JPH09311130A - Method of measuring chemical oxygen demand - Google Patents

Method of measuring chemical oxygen demand

Info

Publication number
JPH09311130A
JPH09311130A JP16505496A JP16505496A JPH09311130A JP H09311130 A JPH09311130 A JP H09311130A JP 16505496 A JP16505496 A JP 16505496A JP 16505496 A JP16505496 A JP 16505496A JP H09311130 A JPH09311130 A JP H09311130A
Authority
JP
Japan
Prior art keywords
solution
cerium
cod
iii
oxygen demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16505496A
Other languages
Japanese (ja)
Other versions
JP3536273B2 (en
Inventor
Takashi Inaga
隆史 伊永
Sanae Ikeda
早苗 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Chemical Industries Co Ltd
Original Assignee
Tokyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Kasei Kogyo Co Ltd filed Critical Tokyo Kasei Kogyo Co Ltd
Priority to JP16505496A priority Critical patent/JP3536273B2/en
Publication of JPH09311130A publication Critical patent/JPH09311130A/en
Application granted granted Critical
Publication of JP3536273B2 publication Critical patent/JP3536273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize an oxidizing agent for a long period by mixing cerium (III) to a cerium (IV) solution. SOLUTION: An oxidizer reagent solution is prepared by mixing cerium sulfate (III) to an aqueous solution containing 6% sulfuric acid so as to have 3.0×10<-4> M and 6.0×10<-4> M, respectively. A sample solution of 30ml or less is taken into an Erlenmeyer flask having a capacity of 100ml, 10ml of the oxidizer reagent solution is added thereto, and the mixture is heated for 30 minutes in a water bath of 100 deg.C. After the heating is completed, the content solution of the Erlenmeyer flask is transferred to a measuring cylinder having a capacity of 40ml, and regulated to 40ml with water as occasion demands. A 10-mm quartz cell is used, and the absorbance in a wavelength of 320nm is measured with reagent blank as contrast. Thus, the chemical oxygen demand(COD) can be measured with high sensitivity and high precision.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は環境水中の化学的酸素要
求量(以下COD)の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring chemical oxygen demand (hereinafter COD) in environmental water.

【0002】[0002]

【従来の技術】CODは河川又は産業廃水の汚染度を表
す代表的な指標で,強力な酸化剤を用いて一定の条件下
で試料水を処理したときに消費される酸化剤の量を求
め,それに対応する酸素の量に換算した値から,試料中
に含まれる被酸化性物質の量を示す値である。COD測
定方法については100℃における過マンガン酸カリウ
ムによる酸素消費量が公定法[JIS K0102 1
993,上水試験方法(1993年版)など]として定
義されているが,特定物質の定量分析とは異なり,規定
された測定条件下での反応量を求めるものであるため,
使用する酸化剤の種類と濃度,酸化の温度や時間などの
定量条件とまた有機物の種類でCODの値は異なり,測
定者間クロスチェックによる数値の変動が大きいなど様
々な問題を抱えている。特に低濃度領域においては滴定
操作のわずかなずれで大きな変動が生じ,正確な測定が
困難である。これらの問題を解決するために,本発明者
は以前に,酸化剤の光吸収現象を利用して,より誤差が
小さく,感度の高い吸光光度法によるCODの定量を試
みた。さらに,反応温度,時間の精密な制御が可能なフ
ローインジェクション分析法の適用についても検討し,
酸化剤として過マンガン酸カリウム,重クロム酸カリウ
ム,硫酸セリウム(IV)の3種類を用い多面的な実験
を行い,ある程度の成果は上がったがCOD測定におけ
る問題を根本的に解決するに至っていない[T.Kor
enaga,X.Zhou,K.Okada,T,Mo
riwakeand S.Shinoda ,Ana
l.Chim.Acta,272,237(199
3)]。
2. Description of the Related Art COD is a typical index showing the degree of pollution of rivers or industrial wastewater, and is used to determine the amount of oxidizer consumed when a sample water is treated under a certain condition using a strong oxidizer. Is a value showing the amount of the oxidizable substance contained in the sample from the value converted into the amount of oxygen corresponding thereto. Regarding the COD measurement method, the amount of oxygen consumed by potassium permanganate at 100 ° C is an official method [JIS K01021
993, water supply test method (1993 edition), etc.], but unlike quantitative analysis of a specific substance, since the reaction amount is determined under specified measurement conditions,
The COD value differs depending on the type and concentration of the oxidant used, the quantification conditions such as the oxidation temperature and time, and the type of organic substance, and there are various problems such as large fluctuations in the numerical value due to cross-checking among the measurers. Especially in the low-concentration region, a slight deviation in the titration operation causes large fluctuations, making accurate measurement difficult. In order to solve these problems, the present inventor has previously attempted to quantify COD by an absorptiometric method with a smaller error and higher sensitivity, utilizing the light absorption phenomenon of an oxidant. Furthermore, the application of the flow injection analysis method that enables precise control of reaction temperature and time is also examined.
Multi-faceted experiments were conducted using three kinds of oxidants, potassium permanganate, potassium dichromate, and cerium (IV) sulfate, and some results were obtained, but the problems in COD measurement have not been fundamentally solved. [T. Kor
enaga, X. Zhou, K .; Okada, T, Mo
riwakeand S.M. Shinoda, Ana
l. Chim. Acta, 272 , 237 (199
3)].

【0003】[0003]

【発明が解決しようとする課題】そこで,本発明者らは
上記問題点を解決すべく鋭意研究を重ねた結果,本発明
を見いだし,完成するに至った。
Therefore, as a result of intensive studies to solve the above problems, the present inventors have found and completed the present invention.

【0004】[0004]

【課題を解決するための手段】本発明は酸化剤としてセ
リウム(IV)を用いる吸光光度法によるCODの定量
において,セリウム(IV)溶液にセリウム(III)
を混合することにより酸化剤の長期安定化を可能にする
方法である。セリウム(IV)の酸化力は過マンガン酸
カリウムや重クロム酸カリウムなど他の酸化剤に比べて
強く,その反応が一電子反応であるため確実な酸化還元
反応が行われ,過マンガン酸塩や重クロム酸塩のように
中間的な酸化状態で不安定な化学種が生成し,そのため
誘発酸化現象が起こったりするような問題がなく,検量
線も直線となる。また、セリウムはマンガンやクロムの
ような有害金属に属さないなど多くの優れた特性を有す
ることに注目して,実験検討を進めたものである。硫酸
セリウム(IV)は希硫酸溶液中でわずかづつではある
が自己分解を引き起こす傾向にあるため,酸化剤溶液の
保存状態により酸化能力に変化を生じ,COD測定値に
影響を及ぼす懸念があった。本発明では硫酸セリウム
(III)をセリウム(IV)に共存させ,酸化還元緩
衝液を構築することにより酸化剤溶液の安定化が図れる
ことを見いだした。硫酸セリウム(IV)の安定性を検
討した結果を図1に示す。セリウム(IV)の最大吸収
波長320nmにおける吸光度の変化から安定性を検討
した。(A)は室温(B)は4℃冷蔵庫中で保存したも
のを示す。いずれもセリウム(IV)だけでは時間と共
に吸光度の減少が見られるが,セリウム(III)を混
合することによって劣化を防ぐことができ,なかでもセ
リウム(IV):セリウム(III)=1:2の混合比
で4℃冷蔵庫中で保存したものが最も安定で,2週間は
使用することが可能であった。
Means for Solving the Problems The present invention is for the determination of COD by absorptiometry using cerium (IV) as an oxidant.
Is a method that enables long-term stabilization of the oxidizing agent. The oxidizing power of cerium (IV) is stronger than other oxidizing agents such as potassium permanganate and potassium dichromate, and since the reaction is a one-electron reaction, a reliable redox reaction is carried out, and permanganate and An unstable chemical species, such as dichromate, is generated in an intermediate oxidation state, so that there is no problem that an induced oxidation phenomenon occurs, and the calibration curve is linear. In addition, cerium was studied in advance, paying attention to the fact that cerium has many excellent characteristics such as not belonging to harmful metals such as manganese and chromium. Since cerium (IV) sulfate tends to cause self-decomposition in dilute sulfuric acid solution, although slightly, it causes a change in the oxidizing ability depending on the storage state of the oxidant solution, which may affect the COD measurement value. In the present invention, it was found that the oxidant solution can be stabilized by coexisting cerium (III) sulfate with cerium (IV) and constructing a redox buffer. The result of examining the stability of cerium (IV) sulfate is shown in FIG. The stability was examined from the change in the absorbance of cerium (IV) at the maximum absorption wavelength of 320 nm. (A) shows room temperature (B) stored at 4 ° C. in a refrigerator. In both cases, the absorbance decreases with time only with cerium (IV), but deterioration can be prevented by mixing cerium (III). Among them, cerium (IV): cerium (III) = 1: 2 The mixture ratio was the most stable when stored in a refrigerator at 4 ° C and could be used for 2 weeks.

【図1】COD定量においては酸化剤の種類,試薬の濃
度,液性,加熱方法及び加熱時間が異なると,同一検水
でも必ずしも同一の値をとらないことから,諸条件につ
いては正確に決める必要がある。反応温度については5
0〜100℃の範囲で10分間加熱し反応させ,吸光度
を測定した結果,100℃のときが最もよく反応してい
ることがわかった。100℃での反応時間の影響につい
て調べたところ30分までは吸光度が徐々に増大して,
それ以上反応させても大きな変化は見られなかった。反
応温度,反応時間をそれぞれ100℃,30分に設定
し,硫酸セリウム(IV)の添加量について検討したと
ころ,10ppmの標準サンプルに3.0X10−4
硫酸セリウム(IV)を20mlまで加えて行き反応さ
せて吸光度変化を見たところ10mlまでは増加し,そ
れ以上加えても変化ないことから,硫酸セリウム(I
V)の添加量は10mlで十分であることがわかった。
一方,公定法で採用されている過マンガン酸カリウムに
よるCODの定量では,試料溶液中に塩化物イオンが存
在する場合,これが過マンガン酸カリウムにより酸化さ
れるため妨害される。そこであらかじめ硝酸銀などを加
え,塩化物イオンを除く必要がある。しかし,本発明に
よれば,1ppmの標準サンプルに塩化物イオンを共存
させて影響を調べたところ,1000ppmの濃度まで
許容されるということが明らかになり,過マンガン酸カ
リウムを用いた場合の妨害許容限度に比べてはるかに高
い結果で,通常の河川水,産業廃水などであれば銀化合
物の添加を必要としないという特徴を有する。
[Fig. 1] In COD determination, if the type of oxidant, concentration of reagent, liquidity, heating method and heating time are different, the same values will not necessarily be obtained even with the same sample water, so various conditions are accurately determined. There is a need. 5 about reaction temperature
As a result of measuring absorbance by heating for 10 minutes in the range of 0 to 100 ° C., it was found that the reaction was best at 100 ° C. When the effect of reaction time at 100 ° C was examined, the absorbance gradually increased until 30 minutes,
No further change was seen when the reaction was continued. When the reaction temperature and the reaction time were set to 100 ° C. and 30 minutes, respectively, and the amount of cerium (IV) sulfate added was examined, a standard sample of 10 ppm had 3.0 × 10 −4 M.
When cerium (IV) sulfate was added up to 20 ml and the reaction was carried out and the change in absorbance was observed, it increased up to 10 ml, and no further change was observed.
It was found that the addition amount of V) was 10 ml.
On the other hand, in the determination of COD with potassium permanganate, which is adopted in the official method, when chloride ions are present in the sample solution, they are disturbed because they are oxidized by potassium permanganate. Therefore, it is necessary to add silver nitrate in advance to remove chloride ions. However, according to the present invention, when an influence was examined by allowing chloride ions to coexist in a standard sample of 1 ppm, it was found that a concentration of up to 1000 ppm was allowed, and interference with potassium permanganate was found. The result is much higher than the permissible limit, and it has the characteristic that the addition of silver compounds is not necessary for ordinary river water, industrial wastewater, etc.

【0005】[0005]

【実施例】本発明により確立した定量操作法について説
明する。酸化剤試薬溶液は6%硫酸を含む水溶液中に硫
酸セリウム(IV)と硫酸セリウム(III)をそれぞ
れ3.0X10−4Mと6.0X10−4Mになるよう
に調製したものを用いる。30ml以下の試料溶液を容
量100mlの三角フラスコに採り,前記酸化剤試料溶
液を10ml加え,100℃の水浴中で30分間加熱す
る。加熱終了後,容量40mlのメスフラスコに三角フ
ラスコに内容液を移し,必要に応じて水で40mlに調
整する。10mmの石英セルを用い試薬ブランクを対照
にして波長320nmにおける吸光度を測定する。この
結果得られる検量線を図2,図3に示す。図2はCOD
濃度が0から1.6ppmまでの低濃度領域の検量線
で,図3は0から10ppmまでのCODの検量線であ
る。
EXAMPLE A quantitative operation method established by the present invention will be described. Oxidant reagent solution is used after prepared to be cerium sulfate in an aqueous solution containing 6% sulfuric acid (IV) and cerium sulfate (III), respectively 3.0x10 -4 M and 6.0 x -4 M. A sample solution of 30 ml or less is placed in an Erlenmeyer flask having a volume of 100 ml, 10 ml of the oxidant sample solution is added, and the mixture is heated in a 100 ° C. water bath for 30 minutes. After completion of heating, the content solution is transferred to an Erlenmeyer flask in a volumetric flask having a capacity of 40 ml, and if necessary, adjusted to 40 ml with water. Absorbance at a wavelength of 320 nm is measured using a 10 mm quartz cell and a reagent blank as a control. The calibration curves obtained as a result are shown in FIGS. 2 and 3. Figure 2 is COD
The calibration curve in the low concentration range from 0 to 1.6 ppm, and FIG. 3 is the calibration curve of COD from 0 to 10 ppm.

【図2】FIG. 2

【図3】0.2ppm.1.0ppm,10ppmの各
濃度において公定法によるCOD値と本発明の吸光光度
法によるCOD値のそれぞれの変動係数を求めた結果を
表1に示す。これらを比較すると,本発明による吸光光
度法の方が測定のばらつきが小さいことがわかり,特
に,1.0ppm以下の低濃度では困難な過マンガン酸
カリウム滴定による定量に対し,吸光光度法による定量
では良い精度を得ることができる。
FIG. 3 is 0.2 ppm. Table 1 shows the results of obtaining the respective coefficient of variation of the COD value by the official method and the COD value by the absorptiometry of the present invention at each concentration of 1.0 ppm and 10 ppm. Comparing these, it can be seen that the absorptiometric method according to the present invention has less variation in the measurement, and in particular, the absorptiometric method is more difficult than the determination by potassium permanganate titration which is difficult at a low concentration of 1.0 ppm or less. Then you can get good accuracy.

【表1】 [Table 1]

【0006】[0006]

【発明の効果】上記のように本発明を用いることで高感
度,高精度なCODの測定を行うことができる。本発明
を用いることで生じる特有の効果として次のような事柄
があげられる。1)酸化力が強く,一電子反応のセリウ
ム(IV)を用いることで確実な酸化還元反応が行わ
れ,精度が向上した。2)吸光光度法の採用により高感
度化が達成できた。3)セリウム(IV)の試薬溶液中
にセリウム(III)を混合することにより安定な酸化
還元緩衝液を形成し,試薬溶液は長期間にわたり安定に
使用可能となった。4)セリウムはマンガンやクロムの
ように有害金属に属さず,環境に優しい測定法である。
5)塩化物イオンに対する妨害許容限度は1000pp
mと高く,硝酸銀などの試薬の添加なしに測定を行うこ
とができる。本発明は簡易で再現性の良い定量が行える
ことから,一般に測定精度に問題があるとされている公
定法によるCOD測定に代わる優れた方法であると言え
る。
As described above, by using the present invention, highly sensitive and accurate COD measurement can be performed. The following items can be given as the peculiar effects produced by using the present invention. 1) The oxidizing power is strong, and by using cerium (IV), which is a one-electron reaction, a reliable redox reaction is performed and the accuracy is improved. 2) High sensitivity could be achieved by adopting the absorptiometry. 3) By mixing cerium (III) in the reagent solution of cerium (IV), a stable redox buffer was formed, and the reagent solution became stable and usable for a long period of time. 4) Cerium does not belong to harmful metals such as manganese and chromium, and is an environmentally friendly measurement method.
5) Allowable interference limit for chloride ion is 1000 pp
m is high, and the measurement can be performed without adding a reagent such as silver nitrate. The present invention can be said to be an excellent method as an alternative to the COD measurement by the official method, which is generally considered to have a problem in measurement accuracy, because it allows simple and reproducible quantification.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による酸化剤試薬溶液の安定性を示す
図。(A)は室温保存,(B)は冷蔵庫(4℃)保存。
FIG. 1 is a diagram showing the stability of an oxidant reagent solution according to the present invention. (A) stored at room temperature, (B) stored in a refrigerator (4 ° C).

【図2】本発明によるCOD値0から1.6ppmまで
の検量線。
FIG. 2 is a calibration curve according to the present invention with a COD value of 0 to 1.6 ppm.

【図3】本発明によるCOD値0から10ppmまでの
検量線。
FIG. 3 is a calibration curve for COD values of 0 to 10 ppm according to the present invention.

【符号の説明】[Explanation of symbols]

aは,Ce(IV)とCe(III)との1:0の溶
液。bは,Ce(IV)とCe(III)との1:1の
溶液。cは,Ce(IV)とCe(III)との1:2
の溶液。dは,Ce(IV)とCe(III)との2:
1の溶液。
a is a 1: 0 solution of Ce (IV) and Ce (III). b is a 1: 1 solution of Ce (IV) and Ce (III). c is Ce (IV) and Ce (III) 1: 2
Solution. d is Ce (IV) and Ce (III) 2:
Solution of 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被酸化性物質を含む試料水に酸化剤を加
え,加熱して反応させた後,反応液の酸素消費量を測定
して化学的酸素要求量を求める方法において,酸化剤と
してセリウム(IV)とセリウム(III)を含む溶液
を用いることを特徴とする化学的酸素要求量の測定方
法。
1. A method of obtaining a chemical oxygen demand by measuring an oxygen consumption amount of a reaction solution after adding an oxidant to a sample water containing an oxidizable substance, heating and reacting the same, A method for measuring a chemical oxygen demand, which comprises using a solution containing cerium (IV) and cerium (III).
JP16505496A 1996-05-23 1996-05-23 How to measure chemical oxygen demand Expired - Fee Related JP3536273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16505496A JP3536273B2 (en) 1996-05-23 1996-05-23 How to measure chemical oxygen demand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16505496A JP3536273B2 (en) 1996-05-23 1996-05-23 How to measure chemical oxygen demand

Publications (2)

Publication Number Publication Date
JPH09311130A true JPH09311130A (en) 1997-12-02
JP3536273B2 JP3536273B2 (en) 2004-06-07

Family

ID=15804973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16505496A Expired - Fee Related JP3536273B2 (en) 1996-05-23 1996-05-23 How to measure chemical oxygen demand

Country Status (1)

Country Link
JP (1) JP3536273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475429B1 (en) * 2002-04-23 2005-03-10 주식회사 드림바이오스 Automatic On-line COD Analyzer use multi-syringe of injecting & sending System

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475429B1 (en) * 2002-04-23 2005-03-10 주식회사 드림바이오스 Automatic On-line COD Analyzer use multi-syringe of injecting & sending System

Also Published As

Publication number Publication date
JP3536273B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
Xiao et al. Simultaneous spectrophotometric determination of peracetic acid and the coexistent hydrogen peroxide using potassium iodide as the indicator
Kang et al. Correction of hydrogen peroxide interference on standard chemical oxygen demand test
Parker Induced autoxidation of oxalate in relation to the photolysis of potassium ferrioxalate
CN101614719B (en) Method for measuring content of vanadium by potassium permanganate oxidation-ferrous ammonium sulphate titrating method
Hassan et al. Hydrogen chromate PVC matrix membrane sensor for potentiometric determination of chromium (III) and chromium (VI) ions
Marks et al. A new method of determining residual chlorine
Dan et al. Chemical oxygen demand determination in environmental waters by mixed-acid digestion and single sweep polarography
US20210270794A1 (en) Method of determining chemical oxygen demand (cod) for high chloride samples
Cataldo Hernández et al. Analytical quantification of electrochemical ferrates for drinking water treatments
US10725011B2 (en) Determining chemical oxygen demand
Kim Effect of ammonia on COD analysis
Habig et al. Kinetics of osmium-catalyzed reaction between cerium (IV) and arsenic (III) in sulfuric acid medium
Mundra et al. Aerobic and anaerobic oxidation of ferrous ions in near-neutral solutions
JPH09311130A (en) Method of measuring chemical oxygen demand
KR101777775B1 (en) Method for measuring cod with preliminary measurement step
WO2024045358A1 (en) Test method for balance degree of iron-chromium flow battery system
Afşar et al. Spectrophotometric determination of hydrogen peroxide using tris (1, 10-phenanthroline) iron (II)
Fleet et al. A fully automated method for the determination of chemical oxygen demand
CN110672786A (en) Method for rapidly detecting COD (chemical oxygen demand) in industrial wastewater
Xiong et al. A novel WH-flags method based on reducing the acidity of molybdenum blue (MB) reaction and stabilization by EDTA for quickly detecting phosphorus in water
Kumari et al. Redox Titrations
Nikolelis et al. Kinetic microdetermination of manganese in nonferrous alloys, and of nitrilotriacetic acid, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid
Zhou et al. Selective method for the spectrophotometric determination of vanadium in the presence of other refractory elements with 2, 2′-iminodibenzoic acid
RU2711410C1 (en) Method of potentiometric determination of antioxidant capacity of a solution
KR20030003849A (en) Copper electrode-based electrochemical sensor for measurement of COD and the method of measuring of COD and the automatic analyzer thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040224

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040305

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees