low grade coal, such as lignite, subbituminous coal and lignite, which is mined in a coal mining field, has a large number of pores inside and has hygroscopic carboxyl groups and hydroxyl groups on the surface. Therefore, the water content including pore water is 25 ~
Since it is as large as 65% by weight and the calorific value is small, it is disadvantageous as a fuel. Furthermore, since the ignition temperature is low and the specific surface area is large due to the pores, it is easy to spontaneously ignite due to weathering or a change in shape during transportation, which makes transportation and storage difficult. Therefore, conventionally, a method of improving handling property during transportation (JP-A-56-2394) and a method of suppressing spontaneous ignition (JP-A-2-298586) have been proposed.

【0003】このうち前者は、採掘された褐炭をスラリ
−化し、採掘場から集積場へは水スラリ−の状態で輸送
し、次いで脱水処理を行なった後造粒して脱水乾燥さ
せ、集積場から先は造粒球状物の状態で輸送することに
より、風化による自然発火、乾燥による塵の発生や飛散
等を抑え、輸送時のハンドリング性を向上させるもので
ある。
Of these, the former converts the mined brown coal into a slurry, transports it from the mining site to the collection site in the form of a water slurry, and then dehydrates it, granulates it, dehydrates and dries it, and collects it. By transporting the granules in the form of granulated spheres, spontaneous ignition due to weathering, dust generation and scattering due to drying, etc. are suppressed, and the handling property during transportation is improved.

【0004】また後者は、粉砕後の粒状炭を炭種に応じ
た含水量にまで乾燥させて乾燥石炭を生成し、その後蒸
発により乾燥石炭から所望の熱量を取り去る量の水を乾
燥石炭に噴霧し、この噴霧した水を蒸発させることによ
り前記乾燥石炭を冷却する方法であり、この方法により
得られる粒状炭は自然発火性がかなり抑えられる。
In the latter, the granular coal after pulverization is dried to a water content according to the type of coal to produce dry coal, and then water is sprayed onto the dry coal in an amount to remove a desired amount of heat from the dry coal by evaporation. However, the dry coal is cooled by evaporating the sprayed water, and the spontaneous combustion of the granular coal obtained by this method is considerably suppressed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述の方
法では、乾燥させて含水量を低下させているものの、乾
燥だけでは固有水分や表面のカルボキシル基等を取り除
くことは困難であるため、含水量は依然として多い。ま
た輸送中や貯蔵中に吸湿して形状崩壊したり風化するこ
とがあり、これらが原因となって自然発火を起こすこと
もあった。
However, in the above-mentioned method, although the water content is reduced by drying, it is difficult to remove the intrinsic water content and the carboxyl groups on the surface by only drying, and therefore the water content is reduced. Still many. Further, during transportation or storage, moisture may be absorbed to cause shape collapse or weathering, which may cause spontaneous ignition.

【0006】本発明はこのような事情の下になされたも
のであり、その目的は、含水量を低下させると共に、形
状崩壊や自然発火を抑えた石炭燃料成型体を製造する方
法を提供することにある。
The present invention has been made under such circumstances, and an object thereof is to provide a method for producing a coal fuel molded body which reduces the water content and suppresses shape collapse and spontaneous combustion. It is in.

【0007】[0007]

【発明を解決するための手段】請求項1の発明は、低品
位炭を湿式粉砕して、粒径1000μm以下の粉砕炭を
得る工程と、前記粉砕炭を270℃以上の熱水と接触さ
せて改質炭を得る工程と、前記改質炭を乾燥する工程
と、乾燥した改質炭を圧縮して石炭燃料成型体を得る工
程と、を含むことを特徴とする。
According to the invention of claim 1, a step of wet pulverizing low-grade coal to obtain pulverized coal having a particle size of 1000 μm or less, and contacting the pulverized coal with hot water of 270 ° C. or more. And a step of drying the reformed carbon, and a step of compressing the dried reformed carbon to obtain a coal fuel molded body.

【0008】請求項2の発明は、請求項1記載の発明に
おいて、乾燥した改質炭に木粉を混合してから圧縮して
石炭燃料成型体を得ることを特徴とする。請求項3の発
明は、請求項1記載の発明において、粉砕炭を熱水と接
触させる時間は5分以上であることを特徴とする。請求
項4の発明は、請求項1又は3記載の発明において、乾
燥した改質炭を圧縮する際の圧力は2トン/cm2 以上
であることを特徴とする。請求項5の発明は、請求項2
記載の発明において、木粉を混合した乾燥した改質炭を
圧縮する際の圧力は2トン/cm2 以上であることを特
徴とする。
A second aspect of the present invention is characterized in that, in the first aspect of the present invention, dry reformed coal is mixed with wood powder and then compressed to obtain a coal fuel molded body. The invention of claim 3 is characterized in that, in the invention of claim 1, the time for contacting the crushed coal with hot water is 5 minutes or more. The invention of claim 4 is characterized in that, in the invention of claim 1 or 3, the pressure when compressing the dried reformed carbon is 2 ton / cm 2 or more. The invention of claim 5 relates to claim 2
In the invention described above, the pressure at the time of compressing the dry modified coal mixed with wood flour is 2 ton / cm 2 or more.

【0009】[0009]

【発明の実施の形態】以下本発明の実施の形態について
説明する。図1は本発明方法を実施する石炭燃料成型体
の製造装置の一形態を示す構成図である。図中14は湿
式粉砕機であり、この上流側には粗砕機12、フィ−ダ
11aを介してホッパ11が設けられると共に、貯水槽
13が設けられている。また湿式粉砕機14の下流側に
は粉砕スラリ−貯槽15を介して供給スラリ−貯槽16
が設けられている。この供給スラリ−貯槽16の下流側
には予熱器21、加熱器22を介して改質反応器23が
設けられており、改質反応器23の下流側には冷却器2
4、圧力調整部25、改質炭スラリ−貯槽26を介して
脱水機31が設けられている。脱水機31で分離された
排水51は廃棄される。脱水機31の下流側には乾燥機
32が設けられ、その下流側には例えば改質炭貯槽3
3、ホッパ41、フィ−ダ41aを介して成型機42が
設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram showing an embodiment of an apparatus for producing a coal fuel molded body for carrying out the method of the present invention. Reference numeral 14 in the drawing denotes a wet crusher, and a hopper 11 and a water storage tank 13 are provided on the upstream side of the wet crusher via a coarse crusher 12 and a feeder 11a. Further, a slurry slurry storage tank 16 is provided downstream of the wet crusher 14 via a grinding slurry storage tank 15.
Is provided. A reforming reactor 23 is provided downstream of the supply slurry storage tank 16 via a preheater 21 and a heater 22, and a cooler 2 is provided downstream of the reforming reactor 23.
A dehydrator 31 is provided through the pressure adjusting unit 25, the pressure adjusting unit 25, and the reformed carbon slurry storage tank 26. The wastewater 51 separated by the dehydrator 31 is discarded. A dryer 32 is provided downstream of the dehydrator 31 and, for example, the reformed coal storage tank 3 is provided downstream thereof.
A molding machine 42 is provided via 3, the hopper 41, and the feeder 41a.

【0010】このような石炭燃料成型体の製造装置で
は、先ずホッパ11からフィ−ダ11aを介して粗砕機
12に低品位炭例えば、褐炭、亜瀝青炭、亜炭等を投入
して、粗粉砕する。ここで前記低品位炭は例えば17%
程度の固有水分を有する。続いて粗粉砕された低品位炭
を貯水槽3からの水と共に湿式粉砕機14に投入して湿
式粉砕し、粒径1000μm以下の粉砕炭とする。
In such an apparatus for producing a coal fuel molded body, first, low-grade coal such as brown coal, subbituminous coal, lignite and the like is charged from the hopper 11 to the coarse crusher 12 through the feeder 11a and coarsely pulverized. . Here, the low-grade coal is, for example, 17%
It has a degree of inherent moisture. Subsequently, the coarsely crushed low-grade coal is put into the wet crusher 14 together with the water from the water storage tank 3 and wet crushed to obtain crushed coal having a particle size of 1000 μm or less.

【0011】次いで粉砕炭を含む粉砕スラリ−を粉砕ス
ラリ−貯槽15に貯留する。この後例えばスラリ−濃度
25重量%の粉砕スラリ−を粉砕スラリ−貯槽15から
供給スラリ−貯槽16に送り、予熱器21にて例えば1
50℃程度に予熱した後、加熱器22にて例えば270
℃程度に加熱しながら改質反応器23に送り、例えば2
70℃以上に5分以上加熱することにより、スラリ−中
の粉砕炭をスラリ−中の270℃以上の熱水とを接触さ
せる(熱水処理)。
Next, the crushed slurry containing crushed carbon is stored in the crushed slurry storage tank 15. Thereafter, for example, a crushed slurry having a slurry concentration of 25% by weight is sent from the crushed slurry storage tank 15 to the supply slurry storage tank 16 and is fed to the preheater 21 at, for example, 1
After preheating to about 50 ° C., with the heater 22, for example, 270
It is sent to the reforming reactor 23 while being heated to about ℃, for example, 2
The pulverized coal in the slurry is brought into contact with hot water at 270 ° C. or higher in the slurry by heating to 70 ° C. or higher for 5 minutes or longer (hot water treatment).

【0012】ここで改質反応器23内は熱水の温度が高
温であるため高圧とする。また改質反応器23は温度維
持のため熱媒トレ−スを施してある。従って高温高圧状
態下でスラリ−中の粉砕炭の間隔水と固有水分の一部が
除去されると共に、その細孔が潰され、さらに表面のカ
ルボキシル基や水酸基の一部が除去されて、粉砕炭は改
質炭に改質される。また粉砕炭のワックス分が改質炭の
冷却時に表面近くにしみ出て疎水性になる。つまり粉砕
炭が不可逆的脱水されたことになる。
Since the temperature of the hot water is high in the reforming reactor 23, the pressure is high. The reforming reactor 23 is provided with a heat medium trace for maintaining the temperature. Therefore, under high-temperature and high-pressure conditions, part of the interstitial water and inherent water of the crushed coal in the slurry is removed, the pores are crushed, and further some of the carboxyl groups and hydroxyl groups on the surface are removed, and crushed. The charcoal is reformed into reformed charcoal. In addition, the wax content of the crushed charcoal exudes near the surface during cooling of the reformed charcoal and becomes hydrophobic. In other words, the crushed coal is irreversibly dehydrated.

【0013】続いて得られた改質炭を含む改質炭スラリ
−を冷却器24に送り、例えば90℃程度まで冷却した
後、圧力調整部25にて一旦圧力を下げ、気液分離して
から改質炭スラリ−貯槽26に送って、ここに貯留す
る。次いで改質炭スラリ−を脱水機31に送り、ここで
水と改質炭とを分離した後、改質炭のみを乾燥機32に
送り、ここで乾燥する。このように乾燥した改質炭を一
旦改質炭貯槽33に貯留した後、ホッパ41、フィ−ダ
41aを介して成型機42に投入し、ここで例えば2ト
ン/cm2 の圧力で圧縮することにより、所定の形状例
えばア−モンド型に成型し、石炭燃料成型体を得る。
Subsequently, the reformed carbon slurry containing the obtained reformed coal is sent to a cooler 24, cooled to, for example, about 90 ° C., and then the pressure is temporarily reduced by a pressure adjusting unit 25 to separate gas and liquid. From the modified coal slurry to the storage tank 26 and stored there. Next, the reformed coal slurry is sent to the dehydrator 31, where water and the reformed coal are separated, and then only the reformed coal is sent to the dryer 32 and dried there. The dried reformed carbon is stored once in the reformed coal storage tank 33 and then charged into the molding machine 42 through the hopper 41 and the feeder 41a, where it is compressed at a pressure of 2 ton / cm 2 , for example. As a result, it is molded into a predetermined shape, for example, an almond shape, and a coal fuel molded body is obtained.

【0014】以上において粉砕炭の粒径は1000μm
以下とすることが望ましい。粒径が1000μmより大
きいと、粉砕炭の固有水分は除去することができるが、
熱水処理反応が十分に進行しないため、粉砕炭を十分に
改質することができず、この結果粉砕炭中に成型後の形
状変化に悪影響を及ぼす物質が残留している可能性が大
きくなるからである。
In the above, the particle size of the crushed coal is 1000 μm
It is desirable to make the following. If the particle size is larger than 1000 μm, the intrinsic water content of the crushed charcoal can be removed,
Since the hydrothermal treatment reaction does not proceed sufficiently, the crushed coal cannot be sufficiently modified, and as a result, there is a high possibility that substances that adversely affect the shape change after molding remain in the crushed coal. Because.

【0015】また熱水処理の熱水の温度は270℃以上
であることが望ましい。温度が270℃より低いと粉砕
炭の固有水分の除去が不十分になるからである。さらに
熱水処理の処理時間は5分以上とすることが望ましい。
処理時間が5分より少ないと固有水分があまり除去され
ないからである。さらにまた成型時の圧力は2トン/c
2 以上とすることが望ましい。圧力が2トン/cm2
より小さいと圧壊強度や落下に対する強度が小さくなる
からである。なおこれらの条件は後述する実施例の実験
結果より決定されたものである。
Further, the temperature of hot water for the hot water treatment is preferably 270 ° C. or higher. This is because if the temperature is lower than 270 ° C., the intrinsic water content of the crushed coal will be insufficiently removed. Furthermore, it is desirable that the treatment time of the hot water treatment be 5 minutes or more.
This is because if the treatment time is less than 5 minutes, the inherent moisture is not removed so much. Furthermore, the pressure during molding is 2 tons / c
m 2 or more. Pressure is 2 ton / cm 2
This is because if it is smaller, the crushing strength and the strength against falling are reduced. These conditions were determined from the experimental results of the examples described later.

【0016】このような石炭燃料成型体の製造方法で
は、粉砕炭を熱水処理して改質炭を得、この改質炭を圧
縮して成型体を製造しているので、固有水分が少なく、
形状崩壊や自然発火を起こしにくい石炭燃料成型体を得
ることができる。即ち改質炭は改質により固有水分が除
去されると共に、細孔が潰されて比表面積が減少してい
るため付着水が少なく、さらに表面の吸湿性のカルボキ
シル基や水酸基の一部が除去されるので、これらにより
吸湿される水分量も減少する。
In such a method for producing a coal fuel molded body, pulverized coal is treated with hot water to obtain reformed carbon, and the reformed carbon is compressed to produce the molded body, so that the intrinsic water content is reduced. ,
It is possible to obtain a coal fuel molded body that is unlikely to cause shape collapse or spontaneous combustion. In other words, the reformed charcoal removes its intrinsic water content by reforming, and the pores are crushed to reduce the specific surface area, so less water is attached, and further, some of the hygroscopic carboxyl groups and hydroxyl groups on the surface are removed. As a result, the amount of water absorbed by them also decreases.

【0017】従ってこのような改質炭を成型して得た石
炭燃料成型体は固有水分が少くなると共に、吸湿性も低
下する。このように固有水分の量が少ないと発熱量の大
きい燃料が得られると共に、吸湿性の低さによる膨潤性
の低下とも合わせて形状崩壊が起りにくくなる。また改
質炭は上述のように改質前の低品位炭に比べて比表面積
が大幅に減少しているので、個々の改質炭の表面エネル
ギ−は改質前のものに比べてかなり小さくなる。このた
め改質炭から得られる石炭燃料成型体は全体として表面
エネルギ−が大幅に小さくなるため、これに応じて自然
発火が起こりにくくなる。さらに石炭燃料成型体は形状
崩壊しにくいため、風化等の形状崩壊が原因となる自然
発火も起りにくくなる。この結果輸送時や貯蔵時のハン
ドリング性が向上し、燃料としての有用になり、さらに
低品位炭の有用性が高まることから、現在ほとんど未利
用の低品位炭の有効利用を図ることができる。
Therefore, the coal fuel molded body obtained by molding such a reformed coal has a small intrinsic water content and a low hygroscopicity. As described above, when the amount of the intrinsic water is small, a fuel having a large calorific value is obtained, and the shape collapse hardly occurs together with the decrease of the swelling property due to the low hygroscopicity. As described above, the specific surface area of the reformed coal is significantly smaller than that of the low-grade coal before reforming, so the surface energy of each reformed coal is considerably smaller than that before reforming. Become. For this reason, the surface energy of the coal fuel molded body obtained from the reformed coal is significantly reduced as a whole, and accordingly spontaneous combustion is less likely to occur. Further, since the shape of the coal fuel molded body is less likely to collapse, spontaneous combustion due to shape collapse such as weathering is less likely to occur. As a result, the handling property during transportation and storage is improved, the fuel becomes useful as a fuel, and the usefulness of the low-grade coal is increased. Therefore, it is possible to effectively utilize the low-grade coal which is almost unused at present.

【0018】以上において本発明で用いられる石炭燃料
成型体は木粉を含むものであってもよく、このように木
粉を含めると、低品位炭のみの場合に比べて強度を大き
くすることができる。この場合木粉の含有量は20%程
度であることが望ましい。
In the above, the coal fuel molded body used in the present invention may contain wood powder, and the inclusion of wood powder in this way can increase the strength as compared with the case of using only low-grade coal. it can. In this case, the content of wood powder is preferably about 20%.

【0019】[0019]

【実施例】以下に本発明の実施条件を決定するために行
った実施例を比較例と共に記載する。 (実施例) 1.褐炭(オ−ストラリア産ロイヤング、固有水分1
4.7%、灰分1.5%、カルボキシル基起因6.3%
O(酸素))、亜瀝青炭A(インドネシア産アサムアサ
ム、固有水分18.5%、灰分1.6%、カルボキシル
基起因3.8%O(酸素))、亜瀝青炭B(インドネシ
ア産ブラウ、固有水分12.9%、灰分1.2%、カル
ボキシル基起因2.5%O(酸素))の30%スラリ−
を夫々調製し、湿式粉砕機にてスラリ−中の低品位炭を
所定の粒径の粉砕炭とした後、内容積5リットルの撹拌
式オ−トクレ−ブ内にて、熱水の温度、処理時間を変え
て熱水処理を行った。熱水処理後、改質炭を分離して乾
燥させた後、成型機にて2トン/cm2 の圧力で圧縮し
ア−モンド型の石炭燃料成型体を得た。
[Examples] Examples carried out to determine the conditions for carrying out the present invention will be described below together with comparative examples. (Example) 1. Lignite (Roy Young from Australia, intrinsic moisture 1
4.7%, ash content 1.5%, carboxyl group-related 6.3%
O (oxygen)), subbituminous coal A (Indonesian asam asam, intrinsic moisture 18.5%, ash content 1.6%, carboxyl group-derived 3.8% O (oxygen)), subbituminous coal B (Indonesian burau, intrinsic moisture) 30% slurry of 12.9%, ash 1.2%, carboxyl group-derived 2.5% O (oxygen))
Were prepared, and the low-grade coal in the slurry was made into a pulverized coal having a predetermined particle size by a wet pulverizer, and the temperature of hot water was adjusted in a stirring type autoclave with an internal volume of 5 liters. Hot water treatment was performed by changing the treatment time. After the hot water treatment, the reformed carbon was separated and dried, and then compressed with a molding machine at a pressure of 2 ton / cm 2 to obtain an almond type coal fuel molded body.

【0020】得られた改質炭の固有水分と灰分とを測定
すると共に、石炭燃料成型体を日光や雨風が直接当たら
ない室内で大気中に保管し、6か月後の形状変化(暴露
試験)を確認した。この結果を、褐炭については表1
(実施例1〜5、比較例1、2)に、亜瀝青炭Aについ
ては表2(実施例11〜16、比較例11〜13)に、
亜瀝青炭Bについては表3(実施例21〜24、比較例
21〜24)に夫々示す。
In addition to measuring the intrinsic water content and ash content of the obtained reformed coal, the molded coal fuel was stored in the atmosphere in a room where it was not exposed to sunlight or rain wind, and the shape change after 6 months (exposure test) )It was confirmed. The results are shown in Table 1 for brown coal.
(Examples 1 to 5 and Comparative Examples 1 and 2), and Table 2 (Examples 11 to 16 and Comparative Examples 11 to 13) for the subbituminous coal A,
Table 3 (Examples 21 to 24 and Comparative Examples 21 to 24) shows the subbituminous coal B, respectively.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】これらの結果からいずれの低品位炭におい
ても、粉砕炭の粒径が1000μm以上の場合には、改
質炭の固有水分はある程度除去されるものの、成型後の
石炭燃料成型体に形状変化が生じることが確認された
(比較例11、21)。また熱水処理時の熱水の温度が
270℃より低い場合(265℃、256℃)には、固
有水分があまり除去されず、しかも成型後の石炭燃料成
型体に形状変化が生じることが確認された(比較例1、
12、22、23)。さらに熱水処理の処理時間が5分
より短い場合には、固有水分およびカルボキシル基があ
まり除去されず、しかも成型後の石炭燃料成型体に形状
変化が生じることが確認された(比較例2、13、2
4)。従って改質条件は、低品位炭を粒径1000μm
以下の粉砕炭とすること、粉砕炭を270℃以上の熱水
で熱水処理することであることが確認された。
From these results, in any of the low-grade coals, when the particle size of the crushed coal is 1000 μm or more, the specific water content of the reformed coal is removed to some extent, but the shape of the coal fuel molded body after molding is obtained. It was confirmed that a change occurred (Comparative Examples 11 and 21). Also, when the temperature of hot water during hot water treatment is lower than 270 ° C (265 ° C, 256 ° C), it is confirmed that the intrinsic water content is not removed so much and that the shape of the coal fuel molded body after molding is changed. (Comparative Example 1,
12, 22, 23). Furthermore, when the treatment time of the hot water treatment was shorter than 5 minutes, it was confirmed that the intrinsic water content and the carboxyl group were not removed so much and that the shape change occurred in the coal fuel molded body after molding (Comparative Example 2, 13, 2
4). Therefore, the reforming conditions are as follows:
It was confirmed that the following crushed coal was used and that the crushed carbon was subjected to hot water treatment with hot water at 270 ° C. or higher.

【0025】またこの実験結果から、他の条件が同じあ
れば熱水温度が高いほど改質炭の固有水分量が少なくな
ることが推察され、さらに他の条件が同じであれば、粉
砕炭の粒径が小さく、熱水処理の時間が長いほど改質炭
の固有水分量が少なくなることが推察される。
From the results of this experiment, it can be inferred that the higher the hot water temperature, the lower the specific water content of the reformed coal under the same other conditions. It is speculated that the smaller the particle size and the longer the time of hot water treatment, the smaller the amount of intrinsic water in the reformed coal.

【0026】2.亜瀝青炭(インドネシア産アサムアサ
ム)の粉砕炭(粒径1000μm以下)を300℃の熱
水で10分熱水処理した後、分離して大気中で乾燥させ
て得た改質炭を圧力を変えて圧縮して成型した各石炭燃
料成型体について、圧壊試験、落下試験と暴露試験を行
った(実施例31〜33)。また前記亜瀝青炭の粉砕炭
(粒径1000μm以下)を改質炭とせずに原炭のま
ま、実施例と同様に成型して得た各成型体についても同
様の試験を行った(比較例31〜33)。
2. After crushing sub-bituminous coal (Insam Asam from Indonesia) crushed coal (particle size 1000 μm or less) with hot water at 300 ° C. for 10 minutes, separating and drying it in the air, the reformed coal was changed in pressure. A crushing test, a drop test, and an exposure test were performed for each coal fuel molded body that was compressed and molded (Examples 31 to 33). Further, the same test was performed on each of the molded bodies obtained by molding the crushed sub-bituminous coal (particle size: 1000 μm or less) as raw coal without using the reformed coal as it is (Comparative Example 31). ~ 33).

【0027】さらに実施例と同条件で得た前記亜瀝青炭
の改質炭に木粉を改質炭の1/4量混合した混合粉につ
いても同様の試験を行ない(実施例34、35)、前記
亜瀝青炭の粉砕炭を改質炭とせずに原炭のまま木粉と混
合した混合粉を、実施例と同様に成型して得た各成型体
についても同様の試験を行った(比較例34〜36)。
この結果を表4に示す。表中圧壊試験については、石炭
燃料成型体が破壊した時の圧壊強度を示してあり、落下
試験については2mの高さから落下させ、破壊したとき
の回数の平均値を示してある。
Further, the same test is carried out on the mixed powder obtained by mixing the modified carbon of the sub-bituminous coal obtained in the same conditions as in the example with 1/4 amount of the modified carbon (Examples 34 and 35). A similar test was performed for each molded body obtained by molding the mixed powder obtained by molding the pulverized sub-bituminous coal as raw coal without modifying the crushed coal with the wood powder as in the example (Comparative Example). 34-36).
Table 4 shows the results. In the table, the crushing test shows the crushing strength when the coal fuel molded body is broken, and the drop test shows the average value of the number of times when the coal fuel molded body is dropped from a height of 2 m and broken.

【0028】[0028]

【表4】 実施例31〜33では、暴露試験の結果から、改質炭と
した後成型して得た石炭燃料成型体は成型圧力に拘らず
形状崩壊は起こらないことが確認され、圧壊試験の結果
からは成型圧力を2トン/cm2 以上とすると、圧壊強
度が格段に大きくなるので、成型圧力は2トン/cm2
以上であることが望ましいことが認められた。一方比較
例31〜33では、暴露試験の結果から改質炭とせずに
原炭のまま成型して得た石炭燃料成型体は、成型圧力に
拘らず形状崩壊が起こることが確認された。
[Table 4] In Examples 31 to 33, it was confirmed from the results of the exposure test that the coal fuel molded bodies obtained by molding after forming the modified coal did not cause shape collapse regardless of the molding pressure, and from the results of the crushing test. If the molding pressure is 2 ton / cm 2 or more, the crushing strength will be remarkably increased, so the molding pressure is 2 ton / cm 2
It was found that the above is desirable. On the other hand, in Comparative Examples 31 to 33, it was confirmed from the result of the exposure test that the coal fuel molded bodies obtained by molding the raw coal as it was without using the reformed coal caused shape collapse regardless of the molding pressure.

【0029】また亜瀝青炭と木粉との混合粉の場合に
は、亜瀝青炭に比べて原炭のまま成型した場合でも圧壊
試験や落下試験の結果から強度が大きくなることが確認
されたものの、暴露試験の結果成型体表面に亀裂が入る
ことが認められた(比較例34〜36)。改質炭と木粉
とを混合した後に成型した場合には、圧壊強度がかなり
大きいと共に、落下回数も格段に多くなることから強度
が非常に大きく、さらに暴露試験の結果形状崩壊は起こ
らないことが確認され(実施例34、35)、このよう
に亜瀝青炭の改質炭と木粉との混合粉に対しても本発明
方法は有効であることが認められた。なお改質炭から得
た石炭燃料成型体については自然発火は見られなかっ
た。
Further, in the case of a mixed powder of subbituminous coal and wood flour, although it was confirmed from the results of the crushing test and the drop test that the strength is greater than that of the subbituminous coal, even when the raw coal is molded as it is, As a result of the exposure test, it was confirmed that cracks were formed on the surface of the molded body (Comparative Examples 34 to 36). When molded after mixing modified charcoal and wood flour, the crushing strength is quite large, and the number of drops is significantly large, so the strength is very large, and further, the shape collapse does not occur as a result of the exposure test. Was confirmed (Examples 34 and 35), and thus, it was confirmed that the method of the present invention is effective for the mixed powder of the modified carbon of subbituminous coal and the wood powder. It should be noted that spontaneous combustion was not observed in the coal fuel molded body obtained from the reformed coal.

【0030】[0030]

【発明の効果】本発明によれば、固有水分が少なく、形
状崩壊や自然発火が起りにくい石炭燃料成型体を得るこ
とができ、このため発熱量が大きく、輸送時や貯蔵時の
取扱い成型体に優れた石炭燃料成型体を得ることができ
る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a coal fuel molded body which has a small amount of intrinsic water content and is unlikely to cause shape collapse or spontaneous ignition. Therefore, the calorific value is large and the molded body can be handled during transportation or storage. An excellent coal fuel molded body can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する石炭燃料成型体の製造装
置の一形態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an apparatus for producing a coal fuel molded body for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

14 湿式粉砕機 23 改質反応器 31 脱水機 32 乾燥機 42 成型機 14 Wet pulverizer 23 Reforming reactor 31 Dehydrator 32 Dryer 42 Molding machine

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鶴井 雅夫 神奈川県横浜市南区別所一丁目14番1号 日揮株式会社横浜事業所内 (72)発明者 柴田 和博 福島県いわき市小名浜字渚9番地3 日本 コム株式会社小名浜事業本部内 (72)発明者 小川 仁 福島県いわき市小名浜字渚9番地3 日本 コム株式会社小名浜事業本部内 (72)発明者 油井 雅之 福島県いわき市小名浜字渚9番地3 日本 コム株式会社小名浜事業本部内 (72)発明者 高野 伸司 福島県いわき市小名浜字渚9番地3 日本 コム株式会社小名浜事業本部内 (72)発明者 岡田 英明 福島県いわき市小名浜字渚9番地3 日本 コム株式会社小名浜事業本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masao Tsurui, 14-1, 1-1 Minami-Biery, Yokohama-shi, Kanagawa JGC Corporation Yokohama Business Office (72) Inventor, Kazuhiro Shibata 9-3 Nagisa, Onahama, Iwaki, Fukushima Prefecture Japan Com Co., Ltd. Onahama Business Headquarters (72) Inventor Hitoshi Ogawa 9 No. 3 Nagisa, Onahama, Fukushima Prefecture Japan Com Co., Ltd. Onahama Business Headquarters, (72) Masayuki Yui 9 No. 3 Nagisa Beach, Iwaki, Fukushima Prefecture Japan Com Co., Ltd., Onahama Business Headquarters (72) Inventor Shinji Takano, 9-3 Nagisa, Onahama, Iwaki, Fukushima Prefecture Japan Com Co., Ltd. (72) Hideaki Okada, 9 Nagisa, Onahama, Iwaki, Fukushima Prefecture Japan Com Co., Ltd., Onahama Business Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 低品位炭を湿式粉砕して、粒径1000
μm以下の粉砕炭を得る工程と、 前記粉砕炭を270℃以上の熱水と接触させて改質炭を
得る工程と、 前記改質炭を乾燥する工程と、 乾燥した改質炭を圧縮して石炭燃料成型体を得る工程
と、 を含むことを特徴とする石炭燃料成型体の製造方法。
1. A low-grade coal is wet-ground to obtain a particle size of 1000.
a step of obtaining pulverized charcoal of μm or less, a step of contacting the pulverized charcoal with hot water of 270 ° C. or higher to obtain a reformed charcoal, a step of drying the reformed charcoal, and a step of compressing the dried reformed charcoal. And a step of obtaining a coal fuel molded body, the method comprising the steps of:
【請求項2】 乾燥した改質炭に木粉を混合してから圧
縮して石炭燃料成型体を得ることを特徴とする請求項1
記載の石炭燃料成型体の製造方法。
2. A coal fuel molded body is obtained by mixing dry modified coal with wood powder and then compressing the powder.
A method for producing the coal fuel molded body described.
【請求項3】 粉砕炭を熱水と接触させる時間は5分以
上であることを特徴とする請求項1記載の石炭燃料成型
体の製造方法
3. The method for producing a coal fuel molded body according to claim 1, wherein the time for contacting the crushed coal with hot water is 5 minutes or more.
【請求項4】 乾燥した改質炭を圧縮する際の圧力は2
トン/cm2 以上であることを特徴とする請求項1又は
3記載の石炭燃料成型体の製造方法。
4. The pressure for compressing the dried reformed coal is 2
The method for producing a coal fuel molded body according to claim 1 or 3, wherein the amount is ton / cm 2 or more.
【請求項5】 木粉を混合した乾燥した改質炭を圧縮す
る際の圧力は2トン/cm2 以上であることを特徴とす
る請求項2記載の石炭燃料成型体の製造方法。
5. The method for producing a coal fuel molded body according to claim 2, wherein the pressure at the time of compressing the dried reformed carbon mixed with wood powder is 2 ton / cm 2 or more.
JP15334796A 1996-05-24 1996-05-24 Coal fuel molded body manufacturing method Expired - Fee Related JP3774263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15334796A JP3774263B2 (en) 1996-05-24 1996-05-24 Coal fuel molded body manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15334796A JP3774263B2 (en) 1996-05-24 1996-05-24 Coal fuel molded body manufacturing method

Publications (2)

Publication Number Publication Date
JPH09316471A true JPH09316471A (en) 1997-12-09
JP3774263B2 JP3774263B2 (en) 2006-05-10

Family

ID=15560492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15334796A Expired - Fee Related JP3774263B2 (en) 1996-05-24 1996-05-24 Coal fuel molded body manufacturing method

Country Status (1)

Country Link
JP (1) JP3774263B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169484A (en) * 2005-12-22 2007-07-05 Saitama Univ Pulverized fuel of biomass-coal blend from coal powder and/or carbonized material from wastes and powder of vegetable-derived polymer organic material, combustible gas, and process for producing combustible and char

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169484A (en) * 2005-12-22 2007-07-05 Saitama Univ Pulverized fuel of biomass-coal blend from coal powder and/or carbonized material from wastes and powder of vegetable-derived polymer organic material, combustible gas, and process for producing combustible and char

Also Published As

Publication number Publication date
JP3774263B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US4236897A (en) Fuel pellets
US8753410B2 (en) Method for producing fuel briquettes from high moisture fine coal or blends of high moisture fine coal and biomass
US20110314728A1 (en) Method of Simultaneously Drying Coal and Torrefying Biomass
AU2012390659B2 (en) Method for reforming coal using palm residue
JP6161242B2 (en) Manufacturing method of mixed fuel
JP2011144248A (en) Method for producing bamboo pellet fuel
US4302209A (en) Lignite pellets and methods of agglomerating or pelletizing
JP2011140610A (en) Method for producing composite fuel
WO1979000988A1 (en) Fuel pellets
JP5742316B2 (en) Method for producing bamboo pellet fuel
JPH09316471A (en) Production of coal fuel molding
JP6243982B2 (en) Method for producing molded product for mixed fuel
WO2014083918A1 (en) Method for storing upgraded coal, and grain-size-controlled coal
US7537622B2 (en) Process for drying coal
US20100146848A1 (en) Fuel formed of cellulosic and biosolid materials
JP6283727B2 (en) Manufacturing method of mixed fuel
JP6283724B2 (en) Manufacturing method of mixed fuel
JP7203890B2 (en) Method for drying and dehydrating treated wood and method for producing wood pellets
JP5976616B2 (en) Method for producing modified coal
WO2003087276A1 (en) Production of compact biomass fuel
JP6283721B2 (en) Manufacturing method of mixed fuel
JP6283725B2 (en) Method for producing molded product for mixed fuel
JP6283723B2 (en) Manufacturing method of mixed fuel
JP6283726B2 (en) Manufacturing method of mixed fuel
JP6283722B2 (en) Manufacturing method of mixed fuel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Effective date: 20060217

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees