JPH0931095A - Production of complex carbohydrate - Google Patents

Production of complex carbohydrate

Info

Publication number
JPH0931095A
JPH0931095A JP7203945A JP20394595A JPH0931095A JP H0931095 A JPH0931095 A JP H0931095A JP 7203945 A JP7203945 A JP 7203945A JP 20394595 A JP20394595 A JP 20394595A JP H0931095 A JPH0931095 A JP H0931095A
Authority
JP
Japan
Prior art keywords
sugar chain
group
glcnac
amino acid
peptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7203945A
Other languages
Japanese (ja)
Other versions
JP3776952B2 (en
Inventor
Katsuji Haneda
羽田勝二
Toshiyuki Inazu
稲津敏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noguchi Institute
Original Assignee
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noguchi Institute filed Critical Noguchi Institute
Priority to JP20394595A priority Critical patent/JP3776952B2/en
Publication of JPH0931095A publication Critical patent/JPH0931095A/en
Application granted granted Critical
Publication of JP3776952B2 publication Critical patent/JP3776952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

PROBLEM TO BE SOLVED: To easily produce a desired complex carbohydrate nonexistent in nature and useful for the production of physiologically active complex glycopeptide, etc., by transferring the sugar chain of a complex carbohydrate to a synthetic substrate having N-acetylglucosamine residue in the presence of an endoglycosidase. SOLUTION: The desired complex carbohydrate nonexistent in nature and usable for the easy preparation of a physiologically active complex glycopeptide taking advantage of the transfer reaction of carbohydrate is easily produced by transferring a sugar chain of a complex carbohydrate (sugar chain donor) to a synthetic substrate (sugar chain acceptor) having an N-acetylglucosamine (GlcNAc) residue and expressed by formula (R<1> is H, an amino-protecting group, an amino acid, a peptide or a peptide obtained by protecting the α-amino group of an N-terminal amino acid; R<2> is OH, a carboxyl-protecting group, an amino acid, a peptide or a peptide obtained by protecting the carboxyl group of a C-terminated amino acid; (n) is 1 or 2) in the presence of an endoglycosidase (e.g. endo-β-N-acetylglucosaminidase).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ペプチドの合成反
応と酵素による糖鎖転移反応を組み合わせた生理活性複
合糖ペプチドの製造方法に関する。本発明は医薬分野に
応用される。
TECHNICAL FIELD The present invention relates to a method for producing a physiologically active complex glycopeptide by combining a peptide synthesis reaction and an enzymatic sugar chain transfer reaction. The invention has application in the pharmaceutical field.

【0002】[0002]

【従来の技術】糖質および複合糖質は生物の細胞、体液
等に存在し、細胞の基質認識や細胞−細胞間の認識等に
深く関わっている。また糖質は生体内物質の吸収分解等
の代謝の速度に関係している。タンパク質には糖鎖を持
つものが知られ、例えばエリスロポエチンやティシュー
プラスミノーゲンアクチベーターがあり、動物細胞を用
い遺伝子工学的に作られたこれら糖タンパク質が医薬と
して利用されている。またペプチドホルモンの中にも糖
鎖を持つものが知られ、例えばヒト絨毛性性腺刺激ホル
モン(hCG)等がある。これら糖タンパク質あるいは
糖ペプチドでは糖鎖がN結合型糖鎖として、ペプチド鎖
のAsnにGlcNAcを介して結合している。
2. Description of the Related Art Carbohydrates and complex carbohydrates are present in living cells, body fluids and the like, and are deeply involved in cell substrate recognition and cell-cell recognition. In addition, sugars are related to the rate of metabolism such as absorption and decomposition of substances in the body. Proteins having a sugar chain are known, and for example, there are erythropoietin and tissue plasminogen activator, and these glycoproteins genetically engineered using animal cells are used as medicines. Some peptide hormones having a sugar chain are also known, such as human chorionic gonadotropin (hCG). In these glycoproteins or glycopeptides, the sugar chain is bound to Asn of the peptide chain via GlcNAc as an N-linked sugar chain.

【0003】タンパク質あるいは生理活性ペプチド等に
糖鎖を付けたり、あるいは今ある糖鎖を別の糖鎖に換え
ることにより、生理機能の強化や生理活性の改変に役立
つことが期待される。糖鎖を酵素的に改変する方法とし
ては、1)転移酵素あるいはエキソグリコシダーゼによ
る方法と、2)エンドグリコシダーゼによる方法が考え
られる。
[0003] By attaching a sugar chain to a protein or a physiologically active peptide, or by replacing an existing sugar chain with another sugar chain, it is expected to be useful for enhancing physiological functions and modifying physiological activities. As a method for enzymatically modifying the sugar chain, 1) a method using transferase or exoglycosidase and 2) a method using endoglycosidase can be considered.

【0004】1)の方法としては、例えばD.H.ジョ
ジアッセ(D. H. Joziasse)ら[ヨーロピアン ジャー
ナル オブ バイオケミストリー(Eur. J. Bioche
m.)、 第191巻、第75〜83頁(1990)]の報
告があるが、これは糖鎖の非還元末端からの逐次反応で
ある。また、最近、M.シャスター(M. Schuster)ら
[ジャーナル オブ アメリカン ケミカル ソサエテ
イ(J. Amer. Chem. Soc.)、第116巻、第1135
〜1136頁(1994)]は数種のグリコシルトラン
スフェラーゼを組み合わせた糖鎖の固相合成法を報告し
ている。
[0004] As the method 1), for example, D. H. DH Joziasse et al. [European Journal of Biochemistry (Eur. J. Bioche)
m.), 191, 75-83 (1990)], which is a sequential reaction from the non-reducing end of the sugar chain. Recently, M.S. M. Schuster et al. [Journal of American Chemical Society, Vol. 116, No. 1135
~ 1136 (1994)] report a solid phase synthesis method of sugar chains in which several glycosyltransferases are combined.

【0005】一方、2)のエンドグリコシダーゼを用い
た糖転移反応としては、R.B.トリムブル(R. B. Tr
imble)ら[ジャーナル オブ バイオロジカル ケミ
ストリー(J. Biol. Chem.)、第261巻、第1200
0〜12005頁(1986)]のフラボバクテリウム
メニンゴセプチカム(Flavobacterium meningoseptic
um)由来のエンド−β−N−アセチルグルコサミニダー
ゼ(エンド−F)に関するもの、R.M.バーデールス
(R. M. Bardales)ら[ジャーナル オブ バイオロジ
カル ケミストリー(J. Biol. Chem.)、第264巻、
第19893〜19897頁(1989)]のディプロ
コッカス ニューモニエ(Diprococcuspneumoniae)由
来のエンド−α−N−アセチルガラクトサミニダーゼに
関するものがあり、前者はグリセロールが受容体に、ま
た後者はグリセロール、p−ニトロフェノール、セリ
ン、スレオニン等が受容体になるという報告である。そ
の後、竹川ら[特開平5−64594号(1993)]
およびK.タケガワ(K. Takegawa)ら[ジャーナル
オブ バイオロジカル ケミストリー(J. Biol. Che
m.)、第270巻、第3094〜3099頁(199
5)]がアルスロバクタープロトホルミエ(Arthrobact
er protophormiae)由来のエンド−β−N−アセチルグ
ルコサミニダーゼ(エンド−A)による糖質への糖鎖転
移反応を、また、K.ヤマモト(K. Yamamoto)ら[バ
イオケミカル バイオフィジカル リサーチ コミュニ
ケーション(Biochem. Biophys. Res. Commun.)、第2
03巻、第244〜252頁(1994)]はムコール
ヒエマリス(Mucor hiemalis)由来のエンド−Mによ
る糖質への糖鎖転移反応を報告した。
On the other hand, the glycosyltransfer reaction using endoglycosidase of 2) is described in B. Trim Bull (RB Tr
imble) et al. [Journal of Biological Chemistry (J. Biol. Chem.), Vol. 261, 1200]
0 to 12005 (1986)], Flavobacterium meningoseptic.
um) -derived endo-β-N-acetylglucosaminidase (endo-F); M. RM Bardales et al. [Journal of Biological Chemistry (J. Biol. Chem.), Vol.
198993-19897 (1989)], which relates to endo-α-N-acetylgalactosaminidase derived from Diprococcus pneumoniae. , Serine, threonine, etc. are reported to be receptors. Thereafter, Takekawa et al. [JP-A-5-64594 (1993)]
And K. K. Takegawa et al. [Journal
Of Biological Chemistry (J. Biol. Che
m.), vol. 270, pp. 3094-3099 (199
5)] is Arthrobact
er protophormiae) -derived endo-β-N-acetylglucosaminidase (endo-A) for the transglycosylation reaction to sugars. K. Yamamoto et al. [Biochem. Biophys. Res. Commun.], No. 2
03, pp. 244-252 (1994)] reported a transglycosylation reaction to a carbohydrate by endo-M derived from Mucor hiemalis.

【0006】[0006]

【発明が解決しようとする課題】複合糖質は糖鎖部分と
糖鎖が付加する側のタンパク質、ペプチドあるいはセラ
ミド部分等から構成されている。糖質に糖鎖を新たに付
与したりあるいは他の糖鎖と入れ換えたりする、いわゆ
る糖鎖の改変(リモデリング)により複合糖質の生体内
での安定性や生物活性が天然の複合糖質に比べて増強さ
れたり天然にない生物機能が付加されれば医薬品に応用
した場合に有用である。また、複合糖質における糖鎖の
もつ生理的機能は今まで糖鎖改変の有効な手段がなかっ
たために、十分には解明されていないが、その役割の解
析のための重要な手段を提供する。
The complex carbohydrate is composed of a sugar chain portion and a protein, peptide or ceramide portion to which the sugar chain is added. A glycoconjugate with natural stability and biological activity in vivo due to so-called sugar chain modification (remodeling), in which a sugar chain is newly added to the sugar or replaced with another sugar chain It is useful when applied to pharmaceuticals if it has an enhanced biological function or is added to biological functions that are not found in nature. In addition, the physiological functions of sugar chains in glycoconjugates have not been fully elucidated because there has been no effective means of sugar chain modification, but they provide important means for analyzing their roles. .

【0007】糖質あるいは複合糖質に糖鎖を新たに付加
あるいは改変する方法としては、エキソグリコシダーゼ
またはグリコシルトランスフェラーゼを用いた糖残基を
一つ一つ逐次的に付加する酵素法が考えられる。また、
エンド−Aやエンド−M等のエンドグリコシダーゼによ
る方法は複合糖鎖をブロックとして糖質や複合糖質に転
移させる、より効率的な方法を提供する。
As a method for newly adding or modifying a sugar chain to a sugar or a glycoconjugate, an enzymatic method of sequentially adding sugar residues one by one using exoglycosidase or glycosyltransferase can be considered. Also,
The method using endoglycosidase such as endo-A and endo-M provides a more efficient method of transferring a complex sugar chain as a block to a sugar or a complex sugar.

【0008】天然の糖タンパク質あるいは糖ペプチドの
糖鎖は、通常N結合型糖鎖として、Asn−X−Ser
(Thr)[Xは任意のアミノ酸、Ser(Thr)は
セリンまたはスレオニンを示す]のアミノ酸配列のペプ
チド鎖のAsnのアミド基に結合したGlcNAcを介
して結合している。即ちこのアミノ酸配列のAsnに、
末端にGlcNAc残基を有する糖鎖が付加され更に修
飾を受けてN結合型複合糖鎖は生合成される。従って、
天然にはこのアミノ酸配列のAsnに結合した糖鎖以外
のN結合型糖鎖は見出されていない。
The sugar chains of natural glycoproteins or glycopeptides are usually Asn-X-Ser as N-linked sugar chains.
(Thr) [X represents an arbitrary amino acid, Ser (Thr) represents serine or threonine], and is bound via GlcNAc linked to the amide group of Asn of the peptide chain of the amino acid sequence. That is, Asn of this amino acid sequence,
A sugar chain having a GlcNAc residue is added to the end and further modified to biosynthesize an N-linked complex sugar chain. Therefore,
N-linked sugar chains other than the sugar chain linked to Asn of this amino acid sequence have not been found in nature.

【0009】上述の酵素による糖鎖の付加あるいは改変
には糖鎖受容体であるタンパク質あるいはペプチドにG
lcNAc残基があることが必要であり、糖鎖の付加あ
るいは改変は、従来、天然の糖タンパク質あるいは糖ペ
プチドの糖鎖をエンドグリコシダーゼあるいはエキソグ
リコシダーゼによりGlcNAc残基を残して切り取っ
た後に別の糖タンパク質から調製した糖鎖を付け換える
ものに限られていた。
To add or modify a sugar chain by the above-mentioned enzyme, G or G is added to a protein or peptide which is a sugar chain receptor.
It is necessary to have an lcNAc residue, and the addition or modification of a sugar chain is conventionally performed by cutting off the sugar chain of a natural glycoprotein or glycopeptide with an endoglycosidase or an exoglycosidase, leaving a GlcNAc residue, and then removing another sugar. It was limited to replacing sugar chains prepared from proteins.

【0010】タンパク質やペプチドの中にはAsn−X
−Ser(Thr)の配列があっても糖鎖の付かないも
のも多く、例えばカルシトニンなどはその一例である。
またAsnがあってもこの配列が無ければ生合成段階で
の糖鎖の付加はできない。
Some proteins and peptides include Asn-X
Even if there is a -Ser (Thr) sequence, there are many that do not have a sugar chain, for example, calcitonin and the like.
In addition, even if Asn is present, without this sequence, sugar chains cannot be added at the biosynthesis stage.

【0011】Asn残基にGlcNAcを結合した糖ペ
プチド(GlcNAc−Asn−ペプチド)を化学的に
合成できれば、上述の酵素法によりAsnに結合したG
lcNAc残基に糖鎖を付加した新しい複合糖ペプチド
を合成できる。この場合、ペプチド側にはAsn−X−
Ser(Thr)の配列は必ずしも必要とせずAsnの
みあればよい。また、Asnに類縁のアミノ酸であるグ
ルタミン(Gln)にGlcNAc残基を付けた糖ペプ
チドを合成すれば、同様の複合糖ペプチドの合成が期待
できる。
If a glycopeptide having GlcNAc linked to an Asn residue (GlcNAc-Asn-peptide) can be chemically synthesized, G linked to Asn by the above-mentioned enzymatic method.
A new complex glycopeptide in which a sugar chain is added to the lcNAc residue can be synthesized. In this case, Asn-X- on the peptide side.
The sequence of Ser (Thr) is not always necessary and only Asn is required. Further, if a glycopeptide in which a GlcNAc residue is added to glutamine (Gln), which is an amino acid related to Asn, is synthesized, the same complex glycopeptide can be expected to be synthesized.

【0012】ペプチドの合成は固相合成法による残基数
が数十個のものまでの合成が工業的に実用化されてい
る。
[0012] Peptide synthesis is industrially put to practical use by solid phase synthesis with up to several tens of residues.

【0013】本発明は、糖を結合したアミノ酸を少なく
とも1個含むペプチド即ち合成基質を化学的に合成し、
この足がかりの糖残基へ糖あるいは糖鎖を酵素的に転移
させれば新しい複合糖ペプチドが合成できるとの考えに
基づき開発されたものである。
The present invention chemically synthesizes a peptide containing at least one sugar-bonded amino acid, that is, a synthetic substrate,
It was developed based on the idea that a new complex glycopeptide can be synthesized by enzymatically transferring a sugar or sugar chain to the sugar residue of the foothold.

【0014】[0014]

【課題を解決するための手段】本発明を概説すれば、本
発明は1)糖鎖受容体となるGlcNAc残基を有する
合成基質の合成と、2)GlcNAc残基を有する合成
基質(糖鎖受容体)への酵素による糖鎖の転移反応の2
つの構成からなる。
Means for Solving the Problems The present invention can be summarized as follows: 1) synthesis of a synthetic substrate having a GlcNAc residue which serves as a sugar chain receptor; and 2) synthesis of a synthetic substrate having a GlcNAc residue (sugar chain). 2 of enzymatic transfer of sugar chain to receptor)
It consists of one configuration.

【0015】本発明にいうGlcNAc残基を有する合
成基質とは、下記式(化1)
The synthetic substrate having a GlcNAc residue referred to in the present invention has the following formula (Formula 1).

【0016】[0016]

【化1】(式中、R1 はH、アミノ保護基、アミノ酸、
ペプチドあるいはN末端アミノ酸のαアミノ基を保護し
たペプチドを示す。R2 はOH、カルボキシル保護基、
アミノ酸、ペプチドあるいはC末端アミノ酸のカルボキ
シル基を保護したペプチドを示す。nは1あるいは2で
ある。)で示される化合物である。
(Wherein R 1 is H, an amino protecting group, an amino acid,
A peptide or a peptide in which the α-amino group of the N-terminal amino acid is protected is shown. R 2 is OH, a carboxyl protecting group,
An amino acid, a peptide, or a peptide in which the carboxyl group of the C-terminal amino acid is protected is shown. n is 1 or 2. ).

【0017】本発明にいう合成基質とは、人為的に合成
される物質をいい、天然に存在する糖タンパク質あるい
は糖ペプチドのグリコシダーゼおよびプロテアーゼ等の
酵素分解処理により調製されるGlcNAc残基を有す
る遊離のペプチドは(化1)の物質からは除外される。
The term "synthetic substrate" as used in the present invention refers to a substance that is artificially synthesized, and has a GlcNAc residue prepared by enzymatically decomposing naturally occurring glycoproteins or glycopeptides such as glycosidases and proteases. The peptide of (Chemical formula 1) is excluded from the substance of (Chemical formula 1).

【0018】(化1)に示すGlcNAc残基を有する
合成基質の合成は如何なる方法によってもよいが、例え
ばT.イナヅ(T. Inazu)ら[ペプチド ケミストリー
1993(Peptide Chemistry 1993 )、第101〜
104頁(1994)]の報告した方法に準じて合成さ
れる。
The synthetic substrate having the GlcNAc residue shown in Chemical formula 1 may be synthesized by any method. T. Inazu et al. [Peptide Chemistry 1993], No. 101-
Page 104 (1994)].

【0019】例えば、GlcNAc残基を有するヒト絨
毛性性腺刺激ホルモン(hCG)のβサブユニットの部
分ペプチドhCG(β12−16)[H−Ile−As
n−Ala−Thr−Leu−OH](Ileはイソロ
イシン、Alaはアラニン、Thrはスレオニン、Le
uはロイシンを示す。)の合成を例にとると、予め、N
末端を保護(9−フルオレニルメチルオキシカルボニ
ル、Fmoc)したアスパラギンのアミド基にGlcN
Acが結合したFmoc−Asn−GlcNAc誘導体
を合成しておき、ペプチドの固相合成の段階でAsnの
代わりに用いてペプチド合成を行うと、AsnにGlc
NAc残基が結合したhCG(β12−16)ペプチド
[Fmoc−Ile−Asn(GlcNAc)−Ala
−Thr−Leu−OH]が合成される。
For example, a partial peptide hCG (β12-16) [H-Ile-As of the β subunit of human chorionic gonadotropin (hCG) having a GlcNAc residue.
n-Ala-Thr-Leu-OH] (Ile is isoleucine, Ala is alanine, Thr is threonine, Le
u represents leucine. ) Is taken as an example, N
GlcN was added to the amide group of asparagine whose terminal was protected (9-fluorenylmethyloxycarbonyl, Fmoc).
When an Fmoc-Asn-GlcNAc derivative bound with Ac was synthesized and peptide synthesis was performed using Asn instead of Asn in the solid phase synthesis of the peptide, Glc was added to Asn.
HCG (β12-16) peptide [Fmoc-Ile-Asn (GlcNAc) -Ala bound to NAc residue]
-Thr-Leu-OH] is synthesized.

【0020】本発明の方法では、Asn−X−Ser
(Thr)のアミノ酸配列がなくても、アミノ酸配列の
中にAsnがあればAsnの代わりにGlcNAcがア
ミド基に結合したAsn(GlcNAc−Asn)を用
いてペプチド合成することにより、任意のGlcNAc
−Asn−ペプチドが合成できる。このAsnに結合し
たGlcNAcに糖鎖を転移させて天然にはない複合糖
ペプチドを合成することが可能となる。
In the method of the present invention, Asn-X-Ser is used.
Even if there is no amino acid sequence of (Thr), if there is Asn in the amino acid sequence, peptide synthesis is performed using Asn (GlcNAc-Asn) in which GlcNAc is bonded to the amide group instead of Asn, thereby obtaining an arbitrary GlcNAc.
-Asn-peptide can be synthesized. By transferring a sugar chain to GlcNAc bound to Asn, it becomes possible to synthesize a non-natural complex glycopeptide.

【0021】GlcNAcがアミド基に結合したグルタ
ミン(GlcNAc−Gln)をGlnに代えて用いる
ことによりGlcNAcがGlnに結合したペプチド
(GlcNAc−Gln−ペプチド)が合成される。
(化1)のnが2の化合物がこれに当たる。
A peptide in which GlcNAc is bound to Gln (GlcNAc-Gln-peptide) is synthesized by using glutamine in which GlcNAc is bound to an amide group (GlcNAc-Gln) in place of Gln.
This corresponds to the compound of Chemical formula 1 in which n is 2.

【0022】(化1)のR1 にある末端アミノ酸のαア
ミノ基の保護基としては、例えば、9−フルオレニルメ
チルオキシカルボニル(Fmoc)基、第3ブチルオキ
シカルボニル(Boc)基、3−ニトロ−2−ピリジン
スルフェニル(Npys)基、ベンジルオキシカルボニ
ル(Z)基あるいはダンシル(DNS)基等が用いられ
る。
Examples of the protecting group for the α-amino group of the terminal amino acid at R 1 in (Chemical formula 1) include 9-fluorenylmethyloxycarbonyl (Fmoc) group, tert-butyloxycarbonyl (Boc) group and 3 A -nitro-2-pyridinesulfenyl (Npys) group, a benzyloxycarbonyl (Z) group, a dansyl (DNS) group or the like is used.

【0023】N末端アミノ酸の保護基は糖鎖転移反応後
に常法により外すか、あるいは予め保護基を外した後に
糖鎖転移反応に供してもよい。
The protecting group of the N-terminal amino acid may be removed by a conventional method after the transglycosylation reaction, or may be subjected to the transglycosylation reaction after removing the protecting group in advance.

【0024】(化1)のR2 にあるカルボキシル基の保
護基としては、第3ブチル(But)基、ベンジル(B
zl)基あるいはメチル(Me)基等であるが、水への
溶解性を上げるために保護基を外し、遊離型で用いるこ
とが多い。
Examples of the protective group for the carboxyl group represented by R 2 in (Chemical Formula 1) include a tert-butyl (Bu t ) group and benzyl (B
zl) group or methyl (Me) group, but in many cases, the protective group is removed to increase solubility in water, and the free form is used.

【0025】本発明の第2の構成は、糖鎖受容体である
合成基質への糖鎖供与体からの糖鎖の転移反応による付
加である。
The second constitution of the present invention is the addition of a sugar chain from a sugar chain donor to a synthetic substrate which is a sugar chain acceptor by a transfer reaction.

【0026】エンドグリコシダーゼの存在下、下記式
(式1):X−GlcNAc−Y + Z → X−G
lcNAc−Z + Y (式1)[式中、Xは複合
糖鎖、Yは糖質あるいは複合糖質、Zは(化1)に示し
た合成基質]で表される転移反応を行うことを特徴とす
る。
In the presence of endoglycosidase, the following formula (Formula 1): X-GlcNAc-Y + Z → X-G
lcNAc-Z + Y (Formula 1) wherein X is a complex sugar chain, Y is a carbohydrate or complex carbohydrate, and Z is a synthetic substrate represented by Chemical Formula 1. Features.

【0027】本発明に用いるエンドグリコシダーゼとし
ては、エンド−β−N−アセチルグルコサミニダーゼ
(EC3.2.1.96)であり、例えば、エンド−A
やエンド−M等が用いられる。該酵素は下記式(式
2):R−GlcNAc−GlcNAc−Asn−(ペ
プチドまたはタンパク質)(式2)(式中Rは複合糖鎖
を示す)のアスパラギン(Asn)結合型糖鎖のキトビ
オース部分(GlcNAc−GlcNAc)の間を加水
分解するが、この時に適当な糖鎖受容体があると、受容
体に糖鎖(R−GlcNAc)部分が転移する。(式
1)の反応はそれを利用したものである。
The endoglycosidase used in the present invention is endo-β-N-acetylglucosaminidase (EC 3.2.1.96), for example, endo-A.
And End-M are used. The enzyme is a chitobiose moiety of an asparagine (Asn) -linked sugar chain of the following formula (formula 2): R-GlcNAc-GlcNAc-Asn- (peptide or protein) (formula 2) (wherein R represents a complex sugar chain). The (GlcNAc-GlcNAc) is hydrolyzed. If an appropriate sugar chain receptor is present at this time, the sugar chain (R-GlcNAc) portion is transferred to the receptor. The reaction of (Equation 1) utilizes this.

【0028】エンドグリコシダーゼによる糖鎖転移反応
の糖鎖受容体となるのは、通常、Asn−X−Ser
(Thr)配列を含むペプチドのAsnに結合したGl
cNAc残基である。
It is usually Asn-X-Ser that serves as a sugar chain acceptor in the transglycosylation reaction by endoglycosidase.
Gl linked to Asn of peptide containing (Thr) sequence
cNAc residue.

【0029】Asn−X−Ser(Thr)の配列がな
くても、Asnに結合したGlcNAc残基を有するペ
プチド(GlcNAc−Asn−ペプチド)であればエ
ンドグリコシダーゼによる糖鎖転移反応の糖鎖受容体に
なり得ることが分かった。また、ペプチドのN末端αア
ミノ基及びC末端カルボキシル基は遊離型でなく、いず
れかあるいは両末端とも保護されていても反応が進行し
た。
Even if there is no Asn-X-Ser (Thr) sequence, a peptide having a GlcNAc residue bound to Asn (GlcNAc-Asn-peptide) is a sugar chain receptor for a transglycosylation reaction by endoglycosidase. It turns out that can be. Further, the reaction proceeded even if the N-terminal α-amino group and the C-terminal carboxyl group of the peptide were not in free form and either or both ends were protected.

【0030】更に驚くべきことに、天然には存在しない
グルタミン(Gln)に結合したGlcNAc残基を含
むペプチド(GlcNAc−Gln−ペプチド)のGl
cNAc残基にもAsnの場合と同様に糖鎖の転移反応
が起きることが分かった。
Even more surprisingly, the Gl of a peptide containing a GlcNAc residue linked to a non-naturally occurring glutamine (Gln) (GlcNAc-Gln-peptide).
It was found that the sugar chain transfer reaction also occurs in the cNAc residue as in the case of Asn.

【0031】(化1)に示すGlcNAc残基を有する
合成基質はかかる知見に基づき調製されたものであり、
この合成基質への酵素による糖鎖の転移反応を行う本発
明を完成させた。
The synthetic substrate having the GlcNAc residue shown in (Chemical Formula 1) is prepared on the basis of such findings,
The present invention has been completed in which a sugar chain transfer reaction by an enzyme to this synthetic substrate is carried out.

【0032】酵素の糖鎖供与体の基質特異性について
は、エンド−Aは高マンノース型糖鎖のみに作用する
が、エンド−Mは高マンノース型のみならず複合型糖鎖
や混成型糖鎖にも作用する。
Regarding the substrate specificity of the sugar chain donor of the enzyme, endo-A acts only on high-mannose type sugar chains, but endo-M is not only high-mannose type sugar chains but also complex type sugar chains and mixed type sugar chains. Also works.

【0033】これらの酵素の本来の機能は加水分解であ
り、(式1)のZの代わりに水が入り加水分解反応が転
移反応とともに副反応として進行する。また、(式1)
で生成した転移反応生成物(X−GlcNAc−Z)は
加水分解反応の基質となり再分解を受ける。
The original function of these enzymes is hydrolysis, and instead of Z in (Formula 1), water enters and the hydrolysis reaction proceeds as a side reaction together with the transfer reaction. Also, (Equation 1)
The rearrangement reaction product (X-GlcNAc-Z) produced in the above step becomes a substrate for the hydrolysis reaction and undergoes re-decomposition.

【0034】糖鎖転移反応を効率よく行わせるには加水
分解反応を抑えて(式1)の反応を優先的に行わせるこ
とが必要である。与酵素量を減らし、基質である糖鎖供
与体(X−GlcNAc−Y)と糖鎖受容体(Z)の仕
込濃度を、そのモル比を1近くにしつつ高濃度にするこ
とにより反応の場(酵素の活性中心)における水の影響
を排して転移反応を効率よく進行させることができる。
In order to efficiently carry out the transglycosylation reaction, it is necessary to suppress the hydrolysis reaction and preferentially carry out the reaction of the formula (1). By decreasing the amount of the enzyme to be added and increasing the charged concentrations of the sugar chain donor (X-GlcNAc-Y) and the sugar chain acceptor (Z), which are the substrates, while keeping the molar ratio close to 1, the reaction The influence of water in the (active center of the enzyme) can be eliminated to allow the transfer reaction to proceed efficiently.

【0035】反応系で重要な点は、反応を酵素律速条件
下で行うことである。即ち糖鎖供与体から受容体への糖
鎖転移反応の速度が与酵素量に依存し、その速度を最大
にするに必要な最少量の酵素量になるように酵素の添加
量を制限して反応する。例えばエンド−Mの場合、糖鎖
供与体に対して500ユニット(U)/モル(供与体)
以下、望ましくは80〜400U/モル(供与体)程度
の酵素量を加える。なおここで、酵素の1ユニット
(U)は、ヒトトランスフェリン由来のアシアロ複合型
糖鎖のダンシル化(DNS)誘導体を加水分解して、3
7℃、1分間に1マイクロモル(μmol)のN−アセ
チルグルコサミニル−アスパラギンのDNS誘導体(G
lcNAc−Asn−DNS)を生成させるに必要な酵
素量である。
An important point in the reaction system is that the reaction is carried out under enzyme-controlled conditions. That is, the rate of the sugar chain transfer reaction from the sugar chain donor to the acceptor depends on the amount of the enzyme, and the amount of the enzyme added is limited so that the minimum amount of enzyme required to maximize the rate is obtained. react. For example, in the case of Endo-M, 500 units (U) / mole (donor) to the sugar chain donor
Below, an enzyme amount of about 80 to 400 U / mol (donor) is preferably added. Here, 1 unit (U) of the enzyme hydrolyzes the dansylated (DNS) derivative of the asialo complex type sugar chain derived from human transferrin to give 3
1 micromolar (μmol) N-acetylglucosaminyl-asparagine DNS derivative (G
It is the amount of enzyme required to generate lcNAc-Asn-DNS).

【0036】糖鎖供与体と受容体の仕込濃度を著しく高
めることも重要である。与酵素量を制限しつつ両基質を
高濃度に仕込むことにより、糖鎖転移反応が促進され副
反応が抑えられて反応収率は飛躍的に向上する。その濃
度は、糖鎖供与体が10mM以上、望ましくは15〜7
5mMがよい。また糖鎖受容体は2.5mM以上、望ま
しくは7.5〜35mM程度がよい。糖鎖受容体の濃度
は高い方が望ましいが、合成基質の溶解度が低い場合に
は2.5mM程度の濃度でも用いられる。
It is also important to significantly increase the concentration of the sugar chain donor and acceptor charged. By charging both substrates at a high concentration while limiting the amount of the enzyme, the sugar chain transfer reaction is promoted, side reactions are suppressed, and the reaction yield is dramatically improved. The concentration of the sugar chain donor is 10 mM or more, preferably 15 to 7
5 mM is good. Further, the sugar chain receptor is 2.5 mM or more, preferably about 7.5 to 35 mM. It is desirable that the concentration of the sugar chain receptor is high, but when the solubility of the synthetic substrate is low, it can be used even at a concentration of about 2.5 mM.

【0037】本発明に用いる糖鎖供与体としては、高マ
ンノース型、複合型、混成型いずれの糖鎖も用いられ
る。高マンノース型糖鎖は例えば卵白アルブミン等か
ら、またシアル酸を含有する複合型糖鎖は例えばヒトト
ランスフェリンや牛フェツイン等から調製され、シアリ
ダーゼ処理等によりシアル酸を外せばアシアロ複合型糖
鎖が調製される。酵素的あるいは化学的に修飾された糖
鎖、あるいは化学合成された糖鎖も用いることができ
る。
As the sugar chain donor used in the present invention, any of high mannose type, complex type and mixed type sugar chains can be used. The high-mannose type sugar chain is prepared from, for example, ovalbumin, and the complex type sugar chain containing sialic acid is prepared from, for example, human transferrin, bovine fetuin, etc., and asialo complex type sugar chain is prepared by removing sialic acid by sialidase treatment or the like. To be done. Enzymatically or chemically modified sugar chains or chemically synthesized sugar chains can also be used.

【0038】本発明の反応は、基質の糖鎖供与体、糖鎖
受容体および酵素のエンドグリコシダーゼを緩衝溶液中
で混合することにより行われる。先述のごとく、糖鎖供
与体の濃度を10mM以上、望ましくは15〜75m
M、糖鎖受容体の濃度を2.5mM以上、望ましくは
7.5〜35mMになるように加える。酵素量は500
U/モル(供与体)以下、望ましくは80〜400U/
モル(供与体)程度に制限し、例えば、エンド−Mの場
合、2〜10mU/ml程度の量で用いる。緩衝液とし
ては、pH5〜8程度、濃度25〜200mM、望まし
くは50〜100mMの適当な緩衝液が用いられる。エ
ンド−Mの場合、通常pH5.5〜6.5、濃度50〜
100mMの酢酸あるいはリン酸緩衝液中で反応が行わ
れる。基本的な反応液組成の一例は、糖鎖供与体25m
M、糖鎖受容体10mM、エンド−M4mU/mlおよ
び60mMリン酸緩衝液(pH6.25)である。
The reaction of the present invention is carried out by mixing the substrate sugar chain donor, the sugar chain acceptor and the enzyme endoglycosidase in a buffer solution. As described above, the concentration of the sugar chain donor is 10 mM or more, preferably 15 to 75 m.
M and sugar chain receptor are added so as to have a concentration of 2.5 mM or more, preferably 7.5 to 35 mM. Enzyme amount is 500
U / mol (donor) or less, preferably 80 to 400 U /
It is limited to about mol (donor), and for example, in the case of endo-M, it is used in an amount of about 2 to 10 mU / ml. As the buffer solution, an appropriate buffer solution having a pH of about 5 to 8 and a concentration of 25 to 200 mM, preferably 50 to 100 mM is used. In case of Endo-M, the pH is usually 5.5 to 6.5 and the concentration is 50 to
The reaction is performed in 100 mM acetic acid or phosphate buffer. An example of a basic reaction solution composition is a sugar chain donor 25 m
M, sugar chain receptor 10 mM, endo-M 4 mU / ml and 60 mM phosphate buffer (pH 6.25).

【0039】反応温度は通常、室温〜50℃程度、好ま
しくは30〜40℃で行われ、反応時間は1〜24時間
である。例えば、エンド−M酵素の場合、通常、37℃
で3〜18時間程度反応が行われる。
The reaction temperature is usually room temperature to about 50 ° C., preferably 30 to 40 ° C., and the reaction time is 1 to 24 hours. For example, in the case of the endo-M enzyme, usually 37 ° C
For about 3 to 18 hours.

【0040】生成した複合糖質は公知の手段に従って反
応終了液から容易に分離精製することが出来る。例え
ば、ゲルろ過カラムクロマトグラフィー、イオン交換樹
脂カラムクロマトグラフィー、レクチンカラムクロマト
グラフィー、高速液体クロマトグラフィー(HPLC)
等により反応終了液から反応生成物の複合糖質を分離
し、更に濃縮、脱塩、凍結乾燥等を行えばよい。
The produced glycoconjugate can be easily separated and purified from the reaction-terminated liquid according to known means. For example, gel filtration column chromatography, ion exchange resin column chromatography, lectin column chromatography, high performance liquid chromatography (HPLC)
For example, the complex saccharide of the reaction product may be separated from the reaction-terminated liquid, and then concentrated, desalted, freeze-dried and the like.

【0041】[0041]

【実施例】以下に実施例をあげて本発明を更に具体的に
説明するが、本発明はこれらに限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0042】[0042]

【実施例1】 高マンノース型糖鎖のGlcNAc−Asn−Fmoc
への糖鎖転移反応:糖鎖供与体として、卵白アルブミン
をプロナーゼ処理、セファデックスG−25ゲルろ過更
にDowex50イオン交換クロマトにより分離精製し
て得た高マンノース型糖鎖(Man)6−(GlcNA
c)2−Asn(分子量1651)を1μmol(終濃
度25mM)、糖鎖受容体としてGlcNAc−Asn
−Fmoc(分子量558)を400nmol(同10
mM)、エンド−Mを160μU(同4mU/ml)加
え、60mMリン酸緩衝液(pH6.25)40μl中
で37℃、18時間反応させた。加熱処理により反応停
止後、反応液を蒸留水で1mlに希釈し反応生成物をH
PLCで分析した。4.0%の反応収率(対糖鎖受容
体、モル比)でGlcNAc−Asn−Fmocへの転
移反応生成物が得られた。反応生成物をHPLC分取
し、質量分析の結果、m/z[M−H]1732にシグ
ナルが観察され、(Man)6−(GlcNAc)2−A
snからGlcNAc−Asn−Fmocへの転移反応
生成物、即ち(Man)6 −(GlcNAc)2 −As
n−Fmoc(分子量1734)であることが確認され
た。
Example 1 GlcNAc-Asn-Fmoc of high-mannose type sugar chain
Transglycosylation reaction to: High-mannose type sugar chain (Man) 6- (GlcNA) obtained by treating ovalbumin as a sugar chain donor with pronase, Sephadex G-25 gel filtration and separating and purifying by Dowex 50 ion exchange chromatography.
c) 1- mol (final concentration 25 mM) of 2- Asn (molecular weight 1651), GlcNAc-Asn as a sugar chain receptor
-Fmoc (molecular weight 558) 400 nmol (same 10
mM) and Endo-M (160 μU (4 mU / ml)) were added and reacted in 40 μl of 60 mM phosphate buffer (pH 6.25) at 37 ° C. for 18 hours. After the reaction was stopped by heat treatment, the reaction solution was diluted to 1 ml with distilled water and the reaction product was diluted with H
Analyzed by PLC. A transfer reaction product to GlcNAc-Asn-Fmoc was obtained with a reaction yield of 4.0% (to sugar chain receptor, molar ratio). The reaction product was collected by HPLC, and as a result of mass spectrometry, a signal was observed at m / z [MH] 1732, and (Man) 6- (GlcNAc) 2 -A.
Transfer reaction product from sn to GlcNAc-Asn-Fmoc, namely (Man) 6- (GlcNAc) 2 -As
It was confirmed to be n-Fmoc (molecular weight 1734).

【0043】[0043]

【実施例2】 ヒトトランスフェリン由来シアロ糖鎖のGlcNAc−
Asn−Fmocへの転移反応: 糖鎖供与体として、
ヒトトランスフェリン(生化学工業)をプロナーゼ処
理、セファデックスG−25ゲルろ過を繰り返して得た
Asn残基のみを有するシアロ糖ペプチド(TF−SG
P、分子量2338)を1μmol(終濃度25mM)
とGlcNAc−Asn−Fmoc 400nmol
(同10mM)を0.1Mリン酸緩衝液(pH6.2
5)24μlに溶解し、エンド−M 160μUを含む
酵素溶液16μlを加え、37℃で6時間反応した。反
応停止後反応液を蒸留水で1mlに希釈して、反応生成
物をHPLCで分析した。転移反応生成物が反応6時間
で4.5%の収率で得られた。反応生成物をHPLC分
取により単離し、質量分析の結果、m/z[M−H]2
561にシグナルが観測され、ジシアロ2本鎖複合型糖
鎖がGlcNAc−Asn−Fmocに転移した化合物
(分子量2560)であることが確認された。
Example 2 GlcNAc- of human transferrin-derived sialo-glycan
Transfer Reaction to Asn-Fmoc: As a sugar chain donor,
Sialoglycopeptides having only Asn residues (TF-SG) obtained by repeating human transferrin (Seikagaku Corporation) with pronase and Sephadex G-25 gel filtration.
P, molecular weight 2338) 1 μmol (final concentration 25 mM)
And GlcNAc-Asn-Fmoc 400 nmol
(The same 10 mM) as a 0.1 M phosphate buffer (pH 6.2)
5) Dissolved in 24 μl, added 16 μl of enzyme solution containing 160 μU of Endo-M, and reacted at 37 ° C. for 6 hours. After stopping the reaction, the reaction solution was diluted to 1 ml with distilled water, and the reaction product was analyzed by HPLC. The transfer reaction product was obtained in a yield of 4.5% in 6 hours of reaction. The reaction product was isolated by HPLC fractionation, and as a result of mass spectrometry, m / z [MH] 2
A signal was observed at 561 and it was confirmed that the compound was a compound (molecular weight 2560) in which a disialo double-chain complex type sugar chain was transferred to GlcNAc-Asn-Fmoc.

【0044】[0044]

【実施例3】 ヒトトランスフェリン由来アシアロ糖鎖のGlcNAc
−Asn−Fmocへの転移反応: 糖鎖供与体とし
て、ヒトトランスフェリン由来のシアロ糖ペプチド(T
F−SGP)をシアリダーゼ処理してシアル酸を外した
アシアロ糖ペプチド(TF−ASGP、分子量175
6)を1μmol(終濃度25mM)とGlcNAc−
Asn−Fmoc 400nmol(同10mM)を
0.1Mリン酸緩衝液(pH6.25)24μlに溶解
し、エンド−M 160μUを含む酵素溶液16μlを
加え、37℃で6時間反応した。反応停止後反応液を蒸
留水で1mlに希釈して、反応生成物をHPLCで分析
した。転移反応生成物が反応6時間で8.0%の収率で
得られた。反応生成物をHPLC分取により単離し、質
量分析の結果、m/z[M−H]1983にシグナルが
観測され、アシアロ2本鎖複合型糖鎖がGlcNAc−
Asn−Fmocに転移した化合物(分子量1978)
であることが確認された。
Example 3 GlcNAc of human transferrin-derived asialo sugar chain
-Asn-Fmoc transfer reaction: As a sugar chain donor, a human transferrin-derived sialoglycopeptide (T
F-SGP) was treated with sialidase to remove sialic acid, and asialoglycopeptide (TF-ASGP, molecular weight 175)
6) 1 μmol (final concentration 25 mM) and GlcNAc-
400 nmol (10 mM) of Asn-Fmoc was dissolved in 24 μl of 0.1 M phosphate buffer (pH 6.25), 16 μl of enzyme solution containing 160 μU of endo-M was added, and the mixture was reacted at 37 ° C. for 6 hours. After stopping the reaction, the reaction solution was diluted to 1 ml with distilled water, and the reaction product was analyzed by HPLC. The transfer reaction product was obtained in a yield of 8.0% in 6 hours of the reaction. The reaction product was isolated by HPLC fractionation, and as a result of mass spectrometry, a signal was observed at m / z [MH] 1983, and the asialo double-chain complex type sugar chain was GlcNAc-.
Compound transferred to Asn-Fmoc (molecular weight 1978)
Was confirmed.

【0045】[0045]

【実施例4】 ヒトトランスフェリン由来アシアロ糖鎖のGlcNAc
−Asn−Npysへの糖鎖転移反応:糖鎖受容体とし
てのGlcNAc−Asnの3−ニトロ−2−ピリジン
スルフェニル(Npys)誘導体(GlcNAc−As
n−Npys)(分子量489)はAsnのαアミノ保
護基をNpys基にした化合物として合成した。糖鎖供
与体として実施例3と同様に調製したアシアロ糖ペプチ
ド(TF−ASGP)を用いた。アシアロ糖ペプチド
(TF−ASGP)を1μmol(終濃度25mM)と
GlcNAc−Asn−Npys 500nmol(同
12.5mM)を0.1Mリン酸緩衝液(pH6.2
5)24μlに溶解し、エンド−M 160μUを含む
酵素溶液16μlを加え、37℃で3時間反応させた。
反応停止後反応液を蒸留水で1mlに希釈して、反応生
成物をHPLCで分析したところ、転移反応生成物が
7.0%の収率で得られた。反応生成物をHPLC分取
し、質量分析したところ、分子量1910に相当するイ
オンピーク(m/z)観察され、トランスフェリン由来
のアシアロ2本鎖複合型糖鎖がGlcNAc−Asn−
Npysに転移した化合物であることが確認された。
[Example 4] GlcNAc of asialo sugar chain derived from human transferrin
-Glycosyl transfer reaction to Asn-Npys: 3-nitro-2-pyridinesulfenyl (Npys) derivative of GlcNAc-Asn as a sugar chain receptor (GlcNAc-As)
n-Npys) (molecular weight 489) was synthesized as a compound in which the α amino protecting group of Asn was changed to the Npys group. Asialoglycopeptide (TF-ASGP) prepared in the same manner as in Example 3 was used as the sugar chain donor. 1 μmol of asialoglycopeptide (TF-ASGP) (final concentration 25 mM) and 500 nmol of GlcNAc-Asn-Npys (12.5 mM) in 0.1M phosphate buffer (pH 6.2).
5) Dissolved in 24 μl, added 16 μl of enzyme solution containing 160 μU of Endo-M, and reacted at 37 ° C. for 3 hours.
After stopping the reaction, the reaction solution was diluted to 1 ml with distilled water, and the reaction product was analyzed by HPLC. As a result, a transfer reaction product was obtained in a yield of 7.0%. When the reaction product was collected by HPLC and subjected to mass spectrometry, an ion peak (m / z) corresponding to a molecular weight of 1910 was observed, and the transferrin-derived asialo double-chain complex sugar chain was GlcNAc-Asn-.
It was confirmed that the compound was a compound transferred to Npys.

【0046】[0046]

【実施例5】 ヒトトランスフェリン由来複合型糖鎖の合成ペプチドへ
の転移反応: 糖鎖受容体として、ヒト絨毛性性腺刺激
ホルモン(hCG)のβ鎖の部分ペプチドhCG(β1
2−16)のAsn残基にGlcNAcを付けたペプチ
ド[Fmoc−Ile−Asn(GlcNAc)−Al
a−Thr−Leu−OH]、[GlcNAc−hCG
(β12−16)−Fmoc](分子量956)(Il
eはイソロイシン、Alaはアラニン、Thrはスレオ
ニン、Leuはロイシンを示す)を先のT.イナヅらの
方法に準じて合成して用いた。糖鎖供与体のシアロ糖ペ
プチド(TF−SGP)を1μmol(終濃度25m
M)、受容体としてGlcNAc−hCG(β12−1
6)−Fmocを400nmol(同10mM)を0.
1Mリン酸緩衝液(pH6.25)24μlに溶解し、
エンド−M 160μUを含む酵素溶液16μlを加
え、37℃で3時間反応させた。反応停止後反応液を蒸
留水で1mlに希釈して、反応生成物をHPLCで分析
したところ、ジシアロ糖鎖がGlcNAc−hCG(β
12−16)−Fmocに転移した化合物(分子量29
59)の生成が認められた。糖鎖供与体としてアシアロ
糖ペプチド(TF−ASGP)を用いると、アシアロ糖
鎖がGlcNAc−hCG(β12−16)−Fmoc
に転移した化合物(分子量2376)が得られた。
Example 5 Transfer Reaction of Human Transferrin-Derived Complex Type Sugar Chain to Synthetic Peptide: As a sugar chain receptor, a partial peptide hCG (β1) of β chain of human chorionic gonadotropin (hCG)
2-16) peptide [Fmoc-Ile-Asn (GlcNAc) -Al in which GlcNAc is attached to the Asn residue]
a-Thr-Leu-OH], [GlcNAc-hCG
(Β12-16) -Fmoc] (molecular weight 956) (Il
e is isoleucine, Ala is alanine, Thr is threonine, and Leu is leucine). It was synthesized according to the method of Inazu et al. And used. Sialoglycopeptide (TF-SGP), a sugar chain donor, was added at 1 μmol (final concentration 25 m
M), GlcNAc-hCG (β12-1 as a receptor
6) -Fmoc was added to 400 nmol (the same 10 mM) to 0.
Dissolve in 24 μl of 1M phosphate buffer (pH 6.25),
16 μl of an enzyme solution containing 160 μU of Endo-M was added and reacted at 37 ° C. for 3 hours. After the reaction was stopped, the reaction solution was diluted to 1 ml with distilled water, and the reaction product was analyzed by HPLC. As a result, the disialo sugar chain showed GlcNAc-hCG (β
12-16) -Fmoc transferred compound (molecular weight 29
59) was observed. When asialoglycopeptide (TF-ASGP) is used as a sugar chain donor, the asialoglycan is GlcNAc-hCG (β12-16) -Fmoc.
To give a compound (molecular weight 2376).

【0047】[0047]

【実施例6】 高マンノース型糖鎖の合成ペプチドへの転移反応: 糖
鎖供与体として、卵白アルブミン由来の高マンノース型
糖鎖(Man)6−(GlcNAc)2−Asn(分子量
1651)を、糖鎖受容体としてGlcNAc残基を有
するヒト絨毛性性腺刺激ホルモン(hCG)のβ鎖の部
分ペプチドhCG(β12−16)[GlcNAc−h
CG(β12−16)−Fmoc]を用い、実施例5と
同様の反応条件下で3時間反応させたところ、高マンノ
ース型糖鎖がGlcNAc−hCG(β12−16)−
Fmocに転移した化合物(分子量2132)の生成が
認められた。
Example 6 Transfer Reaction of High-Mannose-Type Sugar Chain to Synthetic Peptide: As a sugar-chain donor, a high-mannose-type sugar chain (Man) 6- (GlcNAc) 2 -Asn (molecular weight 1651) derived from ovalbumin was used, Partial peptide hCG (β12-16) [GlcNAc-h of human chorionic gonadotropin (hCG) having a GlcNAc residue as a sugar chain receptor
CG (β12-16) -Fmoc] was reacted for 3 hours under the same reaction conditions as in Example 5, the high mannose type sugar chain was GlcNAc-hCG (β12-16)-.
Formation of a compound (molecular weight 2132) transferred to Fmoc was observed.

【0048】[0048]

【実施例7】 高マンノース型糖鎖のGlcNAc−Gln−Fmoc
への糖鎖転移反応:糖鎖受容体のGlcNAc−Gln
−Fmoc(分子量572)はAsnの代わりにGln
(グルタミン)が入った化合物としてGlcNAc−A
sn−Fmocの合成法に準じて合成した。酵素反応に
はナトリウム塩にして用いた。糖鎖供与体として高マン
ノース型糖鎖(Man)6−(GlcNAc)2−Asn
(分子量1651)を1μmol(終濃度25mM)、
糖鎖受容体としてGlcNAc−Gln−Fmoc(分
子量572)を200nmol(同5mM)、エンド−
Mを160μU(同4mU/ml)加え、60mMリン
酸緩衝液(pH6.25)40μl中で37℃、3時間
反応させた。反応停止後、反応液を蒸留水で1mlに希
釈し反応生成物をHPLCで分析した。転移反応生成物
が7.5%の収率で得られた。転移反応生成物をHPL
C分取し、質量分析したところ、分子量1748に相当
するイオンピーク(m/z)が認められ、(Man)6
−(GlcNAc)2−AsnからGlcNAc−Gl
n−Fmocへの転移反応生成物、即ち(Man)6
(GlcNAc)2−Gln−Fmocであることが確
認された。
Example 7 GlcNAc-Gln-Fmoc of high mannose type sugar chain
Glycotransfer Reaction to GlcNAc-Gln of Sugar Receptor
-Fmoc (molecular weight 572) is Gln instead of Asn
GlcNAc-A as a compound containing (glutamine)
It was synthesized according to the synthesis method of sn-Fmoc. The sodium salt was used for the enzymatic reaction. High-mannose type sugar chain (Man) 6- (GlcNAc) 2 -Asn as a sugar chain donor
(Molecular weight 1651) 1 μmol (final concentration 25 mM),
200 nmol (5 mM) of GlcNAc-Gln-Fmoc (molecular weight 572) as an oligosaccharide receptor, endo-
160 μU of M (4 mU / ml) was added, and the mixture was reacted in 40 μl of 60 mM phosphate buffer (pH 6.25) at 37 ° C. for 3 hours. After stopping the reaction, the reaction solution was diluted to 1 ml with distilled water and the reaction product was analyzed by HPLC. The transfer reaction product was obtained in a yield of 7.5%. The transfer reaction product is HPL
As a result of C fractionation and mass spectrometry, an ion peak (m / z) corresponding to a molecular weight of 1748 was observed, and (Man) 6
-(GlcNAc) 2 -Asn to GlcNAc-Gl
Transfer reaction product to n-Fmoc, that is, (Man) 6
It was confirmed to be (GlcNAc) 2 -Gln-Fmoc.

【0049】[0049]

【実施例8】 ヒトトランスフェリン由来複合型糖鎖のGlcNAc−
Gln−Fmocへの転移反応: 糖鎖供与体として、
ヒトトランスフェリンから調製したシアロおよびアシア
ロ糖ペプチド(TF−SGPおよびTF−ASGP)を
1μmol(終濃度25mM)とGlcNAc−Gln
−Fmocを200nmol(同5mM)を0.1Mリ
ン酸緩衝液(pH6.25)24μlに溶解し、エンド
−M 160μUを含む酵素溶液16μlを加え、37
℃で3時間反応した。反応停止後反応液を蒸留水で1m
lに希釈して、反応生成物をHPLCで分析した。転移
反応生成物がTF−SGPの場合5.0%、TF−AS
GPの場合13.7%の収率で得られた。転移反応生成
物をHPLC分取により単離し、質量分析の結果、TF
−SGPの転移反応生成物には分子量2574に相当す
るイオンピークが、またTF−ASGPの転移反応生成
物には分子量1992に相当するイオンピーク(m/z
[M−H] 1992)が観測され、各々ジシアロ2本
鎖複合型糖鎖がGlcNAc−Gln−Fmocに転移
した化合物およびアシアロ2本鎖複合型糖鎖がGlcN
Ac−Gln−Fmocに転移した化合物であることが
確認された。
Example 8 GlcNAc- of human transferrin-derived complex sugar chain
Transfer Reaction to Gln-Fmoc: As a sugar chain donor,
Sialo and asialoglycopeptides (TF-SGP and TF-ASGP) prepared from human transferrin were added at 1 μmol (final concentration 25 mM) and GlcNAc-Gln.
-200 nmol (5 mM) of Fmoc was dissolved in 24 µl of 0.1 M phosphate buffer (pH 6.25), 16 µl of enzyme solution containing 160 µU of endo-M was added, and 37
The reaction was performed at a temperature of 3 ° C. for 3 hours. After stopping the reaction, the reaction solution is distilled water to 1 m.
Diluted to 1 and analyzed the reaction product by HPLC. When the transfer reaction product is TF-SGP, 5.0%, TF-AS
In the case of GP, the yield was 13.7%. The transfer reaction product was isolated by HPLC fractionation, and as a result of mass spectrometry, TF
-SGP transfer reaction product has an ion peak corresponding to a molecular weight of 2574, and TF-ASGP transfer reaction product has an ion peak corresponding to a molecular weight of 1992 (m / z).
[MH] 1992) was observed, and the compound in which the disialo double-chain complex sugar chain was transferred to GlcNAc-Gln-Fmoc and the asialo double-chain complex sugar chain were GlcN, respectively.
It was confirmed that the compound was a compound transferred to Ac-Gln-Fmoc.

【0050】[0050]

【実施例9】 ヒトトランスフェリン由来アシアロ糖鎖のGlcNAc
−Gln−DNSへの糖鎖転移反応:糖鎖受容体として
GlcNAc−Glnのダンシル化(DNS)誘導体
(GlcNAc−Gln−DNS)(分子量585)は
Glnのαアミノ基をDNS基で保護した化合物として
合成した。糖鎖供与体としてアシアロ糖ペプチド(TF
−ASGP)を用い、実施例4と同様の反応条件で3時
間反応させた。反応生成物をHPLC分取し、質量分析
したところ、分子量2004に相当するイオンピーク
(m/z)観察され、アシアロ2本鎖複合型糖鎖がGl
cNAc−Gln−DNSに転移した化合物であること
が確認された。
Example 9 Human Transferrin-Derived Asialo Sugar Chain GlcNAc
-Gln-DNS transglycosylation reaction: A dansylated (DNS) derivative of GlcNAc-Gln (GlcNAc-Gln-DNS) (molecular weight 585) as a sugar chain receptor is a compound in which the α amino group of Gln is protected by a DNS group. Was synthesized as. Asialoglycopeptide (TF) as a sugar chain donor
-ASGP) was reacted for 3 hours under the same reaction conditions as in Example 4. When the reaction product was collected by HPLC and subjected to mass spectrometry, an ion peak (m / z) corresponding to a molecular weight of 2004 was observed, and the asialo double-chain complex type sugar chain was Gl.
It was confirmed that the compound was transferred to cNAc-Gln-DNS.

【0051】[0051]

【発明の効果】本発明により、GlcNAc残基を有す
る合成基質に酵素的に糖鎖を付加して新規複合糖ペプチ
ドを容易に合成することが可能となった。糖鎖受容体の
ペプチドはペプチド鎖のアミノ酸配列の中にアスパラギ
ン(Asn)あるいはグルタミン(Gln)があればG
lcNAc残基を介してN結合型糖鎖を付加することが
でき、天然には無い全く新しい複合糖ペプチドを合成で
きる。付加する糖鎖は高マンノース型、シアル酸を含む
複合型糖鎖いずれでもよく、望み通りの複合糖ペプチド
を合成できる。非天然のみならず天然のものも無論合成
可能である。本発明は、医薬への応用とともに複合糖質
の糖鎖の果たしている生理的役割を解明するための研究
手法を提供する。
INDUSTRIAL APPLICABILITY According to the present invention, a novel complex glycopeptide can be easily synthesized by enzymatically adding a sugar chain to a synthetic substrate having a GlcNAc residue. The peptide of the sugar chain receptor is G if there is asparagine (Asn) or glutamine (Gln) in the amino acid sequence of the peptide chain.
An N-linked sugar chain can be added via the lcNAc residue, and a completely new complex glycopeptide that is not found in nature can be synthesized. The sugar chain to be added may be either a high-mannose type sugar chain or a complex type sugar chain containing sialic acid, and a desired complex glycopeptide can be synthesized. Naturally, not only non-natural but also natural ones can be synthesized. The present invention provides a research technique for elucidating the physiological role played by the sugar chains of glycoconjugates, together with application to medicine.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 21/02 C12P 21/02 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C12P 21/02 C12P 21/02 B

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】エンドグリコシダーゼの存在下、複合糖質
(糖鎖供与体)の糖鎖をN−アセチルグルコサミン(G
lcNAc)残基を有する合成基質(糖鎖受容体)に転
移させることにより複合糖ペプチドを製造する方法。
1. The method according to claim 1, wherein a sugar chain of a glycoconjugate (sugar chain donor) is converted to N-acetylglucosamine (G) in the presence of endoglycosidase.
A method for producing a complex glycopeptide by transferring to a synthetic substrate (sugar chain receptor) having an lcNAc) residue.
【請求項2】GlcNAc残基を有する合成基質が、下
記式(化1)で示される化合物である請求項1に記載の
方法。 【化1】 (式中、R1 はH、アミノ保護基、アミノ酸、ペプチド
あるいはN末端アミノ酸のαアミノ基を保護したペプチ
ドを示す。R2 はOH、カルボキシル保護基、アミノ
酸、ペプチドあるいはC末端アミノ酸のカルボキシル基
を保護したペプチドを示す。nは1あるいは2であ
る。)。ただし、天然に存在する複合糖質の酵素分解に
より調製される物質を除く。
2. The method according to claim 1, wherein the synthetic substrate having a GlcNAc residue is a compound represented by the following formula (Formula 1). Embedded image (In the formula, R 1 represents H, an amino-protecting group, an amino acid, a peptide or a peptide in which an α-amino group of an N-terminal amino acid is protected. R 2 represents an OH, a carboxyl-protecting group, an amino acid, a peptide or a carboxyl group of a C-terminal amino acid. Represents a protected peptide, where n is 1 or 2.). However, substances prepared by enzymatic decomposition of naturally occurring glycoconjugates are excluded.
【請求項3】GlcNAcの結合するアミノ酸がアスパ
ラギン(Asn)である請求項1に記載の方法。
3. The method according to claim 1, wherein the amino acid to which GlcNAc binds is asparagine (Asn).
【請求項4】GlcNAcの結合するアミノ酸がグルタ
ミン(Gln)である請求項1に記載の方法。
4. The method according to claim 1, wherein the amino acid to which GlcNAc binds is glutamine (Gln).
【請求項5】N末端アミノ酸のαアミノ基の保護基が9
−フルオレニルメチルオキシカルボニル(Fmoc)
基、第3ブチルオキシカルボニル(Boc)基、3−ニ
トロ−2−ピリジンスルフェニル(Npys)基、ベン
ジルオキシカルボニル(Z)基あるいはダンシル(DN
S)基である請求項2に記載の方法。
5. The protecting group for the α-amino group of the N-terminal amino acid is 9
-Fluorenylmethyloxycarbonyl (Fmoc)
Group, tert-butyloxycarbonyl (Boc) group, 3-nitro-2-pyridinesulfenyl (Npys) group, benzyloxycarbonyl (Z) group or dansyl (DN
The method according to claim 2, which is a S) group.
【請求項6】C末端アミノ酸のカルボキシル基の保護基
が第3ブチル(But )、ベンジル(Bzl)あるいは
メチル(Me)基である請求項2に記載の方法。
6. C protecting group of the carboxyl group of the terminal amino acid tert-butyl (Bu t), The method of claim 2 is benzyl (Bzl) or methyl (Me) group.
【請求項7】エンドグリコシダーゼがエンド−β−N−
アセチルグルコサミニダーゼ(EC3.2.1.96)
である請求項1に記載の方法。
7. The method according to claim 7, wherein the endoglycosidase is endo-β-N-.
Acetylglucosaminidase (EC 3.2.1.96)
The method of claim 1, wherein
【請求項8】酵素律速条件下で反応を行う請求項1に記
載の方法。
8. The method according to claim 1, wherein the reaction is carried out under enzyme rate limiting conditions.
【請求項9】エンドグリコシダーゼの存在下、複合糖質
(糖鎖供与体)の糖鎖をN−アセチルグルコサミン(G
lcNAc)残基を有する合成基質(糖鎖受容体)に転
移させることにより製造される複合糖ペプチド。
9. A sugar chain of a complex sugar (sugar chain donor) is converted to N-acetylglucosamine (G) in the presence of endoglycosidase.
A complex glycopeptide produced by transferring to a synthetic substrate (sugar chain receptor) having an lcNAc) residue.
JP20394595A 1995-07-18 1995-07-18 Production process of complex carbohydrates Expired - Fee Related JP3776952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20394595A JP3776952B2 (en) 1995-07-18 1995-07-18 Production process of complex carbohydrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20394595A JP3776952B2 (en) 1995-07-18 1995-07-18 Production process of complex carbohydrates

Publications (2)

Publication Number Publication Date
JPH0931095A true JPH0931095A (en) 1997-02-04
JP3776952B2 JP3776952B2 (en) 2006-05-24

Family

ID=16482285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20394595A Expired - Fee Related JP3776952B2 (en) 1995-07-18 1995-07-18 Production process of complex carbohydrates

Country Status (1)

Country Link
JP (1) JP3776952B2 (en)

Also Published As

Publication number Publication date
JP3776952B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US5369017A (en) Process for solid phase glycopeptide synthesis
Yamamoto et al. Chemoenzymatic synthesis of a novel glycopeptide using a microbial endoglycosidase
Yamamoto Chemo-enzymatic synthesis of bioactive glycopeptide using microbial endoglycosidase
JPWO2017010559A1 (en) New EndoS mutant enzyme
US7955819B2 (en) Process for producing sugar chain asparagine derivative
Pote et al. Otoconin-22, the major protein of aragonitic frog otoconia, is a homolog of phospholipase A2
TWI325430B (en) Aminated complex type sugar chain derivative and its production method
US4645740A (en) Process for enzymatic replacement of the B-30 amino acid in insulins
KR20050085242A (en) Sugar chain asparagine derivatives, sugar chain asparagine, sugar chain, and processes for producing these
SG193377A1 (en) Method for producing glycopeptide having sialyl sugar chain, sialyl sugar chain-added amino acid derivative to be used in same, and glycopeptide
JPH10306099A (en) New conjugated glycopeptide and its production
JP3776952B2 (en) Production process of complex carbohydrates
EP0779932B1 (en) Amino acid conjugate
JP3732871B2 (en) Method for producing complex carbohydrate
JP3741495B2 (en) Novel complex glycopeptide and method for producing the same
JPH11113593A (en) New complex glycopeptide and its production and intermediate therefor
JPH10273500A (en) Composite glycopeptide and its production
JP2008502594A (en) Method of extracting insulin by air gas treatment with improved folding
JP3811527B2 (en) Process for producing new glycoconjugates
AU550062B2 (en) A process for the preparation of an insulin derivative
JPH1042893A (en) Production of new complex carbohydrate
Haneda et al. Chemoenzymatic Synthesis of Neoglycopeptides Using Endo β-N-acetylglucosaminidase from Mucor hiemalis
EP4349996A1 (en) Method for producing glycopeptide
Yan [32] Covalent attachment of oligosaccharide-asparagine derivatives: Incorporation into glutamine residues with the enzyme transglutaminase
EP0458475A2 (en) Transpeptidation reagent and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees