JPH09316426A - Aspartic acid derivative and chelate agent containing the same as main component - Google Patents

Aspartic acid derivative and chelate agent containing the same as main component

Info

Publication number
JPH09316426A
JPH09316426A JP13821396A JP13821396A JPH09316426A JP H09316426 A JPH09316426 A JP H09316426A JP 13821396 A JP13821396 A JP 13821396A JP 13821396 A JP13821396 A JP 13821396A JP H09316426 A JPH09316426 A JP H09316426A
Authority
JP
Japan
Prior art keywords
aspartic acid
acid derivative
formula
amino acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13821396A
Other languages
Japanese (ja)
Inventor
Kazuya Okano
一哉 岡野
Hiroshi Iwane
寛 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP13821396A priority Critical patent/JPH09316426A/en
Publication of JPH09316426A publication Critical patent/JPH09316426A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new derivative specified in the structure as a free acid, excellent in biodegradability, and suitable as a chelating agent, a surfactant, an emulsifier, etc. SOLUTION: This aspartic acid derivative has a structure of formula I [at least one of R<1> , R<2> is a substituent of formula II (at least one of R<3> , R<4> is a 1-5C alkyl, and the remainder is H), and the remainder is H] as a free acid, e.g. a compound of formula III. The objective derivative is obtained by adding a 3-8C alkylene oxide such as propylene oxide to aspartic acid. The reaction is preferably carried out in the presence of water in an alkaline region in a temperature condition of 20-50 deg.C for approximately 1-10hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は新規なアミノ酸誘導
体及びこれを主成分とするキレート剤に関するもので、
詳しくは、生分解性に優れ、キレート剤、界面活性剤、
乳化剤等として好適なアミノ酸誘導体に関するものであ
る。
TECHNICAL FIELD The present invention relates to a novel amino acid derivative and a chelating agent containing the same as a main component,
Specifically, it has excellent biodegradability, and contains chelating agents, surfactants,
The present invention relates to an amino acid derivative suitable as an emulsifier and the like.

【0002】[0002]

【従来の技術】アミノポリカルボン酸類は、金属キレー
ト剤として繊維・染色用薬剤、石鹸添加剤、洗剤用ビル
ダー、めっき工業、写真用薬剤または漂白剤助剤等に用
いられている。このような分野においては、使用される
キレート剤は使用後に廃水成分として環境中に放出され
る場合が多く、やがては河川水から飲料水に混入し、健
康へ悪影響を与えることが懸念されている。代表的なア
ミノポリカルボン酸であるエチレンジアミンテトラ酢酸
(EDTA)は、生分解性が極めて低いことが知られて
おり、またニトリロトリ酢酸(NTA)は発ガン性が指
摘されている。これにかわる安全かつ生分解性のキレー
ト剤が求められている。
2. Description of the Related Art Aminopolycarboxylic acids are used as metal chelating agents in textile / dyeing agents, soap additives, detergent builders, the plating industry, photographic agents or bleaching aids. In such a field, the chelating agent used is often released into the environment as a wastewater component after use, and it is feared that it will eventually be mixed with drinking water from river water and adversely affect health. . Ethylenediaminetetraacetic acid (EDTA), which is a typical aminopolycarboxylic acid, is known to have extremely low biodegradability, and nitrilotriacetic acid (NTA) has been pointed out to have carcinogenicity. There is a need for alternative safe and biodegradable chelating agents.

【0003】従来から知られている生分解性キレート剤
としては、例えば、N−ヒドロキシエチルイミノジ酢
酸、N,N−ビス(ヒドロキシエチル)グリシンなどが
挙げられるが、これらはキレート能において性能が未だ
不十分であり、よって広く用いられるに至っていない。
天然アミノ酸は生分解性のアミノカルボン酸であり、な
かでもアミノジカルボン酸であるアスパラギン酸の誘導
体をキレート剤として利用する試みがいくつか知られて
いる。
Examples of conventionally known biodegradable chelating agents include N-hydroxyethyliminodiacetic acid and N, N-bis (hydroxyethyl) glycine, which have excellent chelating ability. It is still inadequate and therefore not widely used.
Natural amino acids are biodegradable aminocarboxylic acids, and among them, several attempts have been known to utilize aspartic acid derivatives, which are aminodicarboxylic acids, as chelating agents.

【0004】例えば、Problemy Khimii
Kompleksonov 108頁(1985)に
おいて、アスパラギン酸の窒素上にオキシエチレン基を
有する化合物が金属イオン遮蔽剤として記載されてい
る。しかし、これらの化合物はキレート能において未だ
不満足なものである。このようなオキシエチレン基を窒
素上に導入する方法としては、1)エチレンオキシドを
付加させる方法、2)脱酸剤存在下、エチレンクロルヒ
ドリンを反応させる方法が知られているが、前者におい
ては用いるエチレンオキシドが爆発性であるという欠点
があり、また後者においては塩化ナトリウム等の副生物
を生ずるという欠点がある。特開平6−175229号
公報において、アスパラギン酸の窒素上にオキシアルキ
レン基を有する化合物が写真薬剤における金属イオン遮
蔽剤として記載されている。しかし、該オキシアルキレ
ン基における側鎖アルキル基については記載されていな
い。
[0004] For example, Problemy Khimii
In Kompleksonov page 108 (1985), compounds having an oxyethylene group on the nitrogen of aspartic acid are described as metal ion screening agents. However, these compounds are still unsatisfactory in chelating ability. As a method for introducing such an oxyethylene group onto nitrogen, 1) a method for adding ethylene oxide, 2) a method for reacting ethylene chlorohydrin in the presence of a deoxidizing agent are known. The ethylene oxide used has the drawback of being explosive, and the latter has the drawback of producing by-products such as sodium chloride. In JP-A-6-175229, a compound having an oxyalkylene group on the nitrogen of aspartic acid is described as a metal ion shielding agent in a photographic chemical. However, the side chain alkyl group in the oxyalkylene group is not described.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、キレ
ート能のより優れた生分解性化合物を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a biodegradable compound having a better chelating ability.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記問題を
解決するため鋭意検討した結果、側鎖にアルキル基を有
するオキシエチレン鎖をアミノ酸の窒素原子上に導入し
て得られるアミノ酸誘導体が優れたキレート能を発揮す
ることを見い出し、本発明を完成するに至った。すなわ
ち本発明の要旨は、遊離酸としての構造が、下記一般式
(1)で示されるアミノ酸誘導体。
Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that an amino acid derivative obtained by introducing an oxyethylene chain having an alkyl group in the side chain onto the nitrogen atom of an amino acid is obtained. They have found that they exhibit excellent chelating ability, and have completed the present invention. That is, the gist of the present invention is an amino acid derivative whose structure as a free acid is represented by the following general formula (1).

【0007】[0007]

【化3】 Embedded image

【0008】(式中、R1 及びR2 は、少なくとも一方
が下記式(2)で示される置換基を示し、残りが水素原
子を示す。)
(In the formula, at least one of R 1 and R 2 represents a substituent represented by the following formula (2), and the rest represent hydrogen atoms.)

【0009】[0009]

【化4】 Embedded image

【0010】(式中、R3 及びR4 は、少なくとも一方
が炭素数1〜5のアルキル基を示し、残りが水素原子を
示す。)、及び該アミノ酸誘導体を主成分とするキレー
ト剤に存する。以下、本発明の内容について詳細に説明
する。
(Wherein at least one of R 3 and R 4 represents an alkyl group having 1 to 5 carbon atoms and the rest represent hydrogen atoms), and a chelating agent containing the amino acid derivative as a main component. . Hereinafter, the contents of the present invention will be described in detail.

【0011】[0011]

【発明の実施の形態】本発明のアミノ酸誘導体は、遊離
酸としての構造が、下記一般式(1)で示される化合物
である。
BEST MODE FOR CARRYING OUT THE INVENTION The amino acid derivative of the present invention is a compound whose structure as a free acid is represented by the following general formula (1).

【0012】[0012]

【化5】 Embedded image

【0013】(式中、R1 及びR2 は、少なくとも一方
が下記式(2)で示される置換基を示し、残りが水素原
子を示す。)
(In the formula, at least one of R 1 and R 2 represents a substituent represented by the following formula (2), and the rest represent hydrogen atoms.)

【0014】[0014]

【化6】 [Chemical 6]

【0015】(式中、R3 及びR4 は、少なくとも一方
が炭素数1〜5のアルキル基を示し、残りが水素原子を
示す。) 上記一般式(1)のアミノ酸誘導体は、遊離酸又はその
塩として存在する。塩としては、通常、金属塩又はアミ
ン塩である。金属塩としては、通常はナトリウム、カリ
ウムまたはリチウムのアルカリ金属塩であるが、場合に
より、マグネシウム、カルシウムなどのアルカリ土類金
属塩、又は鉄、銅などの遷移金属塩等の2価以上の金属
塩となったものでもよい。
(In the formula, at least one of R 3 and R 4 represents an alkyl group having 1 to 5 carbon atoms, and the rest represent hydrogen atoms.) The amino acid derivative of the general formula (1) is a free acid or Exists as its salt. The salt is usually a metal salt or an amine salt. The metal salt is usually an alkali metal salt of sodium, potassium or lithium, but depending on the case, a divalent or higher metal such as an alkaline earth metal salt such as magnesium or calcium, or a transition metal salt such as iron or copper. It may be salted.

【0016】この場合、本発明のアミノ酸誘導体はキレ
ート化された錯塩として存在することとなる。本発明で
は前示一般式(1)中のR1 及びR2 の一方が前示式
(2)の置換基であり、他方が水素原子である化合物が
好ましい。また、前示式(2)中のR3及びR4 につい
ても一方が炭素数1〜5のアルキル基であり、他方が水
素原子であるものが好ましい。なお、この際のアルキル
基としては、メチル基が望ましい。これら化合物の好ま
しい具体例としては、以下に示す構造のものが挙げられ
る。
In this case, the amino acid derivative of the present invention is present as a chelated complex salt. In the present invention, a compound in which one of R 1 and R 2 in the general formula (1) shown above is a substituent of the general formula (2) and the other is a hydrogen atom is preferable. Further, it is preferable that one of R 3 and R 4 in the above formula (2) is an alkyl group having 1 to 5 carbon atoms and the other is a hydrogen atom. The alkyl group at this time is preferably a methyl group. Preferred specific examples of these compounds include those having the structures shown below.

【0017】[0017]

【化7】 [Chemical 7]

【0018】本発明の化合物は、アスパラギン酸にプロ
ピレンオキシドなどの炭素数3〜8のアルキレンオキシ
ドを付加することにより製造することができ、アルキレ
ンオキシドのアスパラギン酸に対するモル比によって生
成する化合物の構造が異なるが、通常は付加量1 (化合
物1および2)と付加量2 (化合物3、4および5)の
混合物で得られる。これらの生成物は混合物のままキレ
ート剤などに用いることが出来るが、必要に応じ再結
晶、カラムクロマトグラフィーなどの公知の方法で単離
することも可能である。
The compound of the present invention can be produced by adding alkylene oxide having 3 to 8 carbon atoms such as propylene oxide to aspartic acid, and the structure of the compound formed by the molar ratio of alkylene oxide to aspartic acid is Although different, it is usually obtained as a mixture of addition amount 1 (compounds 1 and 2) and addition amount 2 (compounds 3, 4 and 5). These products can be used as a mixture as a chelating agent as they are, but can be isolated by a known method such as recrystallization or column chromatography if necessary.

【0019】通常の合成法としては、アスパラギン酸を
無溶媒もしくは溶媒に溶解させて仕込み、そこに所定量
のアルキレンオキシドを導入した後、常温ないし加温条
件で撹拌することにより、容易に目的物が得られる。用
いるアスパラギン酸はラセミ体でも光学活性体でもよい
が、生体適合性や環境適合性の観点から、L体が望まし
い。またマレイン酸やフマル酸等の不純物を含む工業粗
製品の使用も可能である。
As a usual synthetic method, aspartic acid is prepared without solvent or by dissolving it in a solvent, introducing a predetermined amount of alkylene oxide therein, and then stirring the mixture at room temperature or under heating to easily obtain the desired product. Is obtained. The aspartic acid to be used may be a racemic body or an optically active body, but the L body is preferable from the viewpoint of biocompatibility and environmental compatibility. It is also possible to use industrial crude products containing impurities such as maleic acid and fumaric acid.

【0020】反応は、通常、溶媒を用いて行う。溶媒
は、アスパラギン酸の全部または一部を可溶化するもの
であればよく、水、アルコール類などのプロトン性溶
媒、ジメチルスルホキシド、ジメチルホルムアミドなど
の非プロトン性極性溶媒などが提示できるが、好ましく
は水が用いられる。反応のpHは特に限定されないが、
アスパラギン酸の溶解度を上げるため、通常、アルカリ
性領域で行われる。アルカリ性にするために塩基を使用
するが、この場合用いる塩基としては水酸化ナトリウ
ム、水酸化カリウムなどのアルカリ金属水酸化物、水酸
化カルシウム、水酸化マグネシウムなどのアルカリ土類
金属水酸化物、アンモニア、トリエチルアミン、ピリジ
ンなどのアミン類などが挙げられる。塩基の使用量は任
意に設定できるが、通常はアスパラギン酸に対して0.
5から2モル倍の範囲で行われる。
The reaction is usually carried out using a solvent. The solvent may be one that solubilizes all or part of aspartic acid, and water, protic solvents such as alcohols, dimethyl sulfoxide, aprotic polar solvents such as dimethylformamide, etc. can be presented, but preferably Water is used. The pH of the reaction is not particularly limited,
In order to increase the solubility of aspartic acid, it is usually performed in the alkaline region. A base is used to make it alkaline. In this case, the base used is an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, an alkaline earth metal hydroxide such as calcium hydroxide or magnesium hydroxide, or ammonia. , Amines such as triethylamine and pyridine. Although the amount of the base used can be set arbitrarily, it is usually 0.
It is carried out in the range of 5 to 2 molar times.

【0021】アルキレンオキシドの使用量は目的とする
付加量や副反応による減少に応じて調節することができ
るが、通常アスパラギン酸に対して、1モル倍から10
モル倍、好ましくは1モル倍から4モル倍を用いる。反
応温度は0℃から200℃、好ましくは20℃から50
℃であり、通常はアルキレンオキシドが液相を維持でき
る温度範囲で容易に実施できる。反応時間は1時間から
100時間で、通常は1時間から10時間で終了する。
The amount of alkylene oxide used can be adjusted according to the desired amount of addition and the reduction due to side reactions, but it is usually from 1 mol times to 10 times the amount of aspartic acid.
A molar ratio, preferably 1 to 4 mol times, is used. The reaction temperature is 0 ° C to 200 ° C, preferably 20 ° C to 50 ° C.
C., and can be easily carried out within a temperature range where the alkylene oxide can normally maintain a liquid phase. The reaction time is 1 hour to 100 hours, usually 1 hour to 10 hours.

【0022】反応後は、通常、そのまま低沸点物を留去
することにより、生成物は、用いた塩基とのカルボン酸
塩の形で固体で得られる。溶媒に水等のプロトン性溶媒
を用いた場合には、溶媒とアルキレンオキシドが反応し
た物質が副生するが、これも通常は減圧により留去され
る。また、酸により生成物の等電点付近まで中和した
後、遊離カルボン酸の形で単離することも行われる。こ
の場合用いる酸としては、通常、塩酸、硫酸、硝酸等の
鉱酸が例示できる。
After the reaction, the low-boiling substance is usually distilled off as it is, whereby the product is obtained as a solid in the form of a carboxylic acid salt with the base used. When a protic solvent such as water is used as the solvent, a substance obtained by reacting the solvent with the alkylene oxide is by-produced, which is also usually distilled off under reduced pressure. Alternatively, the product may be neutralized to near the isoelectric point of the product and then isolated in the form of a free carboxylic acid. Examples of the acid used in this case are usually mineral acids such as hydrochloric acid, sulfuric acid and nitric acid.

【0023】また水、アルコールなどの可溶溶媒に溶解
させた生成物を、アセトン、アセトニトリルなどの溶解
性の低い溶媒に滴下して晶析させる、いわゆる再沈殿法
も有効である。本発明のアミノ酸誘導体はキレート剤と
して有用であり、洗剤ビルダー、繊維加工、染色、写真
現像、漂白剤安定化、めっき等に用いられる。
A so-called reprecipitation method is also effective in which a product dissolved in a soluble solvent such as water or alcohol is dropped into a solvent having a low solubility such as acetone or acetonitrile for crystallization. The amino acid derivative of the present invention is useful as a chelating agent and is used for detergent builders, fiber processing, dyeing, photographic development, bleaching agent stabilization, plating and the like.

【0024】[0024]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 〔実施例1〕(アスパラギン酸プロピレンオキシド付加
体の合成) L−アスパラギン酸13.31g(0.1mol)を水
20ml、メタノール10mlに加え、96%水酸化ナ
トリウム8.33g(0.2mol)で中和する。ここ
にプロピレンオキシド14ml(0.2mol)を加
え、室温で撹拌する。反応の進行に伴って発熱し、反応
液は不均一系から均一系に変化する。最高34℃で4時
間反応させた後、溶媒および低沸物を減圧留去し、2
7.54gの結晶を得た。重量増加、元素分析および各
種分光分析により、平均付加量1.6のL−アスパラギ
ン酸プロピレンオキシド付加体ジナトリウム塩(化合物
1と3の混合物)であることがわかった。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. [Example 1] (Synthesis of propylene oxide adduct of aspartic acid) 13.31 g (0.1 mol) of L-aspartic acid was added to 20 ml of water and 10 ml of methanol, and with 8.33 g (0.2 mol) of 96% sodium hydroxide. Neutralize. 14 ml (0.2 mol) of propylene oxide is added thereto, and the mixture is stirred at room temperature. As the reaction progresses, heat is generated and the reaction liquid changes from a heterogeneous system to a homogeneous system. After reacting at a maximum temperature of 34 ° C. for 4 hours, the solvent and low-boiling substances were distilled off under reduced pressure.
7.54 g of crystals were obtained. Weight increase, elemental analysis, and various spectroscopic analyzes revealed that it was an L-aspartic acid propylene oxide adduct disodium salt (mixture of compounds 1 and 3) with an average addition amount of 1.6.

【0025】元素分析 C:35.72wt%、H:
5.43wt%、N:4.70wt%1 H NMR 1.1ppm(CH3 ,m,4.8
H),2.4−2.6ppm(CH2 ,m,3.2
H),2.6−2.8ppm(CH2 ,m,2H),
3.5−3.7ppm(CH,m,1.6H),3.8
−3.9ppm(CH,m,1H) IR 3300cm-1(OH伸縮),1600(C=O
伸縮)
Elemental analysis C: 35.72 wt%, H:
5.43 wt%, N: 4.70 wt% 1 H NMR 1.1 ppm (CH 3 , m, 4.8)
H), 2.4-2.6 ppm (CH 2 , m, 3.2
H), 2.6-2.8 ppm (CH 2 , m, 2H),
3.5-3.7 ppm (CH, m, 1.6H), 3.8
-3.9 ppm (CH, m, 1H) IR 3300 cm -1 (OH expansion and contraction), 1600 (C = O)
Expansion and contraction)

【0026】〔実施例2〕プロピレンオキシドの使用量
を28ml(0.4mol)にしたほかは実施例1と同
様に実験を行い、平均付加量が2のL−アスパラギン酸
プロピレンオキシド付加体ジナトリウム塩(化合物3)
の白色結晶30.3gを得た。 元素分析 C:40.82wt%、H:6.82wt
%、N:3.92wt%1 H NMR 1.1ppm(CH3 ,m,6H),
2.4−2.6ppm(CH2 ,m,4H),2.6−
2.8ppm(CH2 ,m,2H),3.5−3.7p
pm(CH,m,2H),3.8−3.9ppm(C
H,m,1H) IR 3300cm-1(OH伸縮),1600(C=O
伸縮)
Example 2 An experiment was conducted in the same manner as in Example 1 except that the amount of propylene oxide used was 28 ml (0.4 mol), and the disodium L-aspartic acid propylene oxide adduct having an average addition amount of 2 was added. Salt (compound 3)
30.3 g of white crystals of Elemental analysis C: 40.82 wt%, H: 6.82 wt
%, N: 3.92 wt% 1 H NMR 1.1 ppm (CH 3 , m, 6H),
2.4-2.6 ppm (CH 2 , m, 4H), 2.6-
2.8 ppm (CH 2 , m, 2H), 3.5-3.7p
pm (CH, m, 2H), 3.8-3.9 ppm (C
H, m, 1H) IR 3300 cm -1 (OH expansion and contraction), 1600 (C = O
Expansion and contraction)

【0027】〔比較例1〕 (アスパラギン酸エチレン
オキシド付加体の合成) L−アスパラギン酸2.66g(20mM)を水10m
lに加え、96%水酸化ナトリウム1.67g(40m
M)で中和する。反応液を40℃に加温し、撹拌しなが
らエチレンクロルヒドリン3.86g(48mM)の3
0%メタノール溶液と水酸化ナトリウム2.0g(48
mM)20%水溶液を4時間かけて同時に滴下する。さ
らに1時間反応を行ったところ、転化率は100%であ
った。ここに水40mlを加え、さらにpHが2.2に
なるまで濃塩酸を加え、得られた結晶を除去した。濾液
にさらにメタノール10mlを加え、再び生じた結晶を
除去し、濾液を濃縮することにより、平均付加量1.5
のアスパラギン酸エチレンオキシド付加体6.07gが
油状物質として得られた。
Comparative Example 1 (Synthesis of Aspartic Acid Ethylene Oxide Adduct) 2.66 g (20 mM) of L-aspartic acid was added to 10 m of water.
1.67 g of 96% sodium hydroxide (40 m
Neutralize with M). The reaction solution was heated to 40 ° C, and while stirring, 3.86 g (48 mM) of 3 of ethylene chlorohydrin was added.
0% methanol solution and sodium hydroxide 2.0 g (48
A 20% aqueous solution (mM) is simultaneously added dropwise over 4 hours. When the reaction was further performed for 1 hour, the conversion rate was 100%. 40 ml of water was added thereto, and concentrated hydrochloric acid was further added until the pH reached 2.2, and the obtained crystals were removed. To the filtrate was further added 10 ml of methanol to remove the regenerated crystals, and the filtrate was concentrated to give an average addition amount of 1.5.
As a result, 6.07 g of an ethylene oxide adduct of aspartic acid was obtained as an oily substance.

【0028】〔キレート試験例〕上記実施例及び比較例
で得られた各化合物、EDTA及びL−アスパラギン酸
のそれぞれにつき、以下のような方法で銅イオンのキレ
ート能を測定した。サンプル約0.3gを蒸留水40m
lに溶かし、ナトリウム塩形でないものは水酸化ナトリ
ウムを加え、ナトリウム塩形とし、pHを約11に調製
する。ここに、0.2mol炭酸ナトリウム水溶液5m
lを加える。この溶液にpHメーターおよび温度計をセ
ットし、ビュレットで0.25mol酢酸銅水溶液を滴
下し、濁点に至るまでの滴下量を求め、下式によりキレ
ート能を算出した。結果を表1に示す。
[Chelate Test Example] For each of the compounds obtained in the above Examples and Comparative Examples, EDTA and L-aspartic acid, the chelating ability of copper ion was measured by the following method. About 0.3g of sample is 40m distilled water
Dissolve in 1 and add sodium hydroxide if it is not in sodium salt form to make sodium salt form and adjust pH to about 11. Here, 5m of 0.2 mol sodium carbonate aqueous solution
Add l. A pH meter and a thermometer were set to this solution, a 0.25 mol copper acetate aqueous solution was added dropwise with a buret, the amount of addition until reaching the cloud point was determined, and the chelating ability was calculated by the following formula. The results are shown in Table 1.

【0029】[0029]

【数1】 [Equation 1]

【0030】[0030]

【表1】 [Table 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 遊離酸としての構造が、下記一般式
(1)で示されるアミノ酸誘導体。 【化1】 (式中、R1 及びR2 は、少なくとも一方が下記式
(2)で示される置換基を示し、残りが水素原子を示
す。) 【化2】 (式中、R3 及びR4 は、少なくとも一方が炭素数1〜
5のアルキル基を示し、残りが水素原子を示す。)
1. An amino acid derivative having a structure as a free acid represented by the following general formula (1). Embedded image (In the formula, at least one of R 1 and R 2 represents a substituent represented by the following formula (2), and the rest represent hydrogen atoms.) (In the formula, at least one of R 3 and R 4 has 1 to 1 carbon atoms.
5 represents an alkyl group, and the rest represent hydrogen atoms. )
【請求項2】 前示一般式(2)におけるR3 及びR4
の一方が炭素数1〜5のアルキル基、他方が水素原子で
ある請求項1記載のアミノ酸誘導体。
2. R 3 and R 4 in the general formula (2) shown above.
The amino acid derivative according to claim 1, wherein one is an alkyl group having 1 to 5 carbon atoms and the other is a hydrogen atom.
【請求項3】 前示一般式(2)におけるR3 及びR4
の一方がメチル基、他方が水素原子である請求項1記載
のアミノ酸誘導体。
3. R 3 and R 4 in the general formula (2) shown above.
The amino acid derivative according to claim 1, wherein one is a methyl group and the other is a hydrogen atom.
【請求項4】 前示一般式(1)で示されるアミノ酸誘
導体を主成分とするキレート剤。
4. A chelating agent containing an amino acid derivative represented by the above general formula (1) as a main component.
JP13821396A 1996-05-31 1996-05-31 Aspartic acid derivative and chelate agent containing the same as main component Pending JPH09316426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13821396A JPH09316426A (en) 1996-05-31 1996-05-31 Aspartic acid derivative and chelate agent containing the same as main component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13821396A JPH09316426A (en) 1996-05-31 1996-05-31 Aspartic acid derivative and chelate agent containing the same as main component

Publications (1)

Publication Number Publication Date
JPH09316426A true JPH09316426A (en) 1997-12-09

Family

ID=15216733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13821396A Pending JPH09316426A (en) 1996-05-31 1996-05-31 Aspartic acid derivative and chelate agent containing the same as main component

Country Status (1)

Country Link
JP (1) JPH09316426A (en)

Similar Documents

Publication Publication Date Title
EP0563258B1 (en) Process for the preparation of fluoroaliphatic aminocarboxylate surfactants
EP0546866B1 (en) Ethylenediamine-N,N&#39;-diacetic acid-N&#39;-cyanomethyl, salts thereof, and their preparation
JPH09316426A (en) Aspartic acid derivative and chelate agent containing the same as main component
JPH03148243A (en) Detergent, acetylating agent in cleaning agent, bleaching agent stabilizer and builder and 2-hydroxy-3-aminopropionic acid derivative
JP2714724B2 (en) Cyclic amine compounds having a carboxyl group
EP0369511B1 (en) Process for preparation of quaternary ammonium and phosphonium substituted carbonic acid esters
KR100695577B1 (en) Anionic surfactants containing sulfonyl-imide group
JPH0635430B2 (en) Manufacturing method of sulfophenyl carbonate
JP3870448B2 (en) Process for producing aminodicarboxylic acid-N, N-diacetates
JPS59130858A (en) Perfluoroalkyl amphoteric compound
JP2780126B2 (en) Method for producing amidoamine type compound
JP3161793B2 (en) New aminopolycarboxylic acid derivatives
JP3067786B2 (en) Method for producing organic persalt
US6900351B2 (en) Aminopolycarboxylates, process for producing the same and use thereof
JP4759809B2 (en) Dialkylethylenediamine dimalonic acids, process for producing the same and uses thereof
JP3294303B2 (en) Aminopolycarboxylic acid derivative and chelating agent
US4943664A (en) Surfactant products containing 1,3,4-butanetriol
JPH029845A (en) Production of n,n-disubstituted aniline
JP3515196B2 (en) Novel sulfonic acid or salt thereof, and method for producing the same
JP3224282B2 (en) Aminopolycarboxylic acid derivative
JP3150192B2 (en) Anthranilic acid derivatives
JPH054952A (en) Production of n-long-chain acyl acidic amino acid monoalkali salt
JPH02160757A (en) Production of sulfobetaine
JPH09110812A (en) Production of aminopolycarboxylic acids
JP3992779B2 (en) Method for producing acyloxybenzoic acid or a salt thereof