JPH09310937A - Expansion valve - Google Patents

Expansion valve

Info

Publication number
JPH09310937A
JPH09310937A JP8128106A JP12810696A JPH09310937A JP H09310937 A JPH09310937 A JP H09310937A JP 8128106 A JP8128106 A JP 8128106A JP 12810696 A JP12810696 A JP 12810696A JP H09310937 A JPH09310937 A JP H09310937A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
outlet
temperature
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8128106A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP8128106A priority Critical patent/JPH09310937A/en
Publication of JPH09310937A publication Critical patent/JPH09310937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the flow rate of refrigerant approximately corresponding to the temperature of the refrigerant sent from an evaporator by disposing a temperature sensitive chamber at the outlet of an air stream flowing along heat transfer fins of an evaporator, where a valve body is driven by a diaphragm forming a part of an airtight wall of the temperature sensitive chamber. SOLUTION: In an expansion valve 20 which is used together with an evaporator in a refrigeration cycle for an air conditioner of automobile, high pressure refrigerant is sent from a high pressure refrigerant inlet 22 toward a refrigerant outlet 23 to feed the refrigerant into the evaporator, while the refrigerant is being adiabatically expanded at a throttling orifice 24, and a valve body 25 is displaced corresponding to the pressure in a temperature sensitive chamber 30 through a diaphragm 31 to vary the flow rate of the high pressure refrigerant. In this case, the chamber 30 is provided on the outlet side of a refrigerant passage of the evaporator so as to be positioned in an air flow caused to flow by an air fan along heat transfer fins of the evaporator. As a result, the temperature of the air sensed by the chamber 30 can be made nearly equal to the temperature of the refrigerant coming to the outlet 23, and hence the flow rate of the high pressure refrigerant sent into the evaporator can be controlled accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、自動車用空調装
置等の冷凍サイクルに使用される膨張弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an expansion valve used for a refrigeration cycle of an air conditioner for an automobile or the like.

【0002】[0002]

【従来の技術】膨張弁は、蒸発器における冷媒の蒸発状
態に対応して弁の開度を変化させる必要がある。そこ
で、いわゆるガス封入式の膨張弁では、感温用冷媒が封
入された感温管の先端を蒸発器の出口側配管部に接触さ
せて、基端側を感温室に連通させ、その感温室の気密壁
の一部をダイアフラムによって形成して、蒸発器に送り
込まれる前の高圧冷媒が通る絞り部の流路面積を変える
ための弁体を、ダイアフラムによって駆動している。
2. Description of the Related Art In an expansion valve, it is necessary to change the opening of the valve in accordance with the evaporation state of the refrigerant in the evaporator. Therefore, in a so-called gas-filled expansion valve, the tip of the temperature-sensing pipe in which the temperature-sensing refrigerant is sealed is brought into contact with the outlet side piping of the evaporator, and the base end side is communicated with the greenhouse-sensing greenhouse. A part of the airtight wall is formed by a diaphragm, and the diaphragm drives a valve element for changing the flow passage area of the throttle portion through which the high-pressure refrigerant before being sent to the evaporator passes.

【0003】[0003]

【発明が解決しようとする課題】そのようなガス封入式
の膨張弁においては、感温管の先端を、蒸発器の出口側
配管に対してできるだけ広い面積で確実に接触させる必
要があるが、それを行うための部品コストや組立工数が
大きくて、製造コストを押し上げていた。
In such a gas-filled type expansion valve, it is necessary to surely bring the tip of the temperature sensitive tube into contact with the outlet side pipe of the evaporator in a wide area as much as possible. The cost of parts and the number of assembling steps for doing so were large, which pushed up the manufacturing cost.

【0004】そこで本発明は、部品コストと組立工数を
殆どかけることなく、蒸発器における冷媒の蒸発状態に
対応して弁の開度を変化させることができる膨張弁を提
供することを目的とする。
Therefore, an object of the present invention is to provide an expansion valve capable of changing the opening degree of the valve in accordance with the evaporation state of the refrigerant in the evaporator with almost no increase in the cost of parts and the number of assembling steps. .

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の膨張弁は、感温用冷媒が封入された感温室
の気密壁の一部をダイアフラムによって形成して、蒸発
器に送り込まれる前の高圧冷媒が通る絞り部の流路面積
を変えるための弁体を上記ダイアフラムによって駆動す
るようにした膨張弁において、上記蒸発器の冷媒流路に
連なって形成された伝熱フィンに沿って流される空気流
の冷媒出口部分に上記感温室を配置したことを特徴とす
る。
In order to achieve the above-mentioned object, the expansion valve of the present invention has an evaporator in which a part of an airtight wall of a temperature-sensitive greenhouse in which a temperature-sensitive refrigerant is enclosed is formed by a diaphragm. In the expansion valve in which the valve body for changing the flow passage area of the throttle portion through which the high-pressure refrigerant passes before being sent is driven by the diaphragm, the heat transfer fin formed continuously with the refrigerant flow passage of the evaporator is formed. It is characterized in that the above-mentioned greenhouse is arranged at a refrigerant outlet portion of an air stream flowing along.

【0006】なお、上記感温室が、上記蒸発器の冷媒流
路の冷媒出口近傍に配置されているとよい。
It should be noted that the greenhouse is preferably arranged near the refrigerant outlet of the refrigerant passage of the evaporator.

【0007】[0007]

【発明の実施の形態】図面を参照して本発明の実施の形
態を説明する。図1は、自動車用空調装置等の冷凍サイ
クルに使用される蒸発器10と膨張弁20を示してい
る。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an evaporator 10 and an expansion valve 20 used in a refrigerating cycle of an automobile air conditioner or the like.

【0008】高圧冷媒液が送られて来る高圧冷媒配管5
1の先端に膨張弁20が接続され、膨張弁20を通過し
た冷媒が、断熱膨張しながら蒸発器10内に送り込まれ
る。そして、蒸発器10内で蒸発して低圧になった冷媒
が低圧冷媒配管52を通って送り出される。
High-pressure refrigerant pipe 5 to which high-pressure refrigerant liquid is sent
The expansion valve 20 is connected to the tip of the valve 1, and the refrigerant passing through the expansion valve 20 is sent into the evaporator 10 while undergoing adiabatic expansion. Then, the refrigerant that has evaporated to a low pressure in the evaporator 10 is sent out through the low-pressure refrigerant pipe 52.

【0009】蒸発器10内の冷媒流路11は、熱伝導性
の良い金属材によって形成されていて、図2に略示され
るように、膨張弁20から送り込まれた冷媒が蒸発器1
0の右半部において複数の管路に分かれてU字状に裏側
に回り、それから左半部に送られて複数の管路に分か
れ、U字状に表側に回されて低圧冷媒配管52に送り出
されるように配管されている。
The refrigerant flow path 11 in the evaporator 10 is made of a metal material having good thermal conductivity, and the refrigerant sent from the expansion valve 20 is the evaporator 1 as shown in FIG.
In the right half part of 0, it is divided into a plurality of pipe lines and turns to the back side in a U shape, then is sent to the left half part to be divided into a plurality of pipe lines and is turned to the front side in a U shape to the low pressure refrigerant pipe 52. It is piped to be sent out.

【0010】そして、図1及び図3に示されるように、
熱伝導性の良い金属板からなる伝熱フィン12が、櫛の
歯状に配置された冷媒流路11に接触するように、冷媒
流路11の間の隙間にほぼ全長にわたって設けられてい
る。
Then, as shown in FIGS. 1 and 3,
The heat transfer fins 12 made of a metal plate having good thermal conductivity are provided in the gaps between the refrigerant flow paths 11 over substantially the entire length so as to come into contact with the refrigerant flow paths 11 arranged in a comb tooth shape.

【0011】図4は膨張弁20を示している。21は、
膨張弁20の本体ブロックであり、高圧冷媒配管51の
先端が接続された高圧冷媒入口22と、蒸発器10に接
続された冷媒出口23とが直角方向に向きを変えて形成
されている。
FIG. 4 shows the expansion valve 20. 21 is
A high-pressure refrigerant inlet 22 to which the tip of a high-pressure refrigerant pipe 51 is connected and a refrigerant outlet 23 connected to the evaporator 10 are the main body blocks of the expansion valve 20 and are formed with their directions turned at right angles.

【0012】高圧冷媒入口22と冷媒出口23との間の
冷媒流路の途中には、冷媒の流路断面積を狭く絞った絞
り孔24が、冷媒出口23に対して真っ直ぐに形成され
ていて、その流路面積を可変するための球状の弁体25
が冷媒出口23側から絞り孔24に対向して配置されて
いる。26は、弁体25を絞り孔24に押し付ける方向
に付勢する圧縮コイルスプリング、27はスプリング受
けである。
In the middle of the refrigerant passage between the high-pressure refrigerant inlet 22 and the refrigerant outlet 23, a throttle hole 24 having a narrowed passage cross-sectional area of the refrigerant is formed straight with respect to the refrigerant outlet 23. , A spherical valve element 25 for varying its flow passage area
Is arranged so as to face the throttle hole 24 from the refrigerant outlet 23 side. Reference numeral 26 is a compression coil spring for urging the valve body 25 in a direction to press it against the throttle hole 24, and 27 is a spring receiver.

【0013】絞り孔24を間に挟んで、冷媒出口23と
逆側の端部には感温室30が形成されていて、後述する
ダイアフラム31の裏側部分と冷媒出口23側の冷媒流
路との間が連通孔29によって連通している。
A greenhouse 30 is formed at the end opposite to the refrigerant outlet 23 with the throttle hole 24 interposed therebetween, and it connects the back side portion of the diaphragm 31 and the refrigerant passage on the refrigerant outlet 23 side, which will be described later. The communication holes 29 communicate with each other.

【0014】感温室30内には、冷凍サイクルの運転条
件下で飽和蒸気の状態になる、例えばR12等の冷媒が
封入されている。そして、冷媒充填孔は栓体39によっ
て封止されている。
A refrigerant such as R12, which becomes a saturated vapor under the operating conditions of the refrigeration cycle, is enclosed in the greenhouse 30. The refrigerant filling hole is sealed by the plug 39.

【0015】また、熱伝導性のよい金属材料からなる感
温室ケース37の外面に接触するように、熱伝導性のよ
い金属材料によって糸巻きリール状に形成された感熱フ
ィン38が取り付けられている。
A heat-sensitive fin 38 formed of a metal material having good heat conductivity and formed in a reel shape is attached so as to come into contact with the outer surface of the greenhouse case 37 made of metal material having good heat conductivity.

【0016】感温室30は気密室を形成しており、その
壁面の一部は、可撓性薄膜からなるダイアフラム31に
よって形成されている。したがってダイアフラム31
は、感温室30内の圧力とダイアフラム31の裏面側の
空間の圧力との差圧によって変位する。
The greenhouse 30 forms an airtight chamber, and a part of its wall surface is formed by a diaphragm 31 made of a flexible thin film. Therefore, the diaphragm 31
Is displaced by the pressure difference between the pressure in the greenhouse 30 and the pressure in the space on the back surface side of the diaphragm 31.

【0017】そのダイアフラム31の裏面側には、円盤
状のダイアフラム受け34がダイアフラム31と中心位
置を合わせてダイアフラム31に当接して配置されてお
り、ダイアフラム受け34と弁体25との間に挟まれ
て、ロッド35が軸線方向に進退自在に配置されてい
る。
On the back surface side of the diaphragm 31, a disk-shaped diaphragm receiver 34 is arranged in contact with the diaphragm 31 with its center position aligned with the diaphragm 31, and sandwiched between the diaphragm receiver 34 and the valve body 25. Therefore, the rod 35 is arranged so as to be movable back and forth in the axial direction.

【0018】33は、ロッド35の外周面部分を伝って
冷媒がリークしないようにするためのシール用のOリン
グ、34は、Oリング33を押さえると共にロッド35
の進退ガイドとなる筒状体である。
Reference numeral 33 denotes an O-ring for sealing that prevents the refrigerant from leaking along the outer peripheral surface portion of the rod 35, and 34 holds the O-ring 33 and presses the rod 35.
Is a tubular body that serves as an advancing and retreating guide.

【0019】このように構成された膨張弁20において
は、高圧冷媒入口22から冷媒出口23に向かう高圧冷
媒が、絞り孔24を通過することによって断熱膨張しな
がら蒸発器10に送り込まれるが、感温室30内の圧力
に対応して弁体25が変位して、高圧冷媒の流量が変化
する。
In the expansion valve 20 thus constructed, the high-pressure refrigerant flowing from the high-pressure refrigerant inlet 22 to the refrigerant outlet 23 is sent to the evaporator 10 while undergoing adiabatic expansion by passing through the throttle hole 24. The valve body 25 is displaced according to the pressure in the greenhouse 30, and the flow rate of the high-pressure refrigerant changes.

【0020】図1に示される100は、冷房用の空気流
を蒸発器10に当てるための送風ファンであり、感温室
30は、蒸発器10の左半部(即ち、冷媒流路11の出
口側の部分)に位置し、送風ファン100によって蒸発
器10の伝熱フィン12に沿って流される空気流の出口
部分に、蒸発器10に接近して配置されている。
Reference numeral 100 shown in FIG. 1 is a blower fan for applying an air flow for cooling to the evaporator 10. The greenhouse 30 is located in the left half of the evaporator 10 (that is, the outlet of the refrigerant passage 11). (Side portion), and is arranged close to the evaporator 10 at the outlet portion of the air flow that is made to flow along the heat transfer fins 12 of the evaporator 10 by the blower fan 100.

【0021】したがって、感温室30が感知する空気の
温度は、蒸発器10を通過して冷媒出口にさしかかる位
置の冷媒の温度に近似しており、その温度に対応してダ
イアフラム31が変位して、蒸発器10の送り込まれる
高圧冷媒の流量が制御される。
Therefore, the temperature of the air sensed by the greenhouse 30 is close to the temperature of the refrigerant at the position where it passes through the evaporator 10 and reaches the refrigerant outlet, and the diaphragm 31 is displaced corresponding to the temperature. The flow rate of the high-pressure refrigerant sent to the evaporator 10 is controlled.

【0022】なお、図5に示されるように、感温室30
から感熱フィン38を取り外して、空気流が感温室ケー
ス37に直接当たるようにしてもよい。
Incidentally, as shown in FIG.
Alternatively, the heat-sensitive fins 38 may be removed so that the airflow directly impinges on the greenhouse case 37.

【0023】[0023]

【発明の効果】本発明によれば、蒸発器の冷媒流路に連
なって形成された伝熱フィンに沿って流される空気流の
出口部分に感温室を配置したことにより、蒸発器におけ
る冷媒の蒸発状態に対応した高圧冷媒流量の調整を、部
品コストと組立工数を大幅に削減した構成によって行う
ことができ、蒸発器の冷媒流路の出口近傍に感温室を配
置することにより、蒸発器から送り出される冷媒温度に
ほぼ対応して冷媒の流量制御を行うことができる。
According to the present invention, the temperature-sensing chamber is arranged at the outlet of the air flow that flows along the heat transfer fins that are formed in series with the refrigerant flow path of the evaporator, so that the refrigerant in the evaporator is It is possible to adjust the flow rate of high-pressure refrigerant according to the state of evaporation with a configuration that greatly reduces the cost of parts and the number of assembly steps.By placing a greenhouse in the vicinity of the outlet of the refrigerant flow path of the evaporator, The flow rate of the refrigerant can be controlled substantially corresponding to the temperature of the discharged refrigerant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態の蒸発器と膨張弁の
斜視図である。
FIG. 1 is a perspective view of an evaporator and an expansion valve according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の蒸発器の冷媒流路
の略示図である。
FIG. 2 is a schematic view of a refrigerant flow path of the evaporator according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の蒸発器の空気流の
下流部分における正面断面図である。
FIG. 3 is a front cross-sectional view of a downstream portion of the air flow of the evaporator according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態の膨張弁の縦断面図
である。
FIG. 4 is a vertical cross-sectional view of the expansion valve according to the first embodiment of this invention.

【図5】本発明の第2の実施の形態の膨張弁の縦断面図
である。
FIG. 5 is a vertical sectional view of an expansion valve according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 蒸発器 11 冷媒流路 12 伝熱フィン 24 絞り孔 25 弁体 30 感温室 31 ダイアフラム 10 Evaporator 11 Refrigerant flow path 12 Heat transfer fin 24 Throttle hole 25 Valve body 30 Greenhouse 31 Diaphragm

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】感温用冷媒が封入された感温室の気密壁の
一部をダイアフラムによって形成して、蒸発器に送り込
まれる前の高圧冷媒が通る絞り部の流路面積を変えるた
めの弁体を上記ダイアフラムによって駆動するようにし
た膨張弁において、 上記蒸発器の冷媒流路に連なって形成された伝熱フィン
に沿って流される空気流の出口部分に上記感温室を配置
したことを特徴とする膨張弁。
1. A valve for forming a part of an airtight wall of a greenhouse in which a temperature-sensitive refrigerant is enclosed by a diaphragm to change a flow passage area of a throttle portion through which high-pressure refrigerant before being sent to an evaporator passes. In the expansion valve in which the body is driven by the diaphragm, the greenhouse is arranged at the outlet of the air flow that flows along the heat transfer fins formed in series with the refrigerant flow path of the evaporator. Expansion valve.
【請求項2】上記感温室が、上記蒸発器の冷媒流路の冷
媒出口近傍に配置されている請求項1記載の膨張弁。
2. The expansion valve according to claim 1, wherein the greenhouse is disposed near a refrigerant outlet of a refrigerant passage of the evaporator.
JP8128106A 1996-05-23 1996-05-23 Expansion valve Pending JPH09310937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8128106A JPH09310937A (en) 1996-05-23 1996-05-23 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8128106A JPH09310937A (en) 1996-05-23 1996-05-23 Expansion valve

Publications (1)

Publication Number Publication Date
JPH09310937A true JPH09310937A (en) 1997-12-02

Family

ID=14976545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8128106A Pending JPH09310937A (en) 1996-05-23 1996-05-23 Expansion valve

Country Status (1)

Country Link
JP (1) JPH09310937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227268A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Control valve and fuel cell system using the same
CN104964491A (en) * 2015-06-15 2015-10-07 上海意利法暖通科技有限公司 Heat exchange and water distribution device of one-way capillary system
USD926944S1 (en) 2019-11-25 2021-08-03 Joseph P. Marcilese Fluid connector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227268A (en) * 2006-02-24 2007-09-06 Seiko Instruments Inc Control valve and fuel cell system using the same
CN104964491A (en) * 2015-06-15 2015-10-07 上海意利法暖通科技有限公司 Heat exchange and water distribution device of one-way capillary system
USD926944S1 (en) 2019-11-25 2021-08-03 Joseph P. Marcilese Fluid connector

Similar Documents

Publication Publication Date Title
US10036578B1 (en) Integrated cold plate with expansion device and uniform cooling method achieved therewith
JPH08145505A (en) Expansion valve
JPH01230966A (en) Control of refrigerating system and thermostatic expansion valve
JPH04214157A (en) Fluid flow controller
JP3995513B2 (en) Expansion valve with pressure detection function
CA2640635A1 (en) Refrigerant fluid flow control device and method
JP3525112B2 (en) Expansion valve
JPH09310937A (en) Expansion valve
JP2001241808A (en) Expansion valve
JP2006292185A (en) Expansion device and refrigerating cycle
JP3920059B2 (en) Expansion valve
JP3481036B2 (en) Expansion valve
JPH09310938A (en) Expansion valve
JP3716378B2 (en) Hunting prevention method for temperature expansion valve
JP3942848B2 (en) Expansion valve unit
JP3920056B2 (en) Expansion valve
JPH10170105A (en) Expansion valve
JP3476619B2 (en) Expansion valve
JPH11223426A (en) Expansion valve for automotive air conditioner
JPH02154955A (en) Automatic expansion valve for refrigerating plant
JP3914014B2 (en) Expansion valve
JPH09329374A (en) Expansion valve
JPH05157405A (en) Expansion valve
JPH09329373A (en) Expansion valve
JP3920060B2 (en) Expansion valve

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040113