JPH09315882A - Device for producing semiconductor single crystal and production of semiconductor single crystal therewith - Google Patents

Device for producing semiconductor single crystal and production of semiconductor single crystal therewith

Info

Publication number
JPH09315882A
JPH09315882A JP15751096A JP15751096A JPH09315882A JP H09315882 A JPH09315882 A JP H09315882A JP 15751096 A JP15751096 A JP 15751096A JP 15751096 A JP15751096 A JP 15751096A JP H09315882 A JPH09315882 A JP H09315882A
Authority
JP
Japan
Prior art keywords
single crystal
shielding cylinder
semiconductor single
cylinder
shield cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15751096A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shimanuki
芳行 島貫
Toshimichi Kubota
利通 久保田
Toshirou Kotooka
敏朗 琴岡
Makoto Kamogawa
誠 鴨川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP15751096A priority Critical patent/JPH09315882A/en
Priority to TW085108350A priority patent/TW341604B/en
Publication of JPH09315882A publication Critical patent/JPH09315882A/en
Priority to US09/059,770 priority patent/US5900059A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a single crystal excellent in oxide film dielectric strength characteristics by simply performing the temp. gradient control of a semiconductor single crystal grown with a CZ (Czochralski) method and particularly inhibiting the generation of as-grown defects. SOLUTION: In this device, a shielding cylinder placed so as to encircle single crystal silicon 7 during pulling-up is divided into a first shielding cylinder section 4, a second shielding cylinder section 5 and a third shielding cylinder section 6 to form a telescopic shielding cylinder. A wire 8 wound around a wind-up reel 10 is fastened to the third shielding cylinder section 6 to extend/contract the shielding cylinder by rotating the wind-up reel 10. Also, the first shielding cylinder section 4 is fixed to elevating/lowering rods 3 to elevating/lowering the shielding cylinder by vertically moving the rods 3. At the time of pulling up the single crystal silicon 7, an optional part of the shielding cylinder is contracted by driving the wind-up reel 10 to subject a specific region of the single crystal silicon 7 to heat insulation by using overlapping parts of the shielding cylinder with each other and to reduce the temp. gradient of the single crystal silicon 7 at the time of passing it through the temp. region of 1,200 to 1,000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法による半導体単結晶製造装置および半導体単結晶の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a semiconductor single crystal manufacturing apparatus and a semiconductor single crystal manufacturing method by the Czochralski method.

【0002】[0002]

【従来の技術】半導体素子の基板には主として高純度の
単結晶シリコンが使用されているが、その製造方法とし
て、一般にチョクラルスキー法(以下CZ法という)が
用いられている。図8は、育成する半導体単結晶を取り
囲む遮蔽筒を備えたCZ法による半導体単結晶製造装置
の一例を示す部分縦断面図である。メインチャンバ1の
内部には、回転および昇降可能なるつぼ軸17の上端に
黒鉛るつぼ18が載置され、黒鉛るつぼ18の周囲には
円筒状のヒータ16と保温筒19とが設置されている。
2. Description of the Related Art High-purity single crystal silicon is mainly used for a substrate of a semiconductor element, and a Czochralski method (hereinafter referred to as a CZ method) is generally used as a manufacturing method thereof. FIG. 8 is a partial vertical cross-sectional view showing an example of the semiconductor single crystal manufacturing apparatus by the CZ method, which is provided with a shield cylinder that surrounds the semiconductor single crystal to be grown. Inside the main chamber 1, a graphite crucible 18 is placed on the upper end of a crucible shaft 17 that can be rotated and moved up and down, and a cylindrical heater 16 and a heat insulating cylinder 19 are installed around the graphite crucible 18.

【0003】黒鉛るつぼ18に収容された石英るつぼ1
4に塊状の多結晶シリコンを装填し、これをヒータ16
で加熱、溶解して融液20とする。シードチャック21
に取り付けた種結晶を融液20に浸漬し、シードチャッ
ク21および黒鉛るつぼ18を互いに同方向または逆方
向に回転しつつシードチャック21を引き上げて単結晶
シリコン7を成長させる。
A quartz crucible 1 housed in a graphite crucible 18.
4 was loaded with massive polycrystalline silicon, which was heated by a heater 16
Is heated and melted to form a melt 20. Seed chuck 21
The seed crystal attached to is immersed in the melt 20, and the seed chuck 21 is pulled up while the seed chuck 21 and the graphite crucible 18 are rotated in the same direction or opposite directions to grow the single crystal silicon 7.

【0004】メインチャンバ1に接続されたアッパチャ
ンバ2には、融液20の近傍まで伸延する黒鉛製の遮蔽
筒22が図示しない昇降機構により昇降自在に設置され
ている。この遮蔽筒22は、アッパチャンバ2の上方か
ら導入される不活性ガスの流れを制御するとともにヒー
タ16、融液20などからの輻射熱を遮断し、引き上げ
中の単結晶シリコン7の全温度領域にわたって冷却また
は保温を行っている。これにより結晶化が容易になり、
単結晶シリコン7の生産性が向上する。
In the upper chamber 2 connected to the main chamber 1, a graphite shielding cylinder 22 extending to the vicinity of the melt 20 is installed so that it can be raised and lowered by an elevating mechanism (not shown). The shield cylinder 22 controls the flow of the inert gas introduced from above the upper chamber 2 and shields the radiant heat from the heater 16, the melt 20, etc., and covers the entire temperature range of the single crystal silicon 7 being pulled. Cooling or keeping warm. This facilitates crystallization,
The productivity of the single crystal silicon 7 is improved.

【0005】[0005]

【発明が解決しようとする課題】ヒータ16をはじめと
する各ホットゾーンパーツから引き上げ中の単結晶シリ
コン7に放射される輻射熱は、遮蔽筒22によって遮断
される。従って、固液界面近傍における単結晶シリコン
7の径方向、軸方向温度勾配が大きくなり、結晶化が容
易になるため、単結晶シリコン7の引き上げ速度を上げ
て生産性を向上させることができる。しかしながら、炉
内温度環境に応じて遮蔽筒22の厚さを任意に変更する
ことは不可能であり、引き上げ中の単結晶シリコン7の
所望の部位における冷却あるいは保温の度合いを調節す
ることができないため、次の問題が発生する。 (1)単結晶シリコン7が1200℃〜1000℃の温
度領域を通過する際、この温度領域が徐冷されないた
め、as−grown欠陥密度の低減が十分に行えず、
酸化膜耐圧特性が低下する原因となる。 (2)石英るつぼ14に装填した多結晶シリコンを溶解
する場合は、遮蔽筒22の下端と多結晶シリコンとの干
渉を避けるため、昇降機構を駆動して遮蔽筒22の上部
をアッパチャンバ2内に収納する構造としている。この
ため、アッパチャンバ2に収納スペースを設ける必要が
あり、アッパチャンバ2の全高が長くなる。
Radiant heat radiated from the hot zone parts including the heater 16 to the single crystal silicon 7 being pulled is blocked by the shield cylinder 22. Therefore, the temperature gradient in the radial direction and the axial direction of the single crystal silicon 7 in the vicinity of the solid-liquid interface becomes large, and crystallization becomes easy, so that the pulling rate of the single crystal silicon 7 can be increased and the productivity can be improved. However, it is impossible to arbitrarily change the thickness of the shield cylinder 22 according to the temperature environment in the furnace, and it is not possible to adjust the degree of cooling or heat retention at a desired portion of the single crystal silicon 7 being pulled. Therefore, the following problems occur. (1) When the single crystal silicon 7 passes through the temperature range of 1200 ° C. to 1000 ° C., this temperature range is not gradually cooled, so that the as-grown defect density cannot be sufficiently reduced,
This causes deterioration of the oxide film withstand voltage characteristic. (2) When melting the polycrystalline silicon loaded in the quartz crucible 14, in order to avoid interference between the lower end of the shielding cylinder 22 and the polycrystalline silicon, the elevating mechanism is driven to move the upper portion of the shielding cylinder 22 into the upper chamber 2. It has a structure to be stored in. For this reason, it is necessary to provide a storage space in the upper chamber 2, and the overall height of the upper chamber 2 becomes long.

【0006】本発明は上記従来の問題点に着目してなさ
れたもので、CZ法によって育成される半導体単結晶の
温度勾配制御を簡易に行い、特に、as−grown欠
陥の発生を抑制して酸化膜耐圧特性の優れた半導体単結
晶を得ることができる半導体単結晶製造装置および半導
体単結晶の製造方法を提供することを目的としている。
The present invention has been made by paying attention to the above-mentioned conventional problems. The temperature gradient of a semiconductor single crystal grown by the CZ method is easily controlled, and in particular, the generation of as-grown defects is suppressed. An object of the present invention is to provide a semiconductor single crystal manufacturing apparatus and a semiconductor single crystal manufacturing method capable of obtaining a semiconductor single crystal having excellent oxide film breakdown voltage characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る半導体単結晶製造装置は、引き上げ中
の半導体単結晶を取り囲む遮蔽筒を備えたCZ法による
半導体単結晶製造装置において、前記遮蔽筒を昇降自在
かつ上下方向に伸縮自在としたことを特徴としている。
In order to achieve the above object, a semiconductor single crystal manufacturing apparatus according to the present invention is a semiconductor single crystal manufacturing apparatus by the CZ method, which comprises a shield cylinder surrounding a semiconductor single crystal being pulled, It is characterized in that the shielding cylinder can be raised and lowered and can be vertically expanded and contracted.

【0008】上記半導体単結晶製造装置は、具体的に
は、遮蔽筒を複数個に分割してテレスコピックタイプと
し、巻き取り用リールに巻き付けたワイヤを内側の遮蔽
筒に繋着するとともに外側の遮蔽筒を昇降ロッドに掛止
し、前記巻き取り用リールの回転により遮蔽筒を伸縮さ
せ、昇降ロッドの上下動により遮蔽筒を昇降させる構成
とした。
In the semiconductor single crystal manufacturing apparatus, specifically, the shield cylinder is divided into a plurality of telescopic types, and the wire wound around the winding reel is connected to the inner shield cylinder and the outer shield is shielded. The cylinder is hooked on the elevating rod, the shield cylinder is expanded and contracted by the rotation of the winding reel, and the shield cylinder is moved up and down by the vertical movement of the elevating rod.

【0009】また、本発明に係る半導体単結晶の製造方
法は、上記半導体単結晶製造装置を用い、巻き取り用リ
ールを駆動して遮蔽筒の任意の部分を縮め、遮蔽筒の重
なり合った部分で半導体単結晶の特定部位を保温し、前
記単結晶が1200℃〜1000℃の温度領域を通過す
る際の温度勾配を小さくすることを特徴としている。
Further, in the method for manufacturing a semiconductor single crystal according to the present invention, the semiconductor single crystal manufacturing apparatus described above is used to drive the winding reel to shrink an arbitrary portion of the shielding cylinder and to cause a portion of the shielding cylinder to overlap. It is characterized in that a specific portion of the semiconductor single crystal is kept warm to reduce the temperature gradient when the single crystal passes through the temperature range of 1200 ° C to 1000 ° C.

【0010】[0010]

【発明の実施の形態および実施例】本発明は、CZ法に
よって引き上げられる半導体単結晶の熱履歴を遮蔽筒で
簡易に制御する半導体単結晶製造装置および半導体単結
晶の製造方法に関するものである。この製造装置は、引
き上げ中の半導体単結晶を取り囲む遮蔽筒を昇降自在か
つ伸縮自在としたので、前記半導体単結晶の任意の部位
を任意の厚さで包囲することにより、熱履歴を制御する
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a semiconductor single crystal production apparatus and a semiconductor single crystal production method for easily controlling the thermal history of a semiconductor single crystal pulled by the CZ method with a shield cylinder. In this manufacturing apparatus, the shielding cylinder that surrounds the semiconductor single crystal being pulled is movable up and down and expands and contracts, so that the thermal history can be controlled by surrounding any part of the semiconductor single crystal with any thickness. You can

【0011】具体的には、遮蔽筒をテレスコピックタイ
プとし、巻き取り用リールに巻き付けたワイヤを内側の
遮蔽筒に繋着したので、前記ワイヤを巻き戻せば遮蔽筒
は伸長し、ワイヤを巻き取れば遮蔽筒は短縮される。こ
れにより、遮蔽筒の半径方向の厚さが変化する。また、
遮蔽筒を縮めた場合は上下方向における遮蔽筒の移動可
能範囲が大きくなる。
Specifically, since the shield cylinder is of a telescopic type and the wire wound around the winding reel is connected to the inner shield cylinder, when the wire is rewound, the shield cylinder extends and the wire is wound up. For example, the shield tube is shortened. As a result, the thickness of the shield cylinder in the radial direction changes. Also,
When the shield cylinder is contracted, the movable range of the shield cylinder in the vertical direction becomes large.

【0012】上記半導体単結晶製造装置を用いて半導体
単結晶を育成する場合、遮蔽筒を伸長させることによ
り、引き上げ中の半導体単結晶を軸方向の広範囲にわた
って遮熱または保温することができ、遮蔽筒が任意の長
さとなるように短縮して任意の高さに移動すれば、引き
上げ中の半導体単結晶の所望の部位を局所的に保温する
ことができる。また、炉内の熱環境に合わせて保温部位
を変更することも可能である。特に、直胴工程では遮蔽
筒の任意の部分が短縮するように巻き取り用リールを駆
動すると、遮蔽筒が部分的に重なり合い、半導体単結晶
に対する保温効果が増大する。従って、前記単結晶が1
200℃〜1000℃となる部位に遮蔽筒の重なり合う
部分を位置させることにより、この温度領域を通過する
際の温度勾配を小さくすることができ、as−grow
n欠陥の発生が抑制される。
When a semiconductor single crystal is grown using the above-described semiconductor single crystal manufacturing apparatus, by extending the shield cylinder, the semiconductor single crystal being pulled can be shielded or insulated from heat in a wide range in the axial direction. If the cylinder is shortened to have an arbitrary length and moved to an arbitrary height, a desired portion of the semiconductor single crystal being pulled can be locally kept warm. Further, it is also possible to change the heat retaining part according to the thermal environment in the furnace. Particularly, in the straight body process, when the winding reel is driven so that an arbitrary portion of the shield cylinder is shortened, the shield cylinders are partially overlapped with each other, and the heat retaining effect on the semiconductor single crystal is increased. Therefore, the single crystal is 1
By arranging the overlapping portion of the shielding cylinder at a portion where the temperature is 200 ° C. to 1000 ° C., the temperature gradient when passing through this temperature region can be reduced, and as-grow
The occurrence of n defects is suppressed.

【0013】次に、本発明に係る半導体単結晶製造装置
の実施例について図面を参照して説明する。なお、前記
従来の技術で説明した構成要素と同一の構成要素につい
ては、同一の符号を付して、その説明を省略する。
Next, an embodiment of the semiconductor single crystal manufacturing apparatus according to the present invention will be described with reference to the drawings. The same components as those described in the above-mentioned conventional technique are designated by the same reference numerals, and the description thereof will be omitted.

【0014】図1は半導体単結晶製造装置の概略構成を
示す部分縦断面図である。メインチャンバ1の上端に取
着したアッパチャンバ2には、図示しない昇降機構によ
って上下動する2本の昇降ロッド3が取り付けられ、昇
降ロッド3の下端に第1遮蔽筒4が掛止されている。第
1遮蔽筒4は、図2に示すように円筒の上端外周に2個
の突起部4aを有し、下端内周にフランジ4bを備えて
いる。第1遮蔽筒4は前記突起部4aにより昇降ロッド
3に掛止される。第1遮蔽筒4の内側には上下両端にフ
ランジを備えた第2遮蔽筒5が摺動自在に挿嵌され、第
2遮蔽筒5の内側には上下両端にフランジを備えた第3
遮蔽筒6が摺動自在に挿嵌されている。前記昇降ロッド
3、第1遮蔽筒4、第2遮蔽筒5、第3遮蔽筒6は、黒
鉛または黒鉛を炭化珪素で被覆したもの、あるいはMo
等の金属からなり、これらを組み合わせて用いてもよ
い。
FIG. 1 is a partial vertical sectional view showing a schematic structure of a semiconductor single crystal manufacturing apparatus. The upper chamber 2 attached to the upper end of the main chamber 1 is provided with two lifting rods 3 that move up and down by a lifting mechanism (not shown), and the first shield cylinder 4 is hooked at the lower end of the lifting rod 3. . As shown in FIG. 2, the first shielding cylinder 4 has two protrusions 4a on the outer circumference of the upper end of the cylinder and a flange 4b on the inner circumference of the lower end. The first shield cylinder 4 is hooked on the elevating rod 3 by the protrusion 4a. A second shielding cylinder 5 having flanges at the upper and lower ends is slidably fitted inside the first shielding cylinder 4, and a third shielding tube 5 having flanges at the upper and lower ends is inside the second shielding cylinder 5.
The shield cylinder 6 is slidably inserted. The lifting rod 3, the first shield cylinder 4, the second shield cylinder 5, and the third shield cylinder 6 are graphite or graphite coated with silicon carbide, or Mo.
Etc., and may be used in combination.

【0015】第3遮蔽筒6は、単結晶シリコン7に対し
て所定の隙間を保って単結晶シリコン7を包囲する。ま
た、第3遮蔽筒6の上端にはワイヤ8が繋着され、この
ワイヤ8はプーリ9を介して巻き取り用リール10に巻
き付けられている。アッパチャンバ2の上面には、巻き
取り用リール10と同軸上にプーリ11が取着されてい
る。
The third shielding cylinder 6 encloses the single crystal silicon 7 with a predetermined gap kept from the single crystal silicon 7. A wire 8 is connected to the upper end of the third shielding cylinder 6, and the wire 8 is wound around a winding reel 10 via a pulley 9. A pulley 11 is attached to the upper surface of the upper chamber 2 coaxially with the winding reel 10.

【0016】図3は、図1のA−A断面図である。図1
では説明の都合上、昇降ロッド3、ワイヤ8、プーリ
9、巻き取り用リール10を同一平面上に記載している
が、実際には図3に示すように昇降軸ロッド3がワイヤ
8と直角の方向に設置されているので、干渉することは
ない。アッパチャンバの上面には、巻き取り用リール1
0と同軸に取着されたプーリ11と、図示しないモータ
に直結された駆動用プーリ12とが設置されていて、ベ
ルト13を介して駆動用プーリ12がプーリ11を回転
させることにより、巻き取り用リール10が回転する。
なお、図1および図3では第3遮蔽筒6に1本のワイヤ
8を繋着しているが、これに限るものではなく、第3遮
蔽筒6に2〜3本のワイヤを繋着し、これらのワイヤを
それぞれ個別に巻き取り用リールで巻き取るようにして
もよい。また、巻き取り用リールにモータを直結しても
よい。
FIG. 3 is a sectional view taken along the line AA of FIG. FIG.
For convenience of explanation, the lifting rod 3, the wire 8, the pulley 9, and the winding reel 10 are shown on the same plane. However, as shown in FIG. 3, the lifting shaft rod 3 is actually perpendicular to the wire 8. Since it is installed in the direction of, it does not interfere. On the upper surface of the upper chamber, the take-up reel 1
A pulley 11 mounted coaxially with 0 and a drive pulley 12 directly connected to a motor (not shown) are installed, and the drive pulley 12 rotates the pulley 11 via a belt 13 to wind the pulley 11. Reel 10 rotates.
Although one wire 8 is connected to the third shielding cylinder 6 in FIGS. 1 and 3, the present invention is not limited to this, and two to three wires are connected to the third shielding cylinder 6. Alternatively, each of these wires may be individually wound by a winding reel. Further, the motor may be directly connected to the winding reel.

【0017】巻き取り用リール10を回転させてワイヤ
8を巻き取ると、まず第3遮蔽筒6が引き上げられ、こ
れに続いて第2遮蔽筒5、第1遮蔽筒4が順次引き上げ
られ、互いに重なり合った状態になる。また、ワイヤ8
を巻き戻す方向に巻き取り用リール10を回転させる
と、第3遮蔽筒6および第2遮蔽筒5が下降し、第2遮
蔽筒5の上端が第1遮蔽筒4の下端に掛止された後は第
3遮蔽筒6のみが下降を続ける。第3遮蔽筒6は、その
上端が第2遮蔽筒5の下端に掛止された時点で下降を停
止する。このとき、遮蔽筒は最大限に伸長した状態とな
る。
When the winding reel 10 is rotated to wind the wire 8, the third shield cylinder 6 is first pulled up, and subsequently the second shield cylinder 5 and the first shield cylinder 4 are sequentially pulled up, so that they are mutually separated. It will be in an overlapping state. Also, the wire 8
When the winding reel 10 is rotated in the direction for rewinding, the third shielding cylinder 6 and the second shielding cylinder 5 descend, and the upper end of the second shielding cylinder 5 is hooked on the lower end of the first shielding cylinder 4. After that, only the third shielding cylinder 6 continues to descend. The third shield cylinder 6 stops descending when its upper end is hooked on the lower end of the second shield cylinder 5. At this time, the shielding cylinder is in the maximum expanded state.

【0018】次に、本発明に係る半導体単結晶の製造方
法を製造工程順に説明する。 (1)原料溶解工程 図4に示すように、石英るつぼ14に塊状の多結晶シリ
コン15を装填し、ヒータ16で加熱、溶解する。この
とき、巻き取り用リール10を駆動してワイヤ8を巻き
取り、第1遮蔽筒4、第2遮蔽筒5、第3遮蔽筒6が互
いに重なり合うようにした後、昇降ロッド3を適度に下
降させる。これにより、各遮蔽筒が多結晶シリコン15
の上面を被覆するとともに、各遮蔽筒と多結晶シリコン
15との干渉を回避して石英るつぼ14を熱効率の良い
位置に固定することができるので、多結晶シリコン15
は迅速に融液化される。
Next, a method of manufacturing a semiconductor single crystal according to the present invention will be described in the order of manufacturing steps. (1) Raw Material Melting Step As shown in FIG. 4, the quartz crucible 14 is loaded with massive polycrystalline silicon 15 and heated by a heater 16 to be melted. At this time, the winding reel 10 is driven to wind up the wire 8 so that the first shielding cylinder 4, the second shielding cylinder 5, and the third shielding cylinder 6 overlap each other, and then the elevating rod 3 is appropriately lowered. Let As a result, each shielding cylinder is made of polycrystalline silicon 15
Since the upper surface of the quartz crucible 14 can be covered and the quartz crucible 14 can be fixed at a position with high thermal efficiency while avoiding the interference between each shielding cylinder and the polycrystalline silicon 15,
Is rapidly melted.

【0019】(2)肩工程 図5に示すように、第1遮蔽筒4、第2遮蔽筒5、第3
遮蔽筒6が重なり合った状態のまま昇降ロッド3を上限
まで上昇させる。昇降ロッド3の上昇に伴って巻き取り
用リール10を駆動し、ワイヤ8を巻き取る。これによ
り、ヒータ16の熱は遮蔽筒で遮られることなく単結晶
シリコンの肩7aに放射される。
(2) Shoulder process As shown in FIG. 5, the first shielding cylinder 4, the second shielding cylinder 5, and the third shielding cylinder
The elevating rod 3 is lifted to the upper limit while the shielding cylinders 6 overlap each other. The winding reel 10 is driven as the lifting rod 3 rises, and the wire 8 is wound. As a result, the heat of the heater 16 is radiated to the shoulder 7a of single crystal silicon without being blocked by the shield cylinder.

【0020】(3)直胴工程 直胴工程の当初は原料溶解時と同様に炉内上方への熱の
放散を防ぎつつ、育成中の単結晶シリコン7に対するヒ
ータ16の輻射熱を遮らないようにするため、図6に示
すように第1遮蔽筒4、第2遮蔽筒5、第3遮蔽筒6が
互いに重なり合うようにする。このとき、昇降ロッド3
を下降させるとともにワイヤ8を巻き戻して、各遮蔽筒
を単結晶シリコン7の肩7aより少し高い位置に設置す
ることが望ましい。
(3) Straight-body process At the beginning of the straight-body process, the radiation heat of the heater 16 to the single crystal silicon 7 being grown should not be interrupted while preventing the heat from being dissipated upward in the furnace as in the case of melting the raw materials. Therefore, as shown in FIG. 6, the first shielding cylinder 4, the second shielding cylinder 5, and the third shielding cylinder 6 are made to overlap each other. At this time, the lifting rod 3
It is desirable to lower the wire and rewind the wire 8 to install each shielding cylinder at a position slightly higher than the shoulder 7a of the single crystal silicon 7.

【0021】単結晶シリコン7が成長するにつれて、昇
降ロッド3を徐々に上昇させる。昇降ロッド3の上昇に
伴って第1遮蔽筒4が上昇し、続いて第2遮蔽筒5が上
昇する。このとき、第3遮蔽筒6の位置は変えない。そ
の結果、図1に示したように遮蔽筒全体が伸長し、第2
遮蔽筒5と第3遮蔽筒6とが部分的に重なり合う。この
重なり合った部分が単結晶シリコン7の所定位置、すな
わち単結晶シリコン7の温度領域が1200℃〜100
0℃となる部位である。前記部位を第2遮蔽筒5と第3
遮蔽筒6とで包囲することにより、この部位が徐冷さ
れ、他の部位よりも温度勾配が小さくなる。
As the single crystal silicon 7 grows, the elevating rod 3 is gradually raised. As the lifting rod 3 rises, the first shielding cylinder 4 rises, and then the second shielding cylinder 5 rises. At this time, the position of the third shielding cylinder 6 is not changed. As a result, the entire shield cylinder expands as shown in FIG.
The shielding cylinder 5 and the third shielding cylinder 6 partially overlap each other. This overlapping portion is a predetermined position of the single crystal silicon 7, that is, the temperature region of the single crystal silicon 7 is 1200 ° C. to 100 ° C.
This is the part where the temperature becomes 0 ° C. The above-mentioned part is connected to the second shielding cylinder 5 and the third
By surrounding it with the shield cylinder 6, this part is gradually cooled, and the temperature gradient becomes smaller than that of other parts.

【0022】(4)テール工程および冷却工程 テール7cの形成においては、直胴7bの温度が100
0℃以下に下がった後、図7に示すようにワイヤ8を徐
々に巻き取りつつ昇降ロッド3を上昇させる。直胴7b
は各遮蔽筒に包囲されて輻射熱が遮られ、速やかに冷却
される。単結晶シリコン7の上昇に伴って各遮蔽筒も昇
降ロッド3の上限位置まで上昇させる。
(4) Tail Process and Cooling Process In forming the tail 7c, the temperature of the straight body 7b is set to 100.
After the temperature has dropped to 0 ° C. or lower, the lifting rod 3 is raised while gradually winding the wire 8 as shown in FIG. 7. Straight body 7b
Is surrounded by each shielding tube to block radiant heat and to be cooled quickly. As the single crystal silicon 7 rises, each shielding cylinder is also raised to the upper limit position of the elevating rod 3.

【0023】(5)炉内品解体時 単結晶シリコンの引き上げが終了し、炉内品の解体を行
う場合は、図5に示した肩工程の場合と同様に巻き取り
用リール10を駆動してワイヤ8を巻き取り、昇降ロッ
ド3を上限位置まで上昇させる。これにより解体作業
は、遮蔽筒に妨げられることなく、迅速に行うことがで
きる。
(5) At the time of disassembling the in-furnace product When the pulling of the single crystal silicon is completed and the in-furnace product is disassembled, the winding reel 10 is driven as in the shoulder process shown in FIG. The wire 8 is wound up by the wire and the lifting rod 3 is raised to the upper limit position. As a result, the dismantling work can be performed quickly without being obstructed by the shield cylinder.

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、引
き上げ中の半導体単結晶を取り囲む遮蔽筒をテレスコピ
ックタイプとし、伸縮および昇降自在としたので、次の
効果が得られる。 (1)遮蔽筒を部分的に短縮させて重ね合わせることに
より保温効果が増大し、この部分を通過する際の半導体
単結晶の温度勾配が小さくなる。この方法で前記単結晶
における1200℃〜1000℃の温度領域を徐冷すれ
ば、as−grown欠陥密度の低減が容易となり、酸
化膜耐圧特性の優れた高品質の半導体単結晶を製造する
ことができる。また、遮蔽筒を昇降させることにより、
炉内の熱環境に対応した徐冷部位の調節が可能となる。 (2)遮蔽筒を縮めれば上下方向に対する移動可能範囲
が大きくなる。原料多結晶の装填時、肩工程、炉内品解
体時に遮蔽筒を縮めて上昇させておけば、遮蔽筒が作業
の障害とならない。また、短縮した遮蔽筒を原料多結晶
の上端近傍まで下降させておけば、原料溶解時間の短
縮、ヒータ投入電力の低減並びに炉内品の耐用寿命延長
が可能となる。
As described above, according to the present invention, since the shield cylinder surrounding the semiconductor single crystal being pulled is of the telescopic type and can be expanded and contracted and moved up and down, the following effects can be obtained. (1) The heat insulating effect is increased by partially shortening and overlapping the shielding cylinder, and the temperature gradient of the semiconductor single crystal when passing through this portion becomes small. By gradually cooling the temperature range of 1200 ° C. to 1000 ° C. in the single crystal by this method, it is easy to reduce the as-grown defect density, and it is possible to manufacture a high-quality semiconductor single crystal having excellent oxide film breakdown voltage characteristics. it can. Also, by raising and lowering the shielding tube,
It is possible to adjust the slow cooling part according to the thermal environment in the furnace. (2) If the shielding tube is contracted, the movable range in the vertical direction becomes large. When the raw material polycrystal is loaded, when the shoulder tube process and the in-furnace product disassembly are performed, the shield tube does not hinder the work if the shield tube is contracted and raised. Further, if the shortened shield cylinder is lowered to the vicinity of the upper end of the raw material polycrystal, it becomes possible to shorten the raw material melting time, reduce the heater input power, and extend the useful life of the in-furnace product.

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体単結晶製造装置の概略構成を示す部分縦
断面図で、直胴工程における遮蔽筒の形状を示す。
FIG. 1 is a partial vertical cross-sectional view showing a schematic configuration of a semiconductor single crystal manufacturing apparatus, showing a shape of a shielding cylinder in a straight body process.

【図2】第1遮蔽筒の斜視図である。FIG. 2 is a perspective view of a first shielding cylinder.

【図3】図1のA−A断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 1;

【図4】原料溶解工程における遮蔽筒の位置および形状
を示す部分縦断面図である。
FIG. 4 is a partial vertical cross-sectional view showing the position and shape of the shielding cylinder in the raw material melting step.

【図5】肩工程および炉内品解体時における遮蔽筒の位
置および形状を示す部分縦断面図である。
FIG. 5 is a partial vertical cross-sectional view showing the position and shape of the shielding cylinder during the shoulder process and disassembling the product in the furnace.

【図6】直胴工程当初における遮蔽筒の位置および形状
を示す部分縦断面図である。
FIG. 6 is a partial vertical cross-sectional view showing the position and shape of the shielding cylinder at the beginning of the straight body process.

【図7】テール工程および冷却工程における遮蔽筒の位
置および形状を示す部分縦断面図である。
FIG. 7 is a partial vertical cross-sectional view showing the position and shape of the shielding cylinder in the tail process and the cooling process.

【図8】従来の技術による半導体単結晶製造装置の一例
を示す部分縦断面図である。
FIG. 8 is a partial vertical cross-sectional view showing an example of a conventional semiconductor single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 メインチャンバ 2 アッパチャンバ 3 昇降ロッド 4 第1遮蔽筒 5 第2遮蔽筒 6 第3遮蔽筒 7 単結晶シリコン 8 ワイヤ 9,11 プーリ 10 巻き取り用リール 1 Main Chamber 2 Upper Chamber 3 Lifting Rod 4 First Shielding Cylinder 5 Second Shielding Cylinder 6 Third Shielding Cylinder 7 Single Crystal Silicon 8 Wire 9, 11 Pulley 10 Reel for Winding

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鴨川 誠 神奈川県平塚市四之宮2612 コマツ電子金 属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Kamokawa 2612 Shinomiya, Hiratsuka-shi, Kanagawa Komatsu Electronic Metals Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 引き上げ中の半導体単結晶を取り囲む遮
蔽筒を備えたチョクラルスキー法による半導体単結晶製
造装置において、前記遮蔽筒を昇降自在かつ上下方向に
伸縮自在としたことを特徴とする半導体単結晶製造装
置。
1. A semiconductor single crystal manufacturing apparatus according to the Czochralski method, comprising a shield cylinder surrounding a semiconductor single crystal being pulled, wherein the shield cylinder is vertically movable and vertically expandable and contractible. Single crystal manufacturing equipment.
【請求項2】 請求項1記載の半導体単結晶製造装置に
おいて、遮蔽筒を複数個に分割してテレスコピックタイ
プとし、巻き取り用リールに巻き付けたワイヤを内側の
遮蔽筒に繋着するとともに外側の遮蔽筒を昇降ロッドに
掛止し、前記巻き取り用リールの回転により遮蔽筒を伸
縮させ、昇降ロッドの上下動により遮蔽筒を昇降させる
ことを特徴とする半導体単結晶製造装置。
2. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein the shield cylinder is divided into a plurality of pieces to form a telescopic type, and the wire wound around the winding reel is connected to the inner shield cylinder and is connected to the outer shield tube. An apparatus for manufacturing a semiconductor single crystal, wherein a shield cylinder is hooked on an elevating rod, the shield cylinder is expanded and contracted by rotation of the winding reel, and the shield cylinder is elevated and lowered by vertical movement of the elevating rod.
【請求項3】 請求項2記載の半導体単結晶製造装置を
用い、巻き取り用リールを駆動して遮蔽筒の任意の部分
を縮め、遮蔽筒の重なり合った部分で半導体単結晶の特
定部位を保温し、前記単結晶が1200℃〜1000℃
の温度領域を通過する際の温度勾配を小さくすることを
特徴とする半導体単結晶の製造方法。
3. The semiconductor single crystal manufacturing apparatus according to claim 2, wherein the winding reel is driven to shrink an arbitrary portion of the shield cylinder, and the specific portion of the semiconductor single crystal is kept warm at the overlapping portion of the shield cylinder. And the single crystal is 1200 ° C. to 1000 ° C.
A method for manufacturing a semiconductor single crystal, which comprises reducing a temperature gradient when passing through the temperature region of 1.
JP15751096A 1996-05-29 1996-05-29 Device for producing semiconductor single crystal and production of semiconductor single crystal therewith Withdrawn JPH09315882A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15751096A JPH09315882A (en) 1996-05-29 1996-05-29 Device for producing semiconductor single crystal and production of semiconductor single crystal therewith
TW085108350A TW341604B (en) 1996-05-29 1996-07-10 Device and method for manufacturing semiconductor-crystal
US09/059,770 US5900059A (en) 1996-05-29 1998-04-14 Method and apparatus for fabricating semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15751096A JPH09315882A (en) 1996-05-29 1996-05-29 Device for producing semiconductor single crystal and production of semiconductor single crystal therewith

Publications (1)

Publication Number Publication Date
JPH09315882A true JPH09315882A (en) 1997-12-09

Family

ID=15651263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15751096A Withdrawn JPH09315882A (en) 1996-05-29 1996-05-29 Device for producing semiconductor single crystal and production of semiconductor single crystal therewith

Country Status (2)

Country Link
JP (1) JPH09315882A (en)
TW (1) TW341604B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006615A1 (en) * 1997-08-01 1999-02-11 Memc Electronic Materials, Inc. Heat shield assembly and method of growing vacancy rich single crystal silicon
WO1999013137A1 (en) * 1997-09-12 1999-03-18 General Electric Company Apparatus for producing castings with directional and single crystal structure
JP2000007496A (en) * 1998-06-25 2000-01-11 Mitsubishi Materials Silicon Corp Single crystal pulling-up equipment and single crystal pulling-up method using the same
US6557618B1 (en) 1997-09-12 2003-05-06 General Electric Company Apparatus and method for producing castings with directional and single crystal structure and the article according to the method
US7141113B1 (en) * 1998-11-20 2006-11-28 Komatsu Denshi Kinzoku Kabushiki Kaisha Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon crystal wafer
WO2007046287A1 (en) * 2005-10-20 2007-04-26 Komatsu Denshi Kinzoku Kabushiki Kaisha Apparatus and process for manufacturing semiconductor single crystal
JP2008162809A (en) * 2006-12-26 2008-07-17 Covalent Materials Corp Single crystal pulling apparatus and method for manufacturing single crystal
JP2009001489A (en) * 2008-08-28 2009-01-08 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
JP2010006646A (en) * 2008-06-27 2010-01-14 Sumco Corp Manufacturing process of silicon single crystal and silicon single crystal
WO2010021272A1 (en) * 2008-08-18 2010-02-25 Sumco Techxiv株式会社 Processes for production of silicon ingot, silicon wafer and epitaxial wafer, and silicon ingot
JP2011036365A (en) * 2009-08-10 2011-02-24 Olympus Corp Endoscope apparatus
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment
JP2019127428A (en) * 2018-01-26 2019-08-01 住友金属鉱山株式会社 Crystal growth apparatus
KR20210113815A (en) * 2020-03-09 2021-09-17 에스케이실트론 주식회사 Apparatus and method for growing silicon single crystal ingot
CN114613555A (en) * 2022-03-09 2022-06-10 嘉兴奥氟特科技股份有限公司 Processing equipment and processing method for shielded cable

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942032A (en) * 1997-08-01 1999-08-24 Memc Electronic Materials, Inc. Heat shield assembly and method of growing vacancy rich single crystal silicon
WO1999006615A1 (en) * 1997-08-01 1999-02-11 Memc Electronic Materials, Inc. Heat shield assembly and method of growing vacancy rich single crystal silicon
WO1999013137A1 (en) * 1997-09-12 1999-03-18 General Electric Company Apparatus for producing castings with directional and single crystal structure
US6557618B1 (en) 1997-09-12 2003-05-06 General Electric Company Apparatus and method for producing castings with directional and single crystal structure and the article according to the method
JP2000007496A (en) * 1998-06-25 2000-01-11 Mitsubishi Materials Silicon Corp Single crystal pulling-up equipment and single crystal pulling-up method using the same
US7141113B1 (en) * 1998-11-20 2006-11-28 Komatsu Denshi Kinzoku Kabushiki Kaisha Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon crystal wafer
WO2007046287A1 (en) * 2005-10-20 2007-04-26 Komatsu Denshi Kinzoku Kabushiki Kaisha Apparatus and process for manufacturing semiconductor single crystal
JP2008162809A (en) * 2006-12-26 2008-07-17 Covalent Materials Corp Single crystal pulling apparatus and method for manufacturing single crystal
JP2010006646A (en) * 2008-06-27 2010-01-14 Sumco Corp Manufacturing process of silicon single crystal and silicon single crystal
WO2010021272A1 (en) * 2008-08-18 2010-02-25 Sumco Techxiv株式会社 Processes for production of silicon ingot, silicon wafer and epitaxial wafer, and silicon ingot
JP5420548B2 (en) * 2008-08-18 2014-02-19 Sumco Techxiv株式会社 Silicon ingot, silicon wafer and epitaxial wafer manufacturing method, and silicon ingot
US9074298B2 (en) 2008-08-18 2015-07-07 Sumco Techxiv Corporation Processes for production of silicon ingot, silicon wafer and epitaxial wafer, and silicon ingot
JP2009001489A (en) * 2008-08-28 2009-01-08 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
JP2011036365A (en) * 2009-08-10 2011-02-24 Olympus Corp Endoscope apparatus
US8900132B2 (en) 2009-08-10 2014-12-02 Olympus Corporation Endoscope apparatus
JP2016538226A (en) * 2013-12-03 2016-12-08 エルジー・シルトロン・インコーポレーテッド Single crystal growth equipment
US10066315B2 (en) 2013-12-03 2018-09-04 Sk Siltron Co., Ltd. Single crystal growing apparatus
JP2019127428A (en) * 2018-01-26 2019-08-01 住友金属鉱山株式会社 Crystal growth apparatus
KR20210113815A (en) * 2020-03-09 2021-09-17 에스케이실트론 주식회사 Apparatus and method for growing silicon single crystal ingot
CN114613555A (en) * 2022-03-09 2022-06-10 嘉兴奥氟特科技股份有限公司 Processing equipment and processing method for shielded cable

Also Published As

Publication number Publication date
TW341604B (en) 1998-10-01

Similar Documents

Publication Publication Date Title
US5900059A (en) Method and apparatus for fabricating semiconductor single crystal
JP3892496B2 (en) Semiconductor single crystal manufacturing method
JPH09315882A (en) Device for producing semiconductor single crystal and production of semiconductor single crystal therewith
JP3992800B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP4919343B2 (en) Single crystal pulling device
JP4097729B2 (en) Semiconductor single crystal manufacturing equipment
KR101048831B1 (en) Graphite heater for producing single crystal, single crystal manufacturing device and single crystal manufacturing method
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP2014080302A (en) Single crystal pulling apparatus and single crystal pulling method
JP2008162809A (en) Single crystal pulling apparatus and method for manufacturing single crystal
JP2020066555A (en) Apparatus and method for growing single crystal
JP5477229B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2007063046A (en) Single crystal pulling apparatus and method for controlling the same
JP3741418B2 (en) Silicon single crystal pulling device
JP4272449B2 (en) Single crystal pulling method
JP2939918B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
KR100690959B1 (en) An apparatus of growing single crystal ingot
WO2022123957A1 (en) Monocrystal-manufacturing device
JP2008019129A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
JP6750550B2 (en) Crystal growth equipment
KR101100862B1 (en) Silicon wafer and method of manufacturing silicon single crystal ingot
KR100549259B1 (en) An apparatus of manufacturing silicon single crystal ingot
JP4168725B2 (en) Inert gas flow rate control device and method for controlling flow rate of silicon single crystal pulling device
JPH01160892A (en) Method for controlling oxygen concentration in silicon single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805